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Ранее с использованием параболической регуляризации для некоторой подпоследова-
тельности {εn}n∈N, εn > 0 доказано существование классического решения задачи об
образовании пальцеобразной структуры в однофазной вязкой жидкости в ячейке Хеле-
Шоу при наличии поверхностного натяжения (исходной задачи). В данной работе до-
казывается единственность классического решения исходной задачи с использованием
параболической регуляризации для полной последовательности параметра {ε}, ε > 0.

Ключевые слова: радиальная пальцеобразная структура, поток вязких жидкостей,
ячейка Хеле-Шоу, поверхностное натяжение, единственность классического решения

Введение. Вязкие пальцеобразные структуры могут возникать в потоке двух несме-
шивающихся вязких жидкостей в ячейке Хеле-Шоу [1]. Вследствие наличия градиента
давления и (или) силы тяжести на первоначально плоской границе раздела двух жидко-
стей возникает неустойчивость Саффмана — Тейлора [2] и развивается пальцеобразная
структура (см. работы [3, 4] и библиографию к ним).

В работах [5, 6] с использованием параболической регуляризации [7, 8] для задач о
радиальных течениях двухфазных и однофазных вязких жидкостей в ячейке Хеле-Шоу с
образованием пальцеобразной структуры без учета поверхностного натяжения доказано

существование решений, принадлежащих стандартным пространствам Гельдера. Един-
ственность решений подобных задач доказана в работе [9].

Пальцеобразная структура может образоваться в несжимаемой жидкости, находящей-
ся в горизонтально расположенной ячейке Хеле-Шоу, вследствие наличия поверхностного
натяжения (однофазная задача при наличии поверхностного натяжения). Существование
решения указанной выше однофазной задачи в стандартных пространствах Гельдера дока-
зано в работе [10]. Целью данной работы является доказательство единственности такого
решения. Задача о течении двухфазной жидкости в ячейке Хеле-Шоу с учетом поверхност-
ного натяжения изучена в работе [11]. Результаты исследования этой задачи приведены
в работах [12, 13] (см. также [14–16]). Следует отметить, что в ряде работ исследовались
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такие же задачи с размерностью n > 2, представляющие интерес с точки зрения мате-
матики, но не имеющие практической значимости, поскольку потоки Хеле-Шоу, по сути,
являются двумерными.

1. Формулировка задачи и основная теорема. Следует отметить, что некоторые
обозначения, используемые в данной работе, отличаются от обозначений, использованных
в [10].

Медленное замещение одной жидкости другой жидкостью в ячейке Хеле-Шоу описы-
вается сдедующими уравнениями:

∇ · v = 0, v = −M∇p в Ω(t), t > 0. (1.1)

Здесь v — вектор скорости жидкости; p — давление в жидкости; M = b2/(12µ) — по-
движность; µ — вязкость жидкости; b — ширина пластин. В случае радиального течения
в задаче об образовании пальцеобразных структур достаточно исследовать уравнения (1.1)
при геометрических ограничениях

Ω(t) = {x ∈ R2: R∗ < |x| < R(t) + ζ(x/|x|, t)},
где R∗ — радиус отверстия, через которое поступает замещающая жидкость с расхо-
дом Q(t); R(t) — радиус невозмущенной области:

πR(t)2 = πR2
0 +

t∫
0

Q(τ) dτ, R0 ≡ R(0) > R∗,

ζ — радиус возмущенной области. Ставятся следующие начальные и краевые условия:

v · n = Q(t)/(2πR∗) на Γ∗ = {x ∈ R2: |x| = R∗}, t > 0,

(1.2)v · n = Vn, p = pe − σ(b/2 +H) на Γ(t), t > 0;

(v, p)
∣∣
t=0

= (v0, p0) на Ω(0) ≡ Ω, ζ
∣∣
t=0

= ζ0 на Γ(0) ≡ Γ (ζ0 > R∗ −R0). (1.3)

Здесь

Γ(t) = {x ∈ R2: |x| = R(t) + ζ(x/|x|, t)},
Vn — нормальная скорость границы раздела Γ(t); n — единичный вектор нормали к Γ∗
или Γ(t); pe — давление в вытесненной жидкости; σ > 0 — коэффициент поверхностного

натяжения; H — кривизна поверхности Γ(t).
Задача (1.1)–(1.3) для определения v, p, ζ сводится к задаче определения p, ζ:

∆p = 0 в Ω(t), t > 0, −M∇p · n = Q(t)/(2πR∗) на Γ∗, t > 0,

−M∇p · n = Vn, p = pe − σ(b/2 +H) на Γ(t), t > 0, (1.4)

p
∣∣
t=0

= p0 на Ω, ζ
∣∣
t=0

= ζ0 на Γ.

Давление p0 должно удовлетворять условиям

∆p0 = 0 в Ω, −M∇p0 · n = Q(0)/(2πR∗) на Γ∗,
(1.5)

p0 = p0
e − σ(b/2 +H0) ≡ pe − σ(b/2 +H)

∣∣
t=0

на Γ.

