УДК 519.63, 532.3

ВОЛНОВЫЕ ТЕЧЕНИЯ, ВОЗНИКАЮЩИЕ ПРИ ВЕРТИКАЛЬНОМ ПОДЪЕМЕ ПРЯМОУГОЛЬНОГО БРУСА ИЗ МЕЛКОЙ ВОДЫ

В. В. Кузнецова, В. В. Остапенко

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, Россия Новосибирский государственный университет, 630090 Новосибирск, Россия E-mails: qznetsova-v@yandex.ru, ostapenko $_$ vv@ngs.ru

В рамках длинноволнового приближения рассмотрена задача о течениях, возникающих при вертикальном подъеме прямоугольного бруса, частично погруженного в мелкую воду, заполняющую прямоугольный призматический канал с горизонтальным дном. Ширина бруса равна ширине канала, и его нижняя и верхняя плоскости параллельны дну канала. На первой стадии течения нижняя поверхность бруса полностью находится в жидкости, которая поднимается вслед за ним за счет действия гидростатического давления. Получены условия корректности данной задачи и для различных законов подъема бруса построены решения, описывающие течение жидкости как в области, примыкающей к нижней поверхности бруса, так и во внешних областях со свободной верхней границей.

Ключевые слова: вертикальный подъем бруса из мелкой воды, длинноволновое приближение, численное моделирование внешнего течения.

DOI: 10.15372/PMTF20150508

Введение. Исследование подъема тела с поверхности жидкости и возникающего при этом течения представляет интерес как с теоретической, так и с прикладной точки зрения. Физические явления, которые необходимо учитывать при моделировании такого подъема, в настоящее время практически не изучены. Процессы, происходящие при входе тела в жидкость, изучались в [1]. Проведены теоретические, экспериментальные и численные исследования подъема тел с поверхности жидкости большой глубины без учета влияния дна [2–4]. Экспериментальное изучение подъема стеклянного круглого диска с поверхности воды, целью которого было объяснить процесс лакания кошачьими, показало, что в основном процесс подъема жидкости вслед за диском определяется силами тяжести и инерции, а вязкость жидкости и ее поверхностное натяжение оказывают на этот процесс пренебрежимо малое влияние [2]. Вход в воду с постоянным отрицательным ускорением и последующий выход из нее численно исследовались для клина и параболического контура [3].

В работе [4] предложена аналитическая модель подъема пологого тела со свободной границы бесконечно глубокой жидкости. Скорость уменьшения области контакта жидкости с поверхностью тела считается пропорциональной местной скорости течения на периферии области контакта. Гидродинамические силы, вычисленные с помощью такой моде-

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 13-01-00249).

[©] Кузнецова В. В., Остапенко В. В., 2015

ли для клина и параболического контура, хорошо согласуются с результатами численных расчетов [3].

Процесс подъема тел, частично погруженных в жидкость конечной глубины, с учетом влияния дна ранее не рассматривался. Целью настоящей работы является изучение волновых течений, возникающих на первом этапе при вертикальном подъеме прямоугольного бруса, частично погруженного в мелкую воду, заполняющую прямоугольный призматический канал с горизонтальным дном. Моделирование таких течений выполнено в рамках первого приближения теории мелкой воды без учета влияния трения, вязкости жидкости и ее поверхностного натяжения. На первой стадии течения нижняя поверхность бруса полностью находится в жидкости, которая поднимается вслед за брусом за счет действия гидростатического давления. Получены условия корректности данной задачи и при различных законах подъема бруса построены решения, описывающие первую стадию течения жидкости как в области, примыкающей к нижней поверхности бруса, так и во внешних областях со свободной верхней границей.

