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Рассматриваются гиперболические системы уравнений некоторого типа, описывающие
одномерные нелинейные волны, одинаковым образом распространяющиеся в обоих на-
правлениях оси x. Каждой системе такого типа можно поставить в соответствие другую
гиперболическую систему уравнений в два раза более низкого порядка, строящуюся на
основе исходной системы уравнений. Изучается сходство решений этой системы урав-
нений и исходной.
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Рассматриваются гиперболические системы уравнений вида
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где ui, vi — неизвестные величины; F (uk) — заданная функция, обеспечивающая гипер-
боличность системы уравнений (1) в некоторой области значений переменных ui. Эта об-
ласть гиперболичности может быть представлена всем пространством ui. Система урав-
нений (1) одинаковым образом описывает возмущения, распространяющиеся в положи-
тельном и отрицательном направлениях оси x. В этом можно убедиться, если перекрест-
ным дифференцированием исключить vi. К гиперболическому типу относятся одномерные
уравнения нелинейной теории упругости, а также уравнения, описывающие волны, рас-
сматриваемые в ряде других физических задач. Если рассматриваются возмущения, рас-
пространяющиеся в одном направлении, а возмущения противоположного направления
равны нулю или пренебрежимо малы, то этой системе уравнений можно поставить в со-
ответствие систему уравнений в два раза более низкого порядка, в которой неизвестными
являются только ui. Известным примером является уравнение Хопфа, которому соответ-
ствует значение n = 1 и которое получается из системы типа (1) при указанных выше
условиях.

Подобным образом в случае n = 2 из систем типа (1) были получены и исследова-
ны системы уравнений для ui, описывающие волны одного направления в двух случаях:
волны в полупространстве, заполненном слабоанизотропной несжимаемой упругой средой
[1, 2]; и продольно-крутильные волны в полубесконечном упругом стержне при выполне-
нии некоторых дополнительных условий [3]. В обоих случаях изучались автомодельные
решения типа x/t, содержащие простые волны и разрывы, возникающие при смене знака
напряжений на границе области, где разыскивается решение (x > 0).
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Метод получения уравнений более низкого порядка для ui основан на предположе-
нии о малости возмущений, что отмечалось в работах [1–3]. Однако в [3] было показано,
что изменения ui в разрывах и простых волнах, распространяющихся в направлении уве-
личения x, совпадают с изменением ui в соответствующих возмущениях, описываемых
уравнениями (1).

В данной работе рассматриваются уравнения типа (1) при произвольных n. Так же
как в случае n = 1 и n = 2, системе уравнений типа (1) ставится в соответствие система
уравнений более низкого порядка (только для ui). Выясняется, что изменения величин ui в

соответствующих простых волнах и разрывах, движущихся в направлении увеличения x,
остаются одинаковыми в системе (1) и в упрощенной системе (для ui) не только в случае,
если возмущения малы, но и в случае возмущений конечной амплитуды. Указаны условия,
при которых разрывы в решениях исходной и упрощенной систем уравнений совпадают.
Показано, что скорости распространения возмущений для исходной и упрощенной систем
уравнений различны, но существует единая формула пересчета скоростей, которая связы-
вает скорости возмущений исходной и упрощенной систем, справедлива для всех типов
простых волн и разрывов и не зависит от их интенсивностей.

Проведем некоторые преобразования системы (1), подобные выполненным в [3]. Сна-
чала путем изменения масштабов величины ui устанавливаем, что все ai равны единице.
Затем выделяем из F квадратичную часть

ai = 1, F (ui) =
∑
i,j

bijuiuj + Q(ui).

При этом уравнения принимают вид
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Матрица bij симметричная, поскольку является матрицей вторых производных F (ui)
при ui = 0. Ортогональным преобразованием переменных ui симметричную матрицу мож-
но привести к диагональному виду. Коэффициенты при производных по времени остаются
равными единице. Вторая группа уравнений сохраняет свой вид. Будем считать, что та-
кие преобразования выполнены и в матрице bij отличны от нуля только диагональные

элементы. Так как bij зависят от значений ui, то, как и в случае n = 2 [3], путем сдвига
величин ui (т. е. прибавления к ним констант) можно достичь равенства всех bii (bii = b).
Предполагается, что новое начало координат принадлежит области гиперболичности рас-
сматриваемой системы. Таким образом, исходные уравнения принимают вид
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Здесь для переменных в первой группе уравнений сохранены обозначения ui, vi, несмотря
на то что это переменные, подвергнутые описанным выше преобразованиям. В уравне-
ниях (2) c0 = const. Значение этой величины зависит от величины сдвига переменных.
Очевидно, что c0 — скорость малых линейных возмущений для системы (2). Как и в слу-
чае n = 2, для каждого значения i запишем уравнение для изменения инварианта ui−vi/c0

линеаризованной системы (2) вдоль характеристик x = c0t + const:
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Если положить равными константе инварианты Римана ui + vi/c0 линеаризован-
ной системы уравнений, связанные с характеристиками отрицательного направления
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x = −c0t + const, то, исключая vi, подобно тому как это сделано в [1–3], получим систему
уравнений для ui
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∂ui
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)
. (3)