В полярных координатах (r, θ) задача (1.4) записывается в виде

1

r

∂

∂r

(
r
∂p

∂r

)
+

1

r2
∂2p

∂θ2
= 0, r ∈ (R∗, R(t) + ζ(θ, t)), θ ∈ J ≡ (0, 2π), t > 0,
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M
∂p

∂r
= − Q(t)

2πR∗
, r = R∗, θ ∈ J, t > 0,

(1.6)

M
(∂p
∂r

− 1

r2
∂ζ

∂θ

∂p

∂θ

)
= − ∂

∂t
(R(t) + ζ), p = pe − σ(b/2 +H),

r = R(t) + ζ(θ, t), θ ∈ J, t > 0,

p
∣∣
t=0

= p0, r ∈ (R∗, R0 + ζ0(θ)), θ ∈ J, ζ
∣∣
t=0

= ζ0, θ ∈ J,
где

H =
(R + ζ)2 + 2(∂ζ/∂θ)2 − (R + ζ) ∂2ζ/∂θ2

[(R + ζ)2 + (∂ζ/∂θ)2]3/2
.

После преобразования области Ω(t) = {(r, θ): r ∈ (R∗, R(t) + ζ(θ, t)), θ ∈ J} в область
Ω = {(r′, θ′): r′ ∈ (R∗, R0 + ζ0(θ′)), θ′ ∈ J} путем замены переменных

r′ =
R0 + ζ0 −R∗
R + ζ −R∗

(r−R∗)+R∗, θ′ = θ, t′ = t, p(r, θ, t) = p′(r′, θ′, t′), ζ(θ, t) = ζ ′(θ′, t′)

задача (1.6) сводится к задаче (штрихи у безразмерных величин опущены)

Lζp = 0 в Ω, t > 0,

∂p

∂r
= − Q(t)

2πR∗M

R + ζ −R∗
R0 + ζ0 −R∗

на Γ∗ ≡ {r = R∗, θ ∈ J}, t > 0,

∂ζ

∂t
+ b2(ζ)

∂p

∂r
+ b1(ζ)

∂p

∂θ
= −Q(t)

2πR
, p = pe − σ

( b
2

+H
)

(1.7)

на Γ ≡ {r = R0 + ζ0(θ), θ ∈ J}, t > 0,

p
∣∣
t=0

= p0 на Ω, ζ
∣∣
t=0

= ζ0 на J,

где

Lζ ≡ Lζ

(
r, θ;

∂

∂r
,
∂

∂θ

)
=

1

{R∗ + [(R + ζ −R∗)/(R0 + ζ0 −R∗)](r −R∗)}2
×

×
{ ∂2

∂θ2
+ 2

( 1

R0 + ζ0 −R∗

dζ0

dθ
− 1

R + ζ −R∗

∂ζ

∂θ

)
(r −R∗)

∂2

∂r ∂θ
+

+
[(
R∗ +

R + ζ −R∗
R0 + ζ0 −R∗

(r −R∗)
)2(R0 + ζ0 −R∗

R + ζ −R∗

)2
+

+
( 1

R0 + ζ0 −R∗

dζ0

dθ
− 1

R + ζ −R∗

∂ζ

∂θ

)2
(r −R∗)

2
] ∂2

∂r2

}
+

+
{ 1

R∗ + [(R + ζ −R∗)/(R0 + ζ0 −R∗)](r −R∗)

R0 + ζ0 −R∗
R + ζ −R∗

+

+
r −R∗

{R∗ + [(R + ζ −R∗)/(R0 + ζ0 −R∗)](r −R∗)}2
×

×
[ ∂
∂θ

( 1

R0 + ζ0 −R∗

dζ0

dθ
− 1

R + ζ −R∗

∂ζ

∂θ

)
+

+
( 1

R0 + ζ0 −R∗

dζ0

dθ
− 1

R + ζ −R∗

∂ζ

∂θ

)2]} ∂

∂r
,
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b1(ζ) = −M 1

(R + ζ)2
∂ζ

∂θ
,

b2(ζ) = M
{R0 + ζ0 −R∗
R + ζ −R∗

[
1 +

1

(R + ζ)2

(∂ζ
∂θ

)2]
− 1

(R + ζ)2
∂ζ

∂θ

dζ0

dθ

}
.

В данной работе используются стандартные пространства Гельдера [17, 18]

C l+α(Ω̄) = {u(x) ∈ C(Ω̄): ‖u‖(l+α) <∞}, l = 0, 1, 2, . . . , α ∈ (0, 1),

C
l+α,(l+α)/2
x,t (Ω̄T ) = {u(x, t) ∈ Cx,t(Q̄T ): ‖u‖(l+α)

T <∞}, Q̄T ≡ Ω̄× [0, T ],

снабженные нормами

‖u‖(l+α) = ‖u‖(l) + 〈Dl
xu〉(α), Dl

x =
∑
|j|=l

Dj
x,

‖u‖(l+α)
T = ‖u‖(l)

T +
∑

k+2k′=l

〈 ∂k′

∂tk
′ D

k
xu

〉(α)

T
+

l∑
k+2k′=l−1

〈 ∂k′

∂tk
′ D

k
xu

〉((l−k−2k′+α)/2)

t,T

соответственно. Здесь

‖u‖(l) =
l∑

k=0

|Dk
xu|(0), |u|(0) = sup

x∈Ω̄

|u(x)|, 〈u〉(α) = sup
x,x′∈Ω̄, x6=x′

|u(x)− u(x′)|
|x− x′|α

,

‖u‖(l)
T =

l∑
k+2k′=0

∣∣∣ ∂k′

∂tk
′ D

k
xu

∣∣∣(0)

T
, |u|(0)

T = sup
(x,t)∈Q̄T

|u(x, t)|, 〈u〉(α)
T = 〈u〉(α)

x,T + 〈u〉(α/2)
t,T ,

〈u〉(α)
x,T = sup

(x,t),(x′,t)∈Q̄T , x6=x′

|u(x, t)− u(x′, t)|
|x− x′|α

, 〈u〉(α)
t,T = sup

(x,t),(x,t′)∈Q̄T , t6=t′

|u(x, t)− u(x, t′)|
|t− t′|α

.