1. Постановка задачи. Предположим, что в прямоугольном призматическом канале с горизонтальным дном находится идеальная несжимаемая жидкость с частично погруженным в нее прямоугольным брусом, ширина которого равна ширине канала, а верхняя и нижняя плоскости параллельны его дну. Длина канала равна $2L_b$, длина бруса — 2L, причем $L < L_b$. Центры канала и бруса находятся на одной вертикали (рис. 1). В начальный момент времени t=0 жидкость и брус покоятся. Введем декартову систему координат, начало которой находится на дне канала, ось x направлена вдоль канала, а ось z — вертикально вверх. Будем считать, что ось z проходит через центры канала и бруса, поэтому их торцам соответствуют координаты $\pm L_b$ и $\pm L$ на оси x. Предположим, что начальная глубина жидкости h_0 вне бруса, т. е. при $L < |x| < L_b$, много меньше его длины $(h_0/L = \varepsilon \ll 1)$ и брус погружен в воду на глубину $h_0 - h_1$, где h_1 — расстояние между дном канала и нижней поверхностью бруса. Давление на свободной поверхности жидкости при $L < |x| < L_b$ равно атмосферному давлению p_a .

В момент времени t=0+0 брус начинает двигаться вертикально вверх с заданным ускорением $H''(t)\geqslant 0$ и заданной начальной скоростью $H'(0)\geqslant 0$, т. е. при t>0 скорость подъема бруса H'(t) является непрерывной положительной неубывающей функцией времени. Возникающее при этом течение жидкости в рамках первого приближения теории мелкой воды [5,6] без учета влияния трения описывается уравнениями

$$h_t + q_x = 0; (1.1)$$

$$q_t + (qu + gh^2/2)_x = -hp_x/\rho,$$
 (1.2)

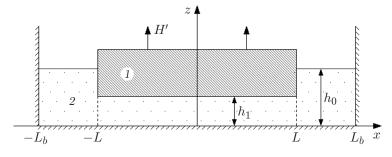


Рис. 1. Начальные положения невозмущенной жидкости в канале с горизонтальным дном и частично погруженного в нее бруса:

1 — брус, 2 — жидкость

где h(x,t), q(x,t), u=q/h, ρ — глубина, расход, скорость и постоянная плотность жидкости; p(x,t) — давление на поверхности жидкости; g — ускорение свободного падения. Уравнение (1.1) представляет собой дифференциальную форму записи закона сохранения массы, а уравнение (1.2) — закона сохранения полного импульса.

При подъеме бруса края его нижней поверхности выходят из воды в некоторый момент времени $T\geqslant 0+0$. При T>0 на временном интервале [0,T] реализуется первая стадия течения, на которой нижняя поверхность бруса полностью находится в жидкости и расстояние H(t) от нее до дна канала меньше глубины $h_L(t)=h(\pm(L+0),t)$ жидкости, примыкающей к торцам бруса в точках $x=\pm(L+0)$, т. е. $H(t)< h_L(t)$. На этой стадии течения в результате действия гидростатического давления уровень h(x,t) жидкости под брусом увеличивается при его подъеме таким образом, что h(x,t)=H(t) при всех $|x|\leqslant L$. В результате формируется поток жидкости, направленный к центру бруса. Вне бруса поток жидкости представляет собой волны понижения начального уровня h_0 . Первая стадия течения заканчивается в тот момент, когда глубина жидкости, примыкающей к торцам бруса в точках $x=\pm(L+0)$, становится меньшей или равной глубине жидкости под брусом, т. е. $h_L(T)\leqslant H(T)$.

2. Течение жидкости под брусом. На первой стадии область течения делится на подобласть $|x| \leq L$, в которой жидкость примыкает к нижней поверхности бруса, и двусвязную подобласть $L < |x| < L_b$, в которой верхняя граница жидкости является свободной. В первой подобласти, в которой глубина жидкости h = H(t) не зависит от пространственной координаты x и является заданной функцией времени t, из закона сохранения массы (1.1) получаем дифференциальное уравнение

$$H'(t) + H(t)u_x = 0, |x| \leqslant L (2.1)$$

для определения скорости жидкости u(x,t).