Векторное пространство обозначается так же, как его компоненты, а норма этого про-
странства полагается равной сумме норм всех его компонент. Вводятся также полунормы

[u]
(α,β)
T ≡ sup

x,y∈Ω̄, t,t′∈[0,T ]

|u(x, t)− u(y, t)− u(x, t′) + u(y, t′)|
|x− y|α|t− t′|β

, α, β ∈ (0, 1),

банаховы пространства Ek+α(Q̄T ) (k = 0, 1, 2, α ∈ (0, 1)) бесконечно дифференцируемых
функций с соответствующими нормами

‖u‖Eα(Q̄T ) = ‖u‖(α)
T + [u]

(α,α/2)
T , ‖u‖E1+α(Q̄T ) = ‖D1

xu‖Eα(Q̄T ) +Dα,α[u]T ,

‖u‖E2+α(Q̄T ) = ‖D2
xu‖Eα(Q̄T )+

1∑
l=0

Dα,α[Dl
xu]T , Dα,α[u]T = |u|(0)

T +〈u〉(α)
x,T +〈u〉(α)

t,T +[u]
(α,α)
T ,

а также пространства

Ê2+α(Q̄T ) =
{
u ∈ E2+α(Q̄T ):

∂u

∂t
∈ E1+α(Q̄T ), ‖u‖Ê2+α(Q̄T ) <∞

}
,

Ê4+α(Q̄T ) =
{
u ∈ Ê2+α(Q̄T ): D2

xu ∈ E2+α(Q̄T ), ‖u‖Ê4+α(Q̄T ) <∞
}
,
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‖u‖Ê2+α(Q̄T ) ≡ ‖u‖E2+α(Q̄T ) +
∥∥∥∂u
∂t

∥∥∥
E1+α(Q̄T )

,

‖u‖Ê4+α(Q̄T ) ≡ ‖u‖Ê2+α(Q̄T ) + ‖D2
xu‖E2+α(Q̄T ).

Обозначим через El+α
0 (Q̄T ), Ê2+α

0 (Q̄T ), Ê4+α
0 (Q̄T ) пространства, элементы которых со все-

ми производными по t равны нулю при t = 0. Пространства функций на гладком много-
образии Γ в Rn определяются с помощью разбиения единицы и локальных отображений.

Основным результатом данной работы является следующая теорема.
Теорема. Пусть T > 0 и α ∈ (0, 1). Предположим, что (p0, ζ0) ∈ C3+α(Ω̄)×C4+α(J̄)

удовлетворяют (1.5), ∂p0/∂r > 0 на Γ, pe ∈ C
2+α,(2+α)/2
θ,t (J̄T ), Q ∈ Cα([0, T ]) и условиям

совместности. Предположим также, что (p, ζ) ∈ E2+α(Q̄T ) × Ê4+α(J̄T ) является ре-
шением задачи (1.7). Тогда существует зависящее от условий задачи значение T∗ > 0,
такое что это решение единственное на [0, T∗].

Заметим, что в теореме помимо утверждения о существовании [10] решения (p, ζ) за-

дачи (1.7) в E2+α(Q̄T ∗)× Ê4+α(J̄T ∗) для некоторого T ∗ ∈ (0, T ] содержится утверждение,
что предельный процесс в [10] имеет место для полной последовательности, а не для под-
последовательности на [0,min{T∗, T ∗}]. Это означает, что результат, полученный в [10],
уточнен.

2. Доказательство единственности решения. Значения ∂ζ/∂t|t=0 и ∂
2ζ/∂t2|t=0

определяются первым краевым условием на Γ (1.7) и их первыми производными по t

при t = 0 соответственно. Обозначим через ζ̄ ∈ Ê4+α(J̄T ) расширение ζ0, такое что
(ζ̄ , ∂ζ̄/∂t, ∂2ζ̄/∂t2)|t=0 = (ζ0, ∂ζ/∂t, ∂2ζ/∂t2)|t=0, через (p, ζ) и (p′, ζ ′) — два решения за-
дачи (1.7) в виде

(p, ζ) =
(
p∗ + p0 +

r −R∗
R + ζ̄ −R∗

∂p0

∂r
ζ∗, ζ∗ + ζ̄

)
,

(2.1)

(p′, ζ ′) =
(
p∗∗ + p0 +

r −R∗
R + ζ̄ −R∗

∂p0

∂r
ζ∗∗, ζ∗∗ + ζ̄

)
с оценками

‖pa‖E2+α(Q̄T ) + ‖ζa‖Ê4+α(J̄T ) 6 C1 (a = ∗, ∗∗). (2.2)

Тогда задача (1.7) сводится к следующей задаче для (p̂, ζ̂) = (p∗ − p∗∗, ζ∗ − ζ∗∗):

L∗p̂ = Φ(p∗, ζ∗)− Φ(p∗∗, ζ∗∗) в Ω, t > 0,
∂p̂

∂r
= Ψ∗(ζ

∗)−Ψ∗(ζ
∗∗) на Γ∗, t > 0,

∂ζ̂

∂t
+ b2(ζ̄)

∂p̂

∂r
+ b1(ζ̄)

∂p̂

∂θ
= Ψ1(p

∗, ζ∗)−Ψ1(p
∗∗, ζ∗∗), (2.3)

p̂+ d1(ζ̄)ζ̂ − σd2(ζ̄)
∂2ζ̂

∂θ2
= Ψ2(ζ

∗)−Ψ2(ζ
∗∗) на Γ, t > 0,

p̂
∣∣
t=0

= 0 на Ω, ζ̂
∣∣
t=0

= 0 на J.

Здесь

L∗ ≡ L∗
(
r, θ;

∂

∂r
,
∂

∂θ

)
= v.p. Lζ̄ , Φ(p∗, ζ∗) = −Lζ∗+ζ̄p+ L∗p∗,

Ψ∗(ζ
∗) = − ∂

∂r

(
p0 +

r −R∗
R + ζ̄ −R∗

∂p0

∂r

)
ζ∗ − R + ζ∗ + ζ̄ −R∗

R0 + ζ0 −R∗

Q(t)

2πR∗M
,

Ψ1(p
∗, ζ∗) = −b2(ζ)

∂p

∂r
− b1(ζ)

∂p

∂θ
+ b2(ζ̄)

∂p∗

∂r
+ b1(ζ̄)

∂p∗

∂θ
− ∂ζ̄

∂t
− Q

2πR
,
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Ψ2(ζ
∗) = pe − p0 − 2σ

b
− σd2(ζ̄)

∂2ζ∗

∂θ2
− σ

(R + ζ)2 + 2(∂ζ/∂θ)2 − (R + ζ) ∂2ζ/∂θ2

((R + ζ)2 + (∂ζ/∂θ)2)3/2
,

d1(ζ̄) =
R0 + ζ0 −R∗
R + ζ̄ −R∗

∂p0

∂r
, d2(ζ̄) =

R + ζ̄

((R + ζ̄)2 + (∂ζ̄/∂θ)2)3/2
,

причем решение (p, ζ) определено в (2.1).
Заметим, что из допущения ∂p0/∂r > 0 на Γ следует неравенство d1(ζ̄) > 0 при t = 0,

поэтому d2(ζ̄) > 0 при t = 0.
Ниже аналогично тому, как это сделано в [9, 11], доказано, что решение задачи (2.3)

тождественно равно нулю на некотором интервале времени [0, T∗] (0 < T∗ 6 T ).
2.1. Вспомогательная задача. Рассмотрим вспомогательную линейную задачу

L∗u = φ в Ω, t > 0,
∂u

∂r
= ψ∗ на Γ∗, t > 0,

∂ρ

∂t
+ b2(ζ̄)

∂u

∂r
= ψ1, u+ d1(ζ̄)ρ− σd2(ζ̄)

∂2ρ

∂θ2
= ψ2 на Γ, t > 0, (2.4)

u
∣∣
t=0

= 0 на Ω, ρ
∣∣
t=0

= 0 на J

для заданных φ, ψ∗, ψ1, ψ2, удовлетворяющих условиям совместности и неравенствам

b2 > 0, d1 > 0, d2 > 0.
Так же как и в работе [9], рассмотрим следующие три модельные задачи в простран-

стве и полупространстве:

Lū = f̄ ((x1, x2) ∈ R2, t > 0), ū
∣∣
t=0

= 0; (2.5)

Lū = f̄ ((x1, x2) ∈ R2
+, t > 0),

∂ū

∂x2

∣∣∣
x2=0

= ḡ∗, ū
∣∣
t=0

= 0; (2.6)

Lū = 0, (x1, x2) ∈ R2
+, t > 0,

(2.7)∂ρ̄

∂t
+ d̄

∂ū

∂x2

∣∣∣
x2=0

= ḡ1, ū+ d̄1ρ̄− σd̄2
∂2ρ̄

∂x2
1

∣∣∣
x2=0

= ḡ2, (ū, ρ̄)
∣∣
t=0

= (0, 0).

В (2.6), (2.7) R2
+ ≡ {(x1, x2) ∈ R2: x2 > 0}. Пусть d̄, d̄1, d̄2 — положительные константы

и L = ∆ в результате замены независимых переменных без потери общности (см. [17]).
В предположении, что во всех трех модельных задачах выполнены условия совместности и
функции f̄ , ḡ∗, ḡ1, ḡ2 имеют требуемую гладкость и компактные носители, решения задач
представляются в виде (2.5), (2.6):

ū(x, t) =

∫
R2

Γ(x− y)f̄(y, t) dy; (2.8)

ū(x, t) =

∫
R2

N(x− y)f̄(y, t) dy +

∫
R

N(x1 − y1, x2)ḡ∗(y1, t) dy1, (2.9)

где

Γ(x) = −(2π)−1 log |x|, x = (x1, x2), N(x) = Γ(x1, x2) + Γ(x1,−x2).