Интегрируя уравнение (2.1) по x с учетом граничного условия u(0,t)=0, следующего из симметрии задачи относительно точки x=0, находим

$$u(x,t) = -xR(t), |x| \leqslant L, (2.2)$$

где

$$R(t) = \frac{H'(t)}{H(t)} = \frac{d}{dt} \ln H(t) > 0.$$
 (2.3)

В частности, в граничных точках $x = \pm L$ имеем

$$u(\pm L, t) = \pm U(t) = \mp LR(t) = \mp LH'(t)/H(t).$$
 (2.4)

В подобласти $|x| \leq L$ закон сохранения импульса (1.2) служит для определения давления p(x,t) вдоль смоченной нижней поверхности бруса. Подставляя в левую часть уравнения (1.2) значения

$$h = H(t),$$
 $u = -xR(t),$ $q = -xH'(t),$

получаем

$$q_t + (qu + gh^2/2)_x = -xH'' + 2xRH' = H(R^2 - R')x.$$

В результате для пространственной производной давления имеем

$$p_x = -\rho x G(t), \qquad |x| \leqslant L, \tag{2.5}$$

где

$$G(t) = R^2 - R' = \frac{2(H')^2 - HH''}{H^2}.$$

Интегрируя уравнение (2.5) по x с учетом граничного условия

$$p(\pm L, t) = p_a + \rho g(h_L - H(t)),$$

находим

$$p(x,t) = p_a + \rho(g(h_L - H(t)) + G(t)(L^2 - x^2)/2), \qquad |x| \leqslant L.$$
(2.6)

Из формулы (2.6) следует, что при $G(t) \geqslant 0$, т. е. при

$$2(H'(t))^2 \geqslant H(t)H''(t),$$

давление в области контакта жидкости и нижней поверхности бруса больше атмосферного давления:

$$p(x,t) > p_a \quad \forall |x| \leqslant L, \ t \in (0,T).$$

Если в некоторый момент времени $t \in (0,T)$ выполнено условие

$$G(t) < -2g(h_L - H(t))/L^2 < 0,$$

то $p(x,t) < p_a$ в области

$$|x| < X(t) = \sqrt{2g(h_L - H(t))/G(t) + L^2} < L,$$

 $p(x,t) = p_a$ на границе этой области при $x = \pm X(t)$ и $p(x,t) > p_a$ в областях $X(t) < |x| \leqslant L$. Если после завершения первой стадии G(T) < 0, что эквивалентно неравенству

$$2(H'(T))^2 < H(T)H''(T),$$

то давление $p(x,T) < p_a$ во всей области контакта |x| < L.

3. Течение жидкости вне бруса. Поскольку по формуле (2.4) вычисляется расход жидкости

$$q(\pm L, t) = \pm Q(t) = \pm U(t)H(t) = \mp LH'(t)$$
 (3.1)

в точках $x=\pm L$, соответствующих границам бруса, для определения течения жидкости вне бруса на первой стадии (с учетом симметрии задачи и того, что $p_x=0$ при $L<|x|< L_b$) достаточно для однородной системы дифференциальных уравнений теории мелкой воды

$$h_t + q_x = 0, q_t + (qu + gh^2/2)_x = 0$$
 (3.2)

решить в области

$$S = \{(x,t): L < x < L_b, \ t > 0\}$$
(3.3)

начально-краевую задачу с начальными условиями

$$h(x,0) = h_0, q(x,0) = 0$$
 (3.4)

и граничными условиями

$$q(L,t) = -LH'(t), q(L_b,t) = 0.$$
 (3.5)

Второе условие (3.5) соответствует непротеканию жидкости через вертикальную торцевую стенку прямоугольного канала.