Оценивая интегралы (2.8), (2.9) так же, как оценивались объемные интегралы уравнения
теплопроводности (см. [17–19]), получаем следующие оценки:

‖ū‖E2+α(R2
T ) 6 C2‖f̄‖Eα(R2

T ), ‖ū‖E2+α(R2
+,T ) 6 C2(‖f̄‖Eα(R2

+,T ) + ‖ḡ∗‖E1+α(RT )). (2.10)
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Поскольку первое краевое условие для задачи (2.7) можно записать в виде

∂ū

∂x2

∣∣∣
x2=0

=
1

d̄

(
ḡ1 −

∂ρ̄

∂t

)
,

для заданного ρ̄ решение ū первой задачи в (2.7) удовлетворяет неравенству

‖ū‖E2+α(R2
+,T ) 6 C3

(
‖ḡ1‖E1+α(RT ) +

∥∥∥∂ρ̄
∂t

∥∥∥
E1+α(RT )

)
. (2.11)

После применения преобразования Фурье — Лапласа (см. [5–11, 19])

(FL)[ū](ξ, x2, s) ≡ ˜̄u(ξ, x2, s) =

∞∫
0

e−st dt

∞∫
−∞

e−iξx1 ū(x1, x2, t) dx1

задача (2.7) приводится к задаче

˜̄u(ξ, x2, s) = ˜̄v(ξ, s) e−|ξ|x2 (x2 > 0), −d̄ |ξ|˜̄v + s ˜̄ρ = ˜̄g1, ˜̄v + d̄1 ˜̄ρ + σd̄2ξ
2 ˜̄ρ = ˜̄g2,

следовательно,

˜̄ρ =
˜̄g1 + d̄|ξ|˜̄g2

s+ d̄ |ξ|(d̄1 + σd̄2ξ2)
. (2.12)

Применяя к (2.12) обратное преобразование Фурье — Лапласа

ρ̄(x1, t) ≡ (FL)−1 ˜̄ρ =
1

2πi

∫
R

eix1ξ dξ

∫
Re s=a>0

est ˜̄ρ (ξ, s) ds,

получаем

ρ̄(x1, t) = (FL)−1 1

s+ d̄ |ξ|(d̄1 + σd̄2ξ2)
∗ (ḡ1 + d̄ (FL)−1 [|ξ|˜̄g2]). (2.13)

Здесь знак “∗” означает свертку по x1 и t. Следуя работе [7], можно найти явное представ-
ление

Zσ(x1, t) = (FL)−1 1

s+ d̄ |ξ|(d̄1 + σd̄2ξ2)
, t > 0.

Для этого достаточно рассмотреть случай d̄d̄1 = 1, σd̄d̄2 = d̄′. Так как

(s+ |ξ| (1 + d̄′ξ2))−1 =

∞∫
0

exp [−τ(s+ |ξ|(1 + d̄′ξ2))] dτ,

то

1

2πi

a+i∞∫
a−i∞

e−τ(s+|ξ|(1+d̄′ξ2))+st ds =

=
1

2πi

a+i∞∫
a−i∞

e−τs+st ds ∗
t

1

2πi

a+i∞∫
a−i∞

e−τ |ξ|(1+d̄′ξ2)+st ds =

= δ(t− τ) ∗
t

e−τ |ξ|(1+d̄′ξ2) δ(t) (a > 0),
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где запись “∗
t
” означает свертку по t, следовательно,

Z̃σ(ξ, t) =

∞∫
0

δ(t− τ) ∗
t

e−τ |ξ| (1+d̄′ξ2) δ(t) dτ = e−t|ξ|(1+d̄′ξ2) . (2.14)

Для получения оценки Zσ(x1, t) без потери общности предположим, что x1 > 0. Пусть
ξ0 = 0 и ξn (n = 1, 2, 3, . . .) — нули cos (ξx1) = 0 (ξn < ξn+1). Тогда

|Zσ(x1, t)| =
∣∣∣ 1

2π

∞∫
0

Z̃σ(ξ, t) cos (ξx1) dξ
∣∣∣ 6

6
1

2π

∞∑
n=0

( ξ2n+1∫
ξ2n

e−t|ξ|(1+d̄′ξ2) cos (ξx1) dξ −

ξ2n+2∫
ξ2n+1

e−t|ξ|(1+d̄′ξ2) cos (ξx1) dξ
)

6

6
1

2π

( t

x2
1 + t2

+
4x1

x2
1 + t2

1

sh (πt/(2x1))

)
6 C3

t

x2
1 + t2

. (2.15)

Производные Zσ(x1, t) оцениваются аналогично, следовательно, имеет место
Лемма 1. Справедливы следующие неравенства:

|Zσ(x1, t)| 6 C4
1√

x2
1 + t2

,
∣∣∣ ∂
∂t
Zσ(x1, t)

∣∣∣ +
∣∣∣ ∂

∂x1
Zσ(x1, t)

∣∣∣ 6 C4
1

x2
1 + t2

,

∣∣∣ ∂2

∂t ∂x1
Zσ(x1, t)

∣∣∣ +
∣∣∣ ∂2

∂x2
1

Zσ(x1, t)
∣∣∣ 6 C4

1

(x2
1 + t2)3/2

.

Из леммы 1 следует

lim
t→0

∞∫
−∞

Zσ(x1 − ξ, t)f(ξ) dξ = f(x1) (2.16)

для любой ограниченной непрерывной функции f(x1). Введем функции

w(x1, t) = (Zσ ∗ g)(x1, t) =

t∫
0

dτ

∞∫
−∞

Zσ(x1 − y, t− τ)g(y, τ) dy,

wh(x1, t) =

t−h∫
0

dτ

∞∫
−∞

Zσ(x1 − y, t− τ)g(y, τ) dy (h > 0).