Задача (3.2)–(3.5) с одним условием на левой границе x=L является корректной, если в результате ее решения при x=L+0 течение $h_L(t), u_L(t)$ является докритическим или критическим, т. е. удовлетворяет неравенству

$$c_L(t) = \sqrt{gh_L(t)} \geqslant |u_L(t)| = \frac{|Q(t)|}{h_L(t)} = \frac{LH'(t)}{h_L(t)} \quad \forall t \in (0, T).$$

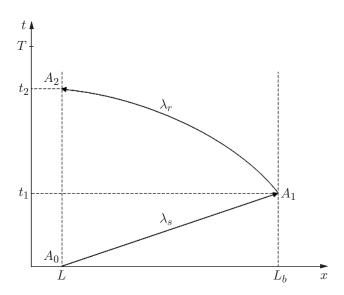


Рис. 2. Графики s- и r-характеристик, вдоль которых переносятся возмущения в области течения вне бруса

В этом случае из области (3.3) на ее левую границу x=L+0 приходит единственная характеристика системы (3.2), а именно r-характеристика, принося значение r-инварианта (рис. 2)

$$r_L = u_L - 2c_L = Q/h_L - 2\sqrt{gh_L} = r_* = -2c_* = -2\sqrt{gh_*},$$
 (3.6)

где

$$h_* = \begin{cases} h_0, & 0 < t \le t_2, \\ h_b(t), & t_2 < t \le T, \end{cases}$$
 (3.7)

 t_2 — временная координата точки $A_2(L,t_2)$ на рис. 2, в которую приходит r-характеристика системы (3.2), выходящая из точки $A_1(L_b,t_1)$. В точку A_1 приходит s-характеристика системы (3.2), выходящая из точки $A_0(L,0)$, расположенной на оси x. Поскольку эта s-характеристика распространяется по жидкости постоянной глубины h_0 с постоянной скоростью $\lambda_s = c_0 = \sqrt{gh_0}$, она задается уравнением $x = c_0 t + L$, с учетом которого получаем $t_1 = (L_b - L)/c_0$. Функция $h_b(t)$, входящая в формулу (3.7), имеет вид

$$h_b(t) = s^2(\theta(t))/(4g) < h_0,$$
 (3.8)

где $s(\theta)=u_L(\theta)+2c_L(\theta)$ — значение s-инварианта, выходящего при $\theta>0$ с левой границы x=L области (3.3) и приходящего при $t(\theta)>t_1$ на ее правую границу $x=L_b$.

Из формулы (3.6) получаем уравнение для нахождения глубины h_L

$$f(h_*, h_L) = 2\sqrt{g} \left(\sqrt{h_*} - \sqrt{h_L}\right) h_L = |Q|, \tag{3.9}$$

которое, как следует из графика функции $f(h_*,h)$, приведенного на рис. 3, имеет действительные решения при выполнении условия

$$|Q| \le f_c = f(h_*, h_c) = (8/27)h_*c_*,$$
(3.10)

где $h_c = 4h_*/9$. С учетом формулы (3.1) и неравенства (3.8) условие (3.10) можно представить в виде ограничения на скорость подъема бруса

$$H' \leqslant \frac{8h_*c_*}{27L} \leqslant \frac{8h_0c_0}{27L} = \frac{8\varepsilon c_0}{27}, \qquad \varepsilon = \frac{h_0}{L},$$
 (3.11)

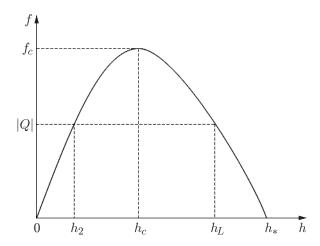


Рис. 3. График функции $f(h_*,h)$, задаваемой формулой (3.9)

соответствующего требованию длинноволнового приближения, в рамках которого вертикальные скорости рассматриваемого процесса должны быть много меньше характерных горизонтальных скоростей.