Для wh справедливо равенство

∂

∂t
wh(x1, t) =

t−h∫
0

dτ

∞∫
−∞

∂

∂t
Zσ(x1 − y, t− τ)(g(y, τ)− g(x1, τ)) dy +

+

t−h∫
0

g(x1, τ) dτ

∞∫
−∞

∂

∂t
Zσ(x1 − y, t− τ) dy +

∞∫
−∞

Zσ(x1 − y, h)g(y, t− h) dy.
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Используя (2.16), оценки, приведенные в лемме 1, и явные формулы, полученные из (2.14),
после перехода к пределу h→ 0 имеем

∂

∂t
w(x1, t) =

t∫
0

dτ

∞∫
−∞

∂

∂t
Zσ(x1 − y, t− τ)(g(y, τ)− g(x1, τ)) dy +

+

t∫
0

g(x1, τ)dτ

∞∫
−∞

∂

∂t
Zσ(x1 − y, t− τ) dy + g(x1, t); (2.17)

∂2

∂x2
1

w(x1, t) =

t∫
0

dτ

∞∫
−∞

∂

∂x1
Zσ(x1 − y, t− τ)

( ∂

∂y
g(y, τ)− ∂

∂x1
g(x1, τ)

)
dy. (2.18)

Обозначая через wa первый член в правой части уравнения (2.17) и следуя работе [17],
получаем оценку

wa(x1, t)− wa(x′1, t) =

t∫
0

dτ

∫
|x1−y|62|x1−x′1|

∂

∂t
Zσ(x1 − y, t− τ)(g(y, τ)− g(x1, τ)) dy −

−
t∫

0

dτ

∫
|x1−y|62|x1−x′1|

∂

∂t
Zσ(x′1 − y, t− τ)(g(y, τ)− g(x′1, τ)) dy +

+

t∫
0

dτ

∫
|x1−y|>2|x1−x′1|

∂

∂t
(Zσ(x1 − y, t− τ)− Zσ(x′1 − y, t− τ))(g(y, τ)− g(x1, τ)) dy +

+

t∫
0

(g(x′1, τ)− g(x1, τ)) dτ

∫
|x1−y|>2|x1−x′1|

∂

∂t
Zσ(x′1 − y, t− τ) dy ≡

4∑
j=1

Ij . (2.19)

Используя лемму 1, нетрудно показать, что

|I1| 6 C ′′5 〈g〉
(α)
x,T

∫
|x1−y|62|x1−x′1|

|x1 − y|α dy
t∫

0

1

|x1 − y|2 + (t− τ)2
dτ 6

6 C ′5〈g〉
(α)
x,T

∫
|x1−y|62|x1−x′1|

|x1 − y|α−1 dτ 6 C5〈g〉(α)
x,T |x1 − x′1|α.

Интегралы I2 и I3 оцениваются аналогично I1 с использованием теоремы о среднем для I3.
Наконец, в силу леммы 1 для I4 получаем

|I4| 6 C ′6〈g〉
(α)
x,T |x1 − x′1|α

t∫
0

dτ
∣∣∣ ∫
|x1−y|>2|x1−x′1|

∂

∂t
Zσ(x′1 − y, τ) dy

∣∣∣ 6 C6〈g〉(α)
x,T |x1 − x′1|α.
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Аналогично оценивается второй член в правой части (2.17). Поэтому из (2.19) следует〈∂w
∂t

〉(α)

x,T
6 C7〈g〉(α)

x,T . (2.20)

Далее, при t′ 6 t имеет место равенство

wa(x1, t)− wa(x1, t
′) =

t∫
2t′−t

dτ

∞∫
−∞

∂

∂t
Zσ(x1 − y, t− τ)(g(y, τ)− g(x1, τ)) dy −

−
t′∫

2t′−t

dτ

∞∫
−∞

∂

∂t′
Zσ(x1 − y, t′ − τ)(g(y, τ)− g(x1, τ)) dy +

+

2t′−t∫
−∞

dτ

∞∫
−∞

( ∂
∂t
Zσ(x1 − y, t− τ)− ∂

∂t′
Zσ(x1 − y, t′ − τ)

)
(g(y, τ)− g(x1, τ)) dy ≡

3∑
j=1

I ′j .

Из леммы 1 следует

|I ′1| 6 C ′′8 〈g〉
(α)
x,T

t∫
2t′−t

dτ

∞∫
−∞

|x1 − y|α

(x1 − y)2 + (t− τ)2
dy 6

6 C ′8〈g〉
(α)
x,T

t∫
2t′−t

1

(t− τ)1−α
dτ 6 C8〈g〉(α)

x,T |t− t′|α.

Оба члена I ′2 и I
′
3 оцениваются так же, как I

′
1; в случае I

′
3 используются теорема о среднем

значении и оценка ∂2Zσ(x1, t)/∂t
2, полученная из (2.15). После ряда вычислений получаем

〈wa〉(α)
t,T 6 C9〈g〉(α)

x,T .

Второе слагаемое в правой части (2.17) оценивается аналогично. В результате имеем〈∂w
∂t

〉(α)

t,T
6 C10(〈g〉(α)

x,T + 〈g〉(α)
t,T ). (2.21)

Из (2.17) находим

∂2

∂t ∂x1
w(x1, t) =

t∫
0

dτ

∞∫
−∞

∂

∂t
Zσ(x1 − y, t− τ)

( ∂

∂y
g(y, τ)− ∂

∂x1
g(x1, τ)

)
dy +

+

t∫
0

∂

∂x1
g(x1, τ) dτ

∞∫
−∞

∂

∂t
Zσ(x1 − y, t− τ) dy +

∂

∂x1
g(x1, t). (2.22)

Повторяя расчеты, выполненные при выводе (2.22), получаем следующие оценки:〈 ∂2w

∂t ∂x1

〉(α)

x,T
6 C11

〈 ∂g

∂x1

〉(α)

x,T
,

〈 ∂2w

∂t ∂x1

〉(α/2)

t,T
6 C11

〈 ∂g

∂x1

〉(α)

T
. (2.23)
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Получим оценки [∂2w/∂t ∂x1]
(α,α/2)
T . Обозначив первый член в правой части равен-

ства (2.22) через W , находим
∞∫

−∞

dτ

∞∫
−∞

∂

∂t
Zσ(x1 − y, τ)

( ∂

∂y
g(y, t− τ)− ∂

∂x1
g(x1, t− τ)

)
dy,

поэтому при ∆t > 0 справедливы равенства

W (x1, t)−W (x1, t−∆t)

(∆t)α/2
=

∞∫
−∞

dτ

∞∫
−∞

∂

∂t
Zσ(x1 − y, τ)(ϕ(y, t− τ)− ϕ(x1, t− τ)) dy =

=

t∫
0

dτ

∞∫
−∞

∂

∂t
Zσ(x1 − y, t− τ)(ϕ(y, τ)− ϕ(x1, τ)) dy,

ϕ(x1, t) =
1

(∆t)α/2

(∂g(x1, t)

∂x1
− ∂g(x1, t−∆t)

∂x1

)
.

Вновь выполняя проведенные выше расчеты, получаем

〈W 〉(α)
x,T 6 C ′12〈ϕ〉

(α)
x,T = C ′12 sup

x1,x′1,t

|ϕ(x1, t)− ϕ(x′1, t)|
|x1 − x′1|α

=

= C ′12 sup
x1,x′1,t

1

|x1 − x′1|α(∆t)α/2

∣∣∣∂g(x1, t)

∂x1
− ∂g(x′1, t)

∂x1
− ∂g(x1, t−∆t)

∂x1
+
∂g(x′1, t−∆t)

∂x1

∣∣∣,
следовательно,

[W ]
(α,α/2)
T 6 C12

[ ∂g
∂x1

](α,α/2)

T
.

Из этой оценки и оценки для второго члена в правой части (2.22), аналогичной оценке
для W , находим [ ∂2w

∂t ∂x1

](α,α/2)

T
6 C13

[ ∂g
∂x1

](α,α/2)

T
. (2.24)

Далее, представляя (FL)−1[|ξ|˜̄g2] в виде

(FL)−1[|ξ|˜̄g2](x1, t) = 2
∂2

∂x2
2

t∫
0

dτ

∞∫
−∞

Γ(x1 − y, x2)ḡ2(y, τ) dy
∣∣∣
x2=0

,

получаем следующую оценку (см. [5, 20]):

〈(FL)−1[|ξ|˜̄g2]( · , t)〉(α) 6 C14

〈∂ḡ2
∂x1

( · , t)
〉(α)

.

Таким образом, из уравнения (2.13) и оценок (2.20), (2.21), (2.23), (2.24) следует неравен-
ство ∥∥∥∂ρ̄

∂t

∥∥∥
E1+α(RT )

6 C15(‖ḡ1‖E1+α(RT ) + ‖ḡ2‖E2+α(RT )). (2.25)

С учетом леммы 1 рассуждения, приведенные выше, применимы к (2.18), поэтому
оценки, аналогичные (2.20), (2.21), (2.23), (2.24), справедливы для ∂2w/∂x2

1:∥∥∥∂2w

∂x2
1

∥∥∥
Eα(RT )

6 C16

∥∥∥ ∂g

∂x1

∥∥∥
Eα(RT )

,
〈∂2w

∂x2
1

〉(α)

t,T
6 C16

〈 ∂g

∂x1

〉(α)

x,T
.
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Нетрудно оценить низшие производные w. Следовательно, из (2.13) получаем

‖ρ̄‖E2+α(RT ) 6 C17 (‖ḡ1‖E1+α(RT ) + ‖ḡ2‖E2+α(RT )),

(2.26)〈∂2ρ̄

∂x2
1

〉(α)

t,T
6 C17

(〈∂ḡ1
∂x1

〉(α)

x,T
+

〈∂2ḡ2
∂x2

1

〉(α)

x,T

)
.

Для дальнейшей регуляризации ρ̄ используется представление, полученное из (2.13):

∂2ρ̄

∂x2
1

= − 1

σd̄d̄2

(
(FL)−1

[ 1

|ξ|

]
∗ ḡ1 + d̄ḡ2 − d̄d̄1ρ̄− (FL)−1

[ 1

|ξ|

]
∗ ∂ρ̄
∂t

)
.

Следуя [5], находим оценку∥∥∥∂2ρ̄

∂x2
1

∥∥∥
E2+α(RT )

6 C18

(
‖ḡ1‖E1+α(RT ) + ‖ḡ2‖E2+α(RT ) +

+ ‖ρ̄‖E2+α(RT ) +
∥∥∥∂ρ̄
∂t

∥∥∥
E1+α(RT )

)
(2.27)

с учетом оценки

(FL)−1
[ 1

|ξ|

]
∗ g(x1, t) =

t∫
0

dτ

∞∫
−∞

Γ(x1 − y, 0, t− τ)g(y, τ) dy.