При $|Q|=f_c$ уравнение (3.9) имеет единственное решение h_c , которому соответствует критическое течение. При $|Q|< f_c$ это уравнение имеет два различных решения $h_2\in (0,h_c)$ и $h_3\in (h_c,h_*)$, первому из которых соответствует сверхкритическое течение, а второму — докритическое. В результате для искомой глубины $h_L=h_c$ при $|Q|=f_c$ и $h_L=h_3>h_c$ при $|Q|< f_c$ с учетом того, что |Q|=LH', с помощью формулы Кардано получаем

$$h_L = \varphi(h_*, H') = \frac{h_*}{9} \left(1 + 2\cos\left(\frac{1}{3}\arccos\left(1 - \frac{27LH'}{4h_*c_*}\right)\right) \right)^2 \geqslant h_c.$$
 (3.12)

4. Случай подъема бруса с конечной начальной скоростью. При решении задачи (3.2)–(3.5) в случае H'(0) > 0 глубина жидкости в точке x = L + 0 мгновенно (т. е. в момент времени t = 0 + 0) уменьшается до некоторого значения $h_L(0+0) < h_0$. В этом случае для выполнения неравенства T > 0, при котором реализуется первая стадия течения, необходимо выполнение условия

$$H(0) = h_1 < h_L(0+0). (4.1)$$

Нарушение этого условия означает, что непосредственно после начала подъема бруса глубина жидкости в точке x = L + 0 будет меньше глубины жидкости под брусом или равна ей. Это приведет к отсутствию первой стадии течения, рассматриваемой в данной работе.

Если начальная глубина жидкости под брусом $h_1 < h_c(h_0) = 4h_0/9$, то условие (4.1) выполнено в силу неравенства (3.12). Если начальная глубина $h_1 \ge h_c(h_0)$, то условие (4.1) приводит к дополнительному ограничению на начальный расход Q(0):

$$|Q(0)| < f(h_0, h_1) \tag{4.2}$$

и, следовательно, на начальную скорость подъема бруса H'(0):

$$H'(0) < f(h_0, h_1)/L = 2h_1(c_0 - c_1)/L, \tag{4.3}$$

где $c_0 = \sqrt{gh_0}$; $c_1 = \sqrt{gh_1}$. Так как на первой стадии течения глубина H(t) жидкости под брусом непрерывно и строго монотонно возрастает, а глубина $h_L(t)$ жидкости, примыкающей к торцам бруса в точках $x = \pm (L+0)$, непрерывно и монотонно убывает, для корректности рассматриваемой задачи в случае $h_1 \geqslant h_c$ достаточно выполнения в начальный

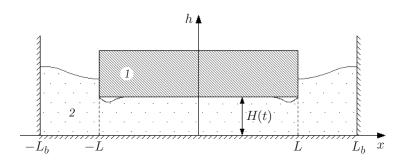


Рис. 4. Воздушные каверны на краях нижней поверхности бруса, возникающие при нарушении условия корректности (3.11): 1 — брус, 2 — жидкость

момент времени условия (4.3), а в случае $h_1 < h_c$ достаточно выполнения условия (3.11) на временном интервале $(0, T_2)$, причем $H(T_2) = h_c$ и $T_2 \leqslant T$.

Если при $h_1 < h_c$ в некоторый момент времени $T_1 + 0 \in (0, T_2)$ условие (3.11) нарушено, то с учетом неубывания производной H'(t) и невозрастания глубины $h_*(t)$ это условие нарушено при всех $t \in (T_1, T_2)$. В этом случае критический поток в граничной точке x = L + 0 полностью определяется течением вне бруса в области (3.3) и, следовательно, должно выполняться неравенство

$$|q_L(t)| = |q(L,t)| < |Q(t)| = LH'(t), \qquad t \in (T_1, T_2),$$

несовместное с первым граничным условием (3.5). В результате при $t > T_1$ расход, который создает втекающая под брус жидкость, недостаточен для обеспечения подъема жидкости под брусом в соответствии с условием h(x,t) = H(t) при всех $|x| \leq L$. Это приводит к тому, что вблизи краев нижней поверхности бруса при $t = T_1 + 0$ начинают формироваться воздушные каверны (рис. 4), размеры которых увеличиваются со временем на интервале (T_1, T_2) . В настоящей работе такие течения не рассматриваются.