Из (2.11), (2.25) следует оценка

‖ū‖E2+α(RT ) 6 C19 (‖ḡ1‖E1+α(RT ) + ‖ḡ2‖E2+α(RT )). (2.28)

Таким образом, из оценок (2.10), (2.26)–(2.28) следует

Лемма 2. Решение (ū, ρ̄) ∈ E2+α
0 (R2

+,T )×Ê4+α
0 (RT ) задачи (2.7) удовлетворяет нера-

венству

‖ū‖E2+α(R2
+,T ) + ‖ρ̄‖Ê4+α(RT ) 6 C20 (‖ḡ1‖E1+α(RT ) + ‖ḡ2‖E2+α(RT ))

для любого T > 0 и α ∈ (0, 1) с положительной константой C20.
С использованием леммы 2 разрешимость задачи (2.4) доказывается путем построения

регуляризатора, аналогично тому как это сделано в задаче со свободной границей для
уравнений гидродинамики [21] (см. также [20, 22, 23]). Следовательно, имеет место

Лемма 3. Единственное решение задачи (2.4) (u, ρ) ∈ E2+α
0 (Q̄T ) × Ê4+α

0 (ΓT ) для
любого T > 0 и α ∈ (0, 1) удовлетворяет неравенству

‖u‖E2+α(Q̄T ) + ‖ρ‖Ê4+α(ΓT ) 6 C21 ‖(φ, ψ∗, ψ1, ψ2)‖HT
,

где HT = Eα
0 (Q̄T )×E1+α

0 (Γ∗,T )×E1+α
0 (ΓT )×E2+α

0 (ΓT ); C21 — положительная константа.
2.2. Доказательство теоремы для линейной задачи (2.3). Пусть (p, ζ), (p′, ζ ′) — два

решения задачи (1.7) вида (2.1), удовлетворяющие условиям (2.2).

Задача (2.3) преобразуется к виду (2.4) путем подстановки (u, ρ) = (p̂, ζ̂). Фактически
решение (u, ρ) удовлетворяет (2.4) при

φ = Φ̂(p̂, ζ̂) ≡ Φ(p∗, ζ∗)− Φ(p∗∗, ζ∗∗), ψ∗ = Ψ̂∗(ζ̂) ≡ Ψ∗(ζ
∗)−Ψ∗(ζ

∗∗),

ψ1 = Ψ̂1(p̂, ζ̂) ≡ Ψ1(p
∗, ζ∗)−Ψ1(p

∗∗, ζ∗∗), ψ2 = Ψ̂2(ζ̂) ≡ Ψ2(ζ
∗)−Ψ2(ζ

∗∗)

для заданных (p∗, ζ∗), (p∗∗, ζ∗∗) ∈ E2+α
0 (Q̄T )× Ê4+α

0 (ΓT ). Очевидно, что

(Φ̂(p̂, ζ̂), Ψ̂∗(ζ̂), Ψ̂1(p̂, ζ̂), Ψ̂2(ζ̂))
∣∣
t=0

= (0, 0, 0, 0).
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Те же вычисления, что и в подп. 2.1, выполненные с использованием теоремы о среднем
значении, интерполяции и неравенства Юнга, приводят к следующему неравенству:

‖(Φ̂(p̂, ζ̂), Ψ̂∗(ζ̂), Ψ̂1(p̂, ζ̂), Ψ̂2(ζ̂))‖Ht 6

6 (γ + Cγt
χF (2C1)) (‖p̂‖E2+α(Q̄t)

+ ‖ζ̂‖Ê4+α(Γt)
) ∀t ∈ [0, T ]. (2.29)

Здесь γ > 0 — произвольная константа; Cγ > 0 — невозрастающая константа, зависящая
от γ, χ > 0 — константа, зависящая от α; F ( · ) — многочлен от 2C1.

Используя оценку (2.29) для правой части неравенства в лемме 3, получаем

‖p̂‖E2+α(Q̄t)
+ ‖ζ̂‖Ê4+α(Γt)

6

6 C21 (γ + Cγt
χF (2C1)) (‖p̂‖E2+α(Q̄t)

+ ‖ζ̂‖Ê4+α(Γt)
) ∀t ∈ [0, T ]. (2.30)

Полагая γ = 1/(4C21) и T∗ = (4C21CγF (2C1))
−1/χ в (2.30), получаем

‖p̂‖E2+α(Q̄t)
+ ‖ζ̂‖Ê4+α(Γt)

= 0 ∀t ∈ [0, T∗].

Следовательно, (p∗, ζ∗) = (p∗∗, ζ∗∗) ∈ E2+α
0 (Q̄T∗)× Ê4+α

0 (ΓT∗), что эквивалентно утвержде-
нию, согласно которому решение (p, ζ) задачи (1.7) является единственным в E2+α(Q̄T∗)×
Ê4+α(ΓT∗).

Следует отметить, что в работе [10] для некоторой подпоследовательности {εk}∞k=1,
εk → 0 (k → ∞) последовательности {ε}ε>0, ε → 0 существование решения (p, ζ) зада-

чи (1.7) в E2+α(Q̄T ∗) × Ê4+α(ΓT ∗) было доказано как предел решения (pε, ζε) регуляри-
зованной параболической задачи, а именно задачи (1.7), для которой в первом уравнении
нуль в правой части заменяется на член ε ∂p/∂t+εf (f — некоторая подходящая функция):

(p, ζ)(x, t) = lim
k→∞

(pεk
, ζεk

)(x, t) на [0, T ∗].

Единственность решения (p, ζ) задачи (1.7), рассмотренной в данной работе, означает,
что

(p, ζ)(x, t) = lim
ε→0

(pε, ζε)(x, t) на [0,min {T∗, T ∗}]

для полной последовательности {ε}ε>0, ε→ 0.
Таким образом, доказательство теоремы завершено.
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7. Bazalĭı B. V. On estimates for the solution of a model conjugation problem in the theory of
problems with a free boundary // Differ. Uravn. 1997. V. 33. P. 1374–1381 (in Russian).
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