Если скорость подъема бруса H' постоянна и удовлетворяет условию корректности (3.11), где $h_* = h_0$, при $h_1 \leqslant h_c$ или условию существования первой стадии (4.3) при $h_1 \geqslant h_c$, то при $t \leqslant t_1$ (т. е. до момента прихода начального возмущения на правую границу канала $x = L_b$) течение жидкости в области (3.3) представляет собой центрированную волну понижения, в которой глубина и скорость жидкости задаются формулами

$$h = \begin{cases} h_L, & \xi \in (0, \alpha], \\ (\xi + 2c_0)^2/(9g), & \xi \in [\alpha, c_0], \\ h_0, & \xi \geqslant c_0, \end{cases} \qquad u = \begin{cases} u_L, & \xi \in (0, \alpha], \\ 2(\xi - c_0)/3, & \xi \in [\alpha, c_0], \\ 0, & \xi \geqslant c_0, \end{cases}$$
(4.4)

где $\xi = (x-L)/t$ — автомодельная переменная,

$$\alpha = u_L + c_L$$
, $c_L = \sqrt{gh_L}$, $h_L = \varphi(h_0, H')$, $u_L = -LH'/h_L$.

Если при этом выполнено неравенство $(h_L - h_1)/H' \leqslant t_2$, то момент завершения первой стадии вычисляется по формуле $T = (h_L - h_1)/H'$.

5. Результаты численного моделирования. На рис. 5, 6 для четырех моментов времени приведены результаты численного моделирования рассматриваемой задачи в случае подъема бруса длиной 2L=2 м из канала длиной $2L_b=3$ м при начальных глубинах $h_0=20$ см, $h_1=5$ см и ускорении свободного падения g=10 м/с². На рис. 5 представлен случай подъема бруса с постоянной скоростью H'=2.5 см/с, на рис. 6 — с постоянным ускорением H''=5 см/с² и нулевой начальной скоростью. При таких условиях подъема

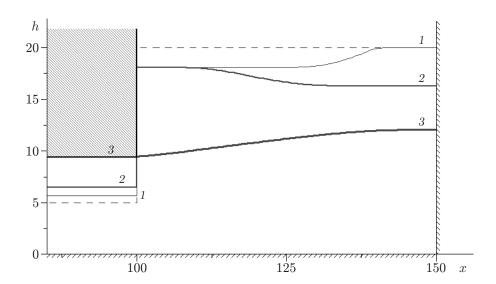


Рис. 5. Положение бруса, поднимающегося с постоянной скоростью $H'=2.5~{\rm cm/c}$, и поверхности жидкости в различные моменты времени: штриховая линия — t=0,1 — $t=0.27~{\rm c},2$ — $t=0.6~{\rm c},3$ — $t=1.792~{\rm c}$

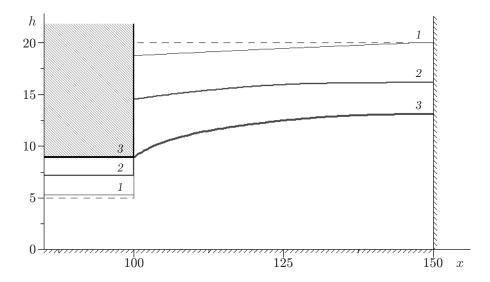


Рис. 6. Положение бруса, поднимающегося с постоянным ускорением $H''=5~{\rm cm/c^2},$ и поверхности жидкости в различные моменты времени: штриховая линия — $t=0,\,1-t=0,335~{\rm c},\,2-t=0,925~{\rm c},\,3-t=1,257~{\rm c}$

бруса возникающее течение жидкости удовлетворяет условиям корректности (3.11), (4.3) рассматриваемой задачи.

С учетом симметрии задачи относительно начала координат x=0 на рис. 5, 6 показано течение в области $0.85L < x < L_b$, где находится не ограниченная сверху жидкость, расположенная между брусом и правой торцевой границей канала. Штриховой линией показано начальное положение нижней поверхности бруса и невозмущенной свободной поверхности жидкости, а линией 3 — их положение в момент завершения первой стадии течения.

Линия 1 на рис. 5 соответствует течению в момент времени, когда возмущение еще не достигло границ канала и точное решение в области $L < x < L_b$ представляет собой центрированную волну понижения (4.4). Линия 2 соответствует моменту времени,

в который отраженная от правой границы канала волна понижения распространяется в противоположном направлении, но еще не достигла торцов бруса. В момент завершения первой стадии течения (линия 3 на рис. 5) волна понижения, отразившись от торца бруса, движется в положительном направлении оси x к правой границе канала.

Линией 1 на рис. 6 показано течение в момент времени, когда возмущение еще не достигло границ канала и глубина жидкости в некоторой окрестности этих границ совпадает с начальной глубиной h_0 . Линии 2, 3 соответствуют моментам времени, в которые понижение уровня жидкости происходит во всей области $L < x < L_b$, где верхняя граница жидкости является свободной. Заметим, что в отличие от случая подъема бруса с постоянной скоростью (см. рис. 5) при подъеме бруса с постоянным ускорением (см. рис. 6) уровень жидкости в области $L < x < L_b$ на первой стадии течения представляет собой монотонно возрастающую функцию x.

Заключение. В результате анализа в рамках длинноволнового приближения задачи о волновых течениях, возникающих при вертикальном подъеме прямоугольного бруса, частично погруженного в мелкую воду, получены ограничения на скорость подъема бруса (3.11), (4.3), обеспечивающие корректность данной задачи. С учетом указанных ограничений изучены решения этой задачи на первой стадии течения, когда нижняя поверхность бруса полностью погружена в жидкость. Получены точные формулы для скорости жидкости в области $|x| \leq L$ под брусом (2.2), (2.3) и для давления на смоченной нижней поверхности бруса (2.6). Приведены результаты численного моделирования волновых течений жидкости в области $L < x < L_b$ вне бруса при его подъеме с постоянной скоростью (см. рис. 5) и постоянным ускорением (см. рис. 6).

В дальнейшем целесообразно изучить волновые течения жидкости на следующих стадиях, когда края нижней поверхности бруса выходят из жидкости, в силу чего смоченная область нижней поверхности бруса уменьшается, а жидкость под ней поднимается, и далее, когда брус отрывается от воды, в результате чего формируются две расходящиеся волны.

Авторы выражают благодарность А. А. Коробкину за постановку данной задачи и полезные замечания, сделанные при ее обсуждении.

ЛИТЕРАТУРА

- 1. Korobkin A. A., Pukhnachov V. V. Initial stage of water impact // Ann. Rev. Fluid Mech. 1988. V. 20. P. 159–185.
- 2. Reis P. M., Jung S., Aristoff J. M., Stocker R. How cats lap: water uptake by Felis catus // Science. 2010. V. 330. P. 1231–1234.
- 3. Tassin A., Piro D. J., Korobkin A. A., et al. Two-dimensional water entry and exit of a body whose shape varies in time // J. Fluids Structures. 2013. V. 40. P. 317–336.
- 4. Korobkin A. A. A linearized model of water exit // J. Fluid Mech. 2013. V. 737. P. 368–386.
- 5. Стокер Дж. Дж. Волны на воде. М.: Изд-во иностр. лит., 1959.
- 6. **Остапенко В. В.** Гиперболические системы законов сохранения и их приложение к теории мелкой воды. Новосибирск: Новосиб. гос. ун-т, 2014.

II	оступила	$\boldsymbol{6}$	редакцию	21	/X	2014	г.
----	----------	------------------	----------	----	----	------	----