Сравним свойства некоторых решений уравнений (2) и (3). Покажем, что изменения ui

в простых волнах, распространяющихся в положительном направлении, для систем урав-
нений (2) и (3) совпадают. В случае простых волн производные любой величины q по t и
по x связаны соотношением

∂q

∂t
= −c

∂q

∂x
= −cq′. (4)

Здесь c — характеристическая скорость; штрихом обозначена производная вдоль инте-
гральной кривой простой волны. С учетом этого при использовании второй группы урав-
нений (2) первая группа уравнений (2) принимает вид∑

j

Qiju
′
j − (c2 − c2

0)u
′
i = 0. (5)

Следовательно, c2 − c2
0 — одно из собственных значений матрицы Qij , а величины u′j ,

j = 1, 2, . . . , n, удовлетворяющие системе (5) (собственный вектор матрицы Qij , соответ-
ствующий данному собственному значению), образуют касательный вектор к интеграль-
ной кривой системы (5).

Уравнения для интегральных кривых простых волн системы (3) имеют вид∑
j

Qiju
′
j − 2c0(c̃− c0)u

′
i = 0, (6)

где c̃ — характеристическая скорость, соответствующая простой волне системы (3). Из
равенства (6) следует, что значение 2c0(c̃ − c0) — собственное значение матрицы Qij , а
соответствующее решение u′j (j = 1, 2, . . . , n) — собственный вектор матрицы Qij . Срав-

нение равенств (5) и (6) показывает, что собственные векторы матрицы Qij , представ-
ляющие собой касательные к интегральным кривым уравнений (5) и (6), совпадают, а
соответствующие собственным значениям этой матрицы значения c и c̃ связаны соотно-
шением

c2 − c2
0 = 2c0(c̃− c0). (7)

Отсюда следует
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где c > 0 и c̃ — соответствующие друг другу характеристические скорости систем (2)
и (3). Поскольку система (2) полагается гиперболической, c2 > 0, поэтому c̃ > c0/2. Со-
гласно (7) увеличение и уменьшение c и c̃ происходит одновременно, т. е. опрокидывание
простых волн и образование ударных волн в системах уравнений (2) и (3), если происхо-
дит, то при одних и тех же значениях ui.

Рассмотрим соответствие разрывов и структур разрывов решений систем уравне-
ний (2) и (3). Для этого в данные системы уравнений должны быть добавлены члены,
которые несущественны для медленно меняющихся в пространстве решений и не учиты-
ваются при построении решений гиперболической системы уравнений, но становятся важ-
ными в случае быстроменяющихся решений, препятствуя образованию разрывов. Обычно
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это члены, выражающиеся через высшие производные неизвестных величин с малыми ко-
эффициентами. При этом возникают узкие области, в которых решение испытывает суще-
ственные изменения, называемые структурами разрывов. Запишем уравнения (2) с учетом
таких членов:
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,
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Здесь Li — дополнительные члены, препятствующие образованию разрывов. Во многих
задачах механики под Li(vk) понимаются вязкие напряжения:

Li =
∑

k

µik
∂vk

∂x
. (9)

Далее будем использовать выражение (9), учитывая, однако, что возможны другие,
более сложные выражения для Li, содержащие более высокие производные от vk. Матри-
ца µik должна обеспечивать диссипацию механической энергии, т. е. быть положительно
определенной.

Будем рассматривать структуру разрывов в виде бегущих волн, т. е. исследовать
решения системы (5), зависящие от комбинации переменных вида ξ = −x + Wt (W =
const — скорость структуры) и стремящиеся к постоянным значениям при ξ → −∞ и

ξ →∞. После исключения из системы vi и однократного интегрирования уравнений по ξ
получаем

W
∑

k

µiku
′
k =

∂Q
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0)ui + Gi, Gi = const . (10)

Здесь штрихом обозначены производные по ξ. Так как рассматриваемые решения уравне-
ний (10) ui(ξ) при ξ → ±∞ стремятся к конечным значениям ui, это означает, что данные
решения соответствуют интегральным кривым в пространстве ui, начинающимся и за-
канчивающимся в особых точках, в которых правые части уравнений (10) обращаются
в нуль. Если состояние ui = u−i перед структурой (при ξ = −∞) задано, то значения Gi

находятся путем приравнивания к нулю правых частей уравнений (10) при ui = u−i . Воз-

можные состояния за разрывом u+
i при заданном значении W определяются положением

других особых точек. При измененииW они перемещаются и образуют кривую (возможно,
состоящую из нескольких участков), которая называется ударной адиабатой. Если точка
ударной адиабаты u+

i , соответствующая некоторому W , соединяется с начальной точкой

ui = u−i интегральной кривой, идущей с увеличением ξ от точки u−i к точке u+
i , то будем

говорить, что переход u−i → u+
i соответствует разрыву со структурой.

Рассмотрим структуру разрывов для системы (3). При добавлении в правые части
уравнений (3) “вязких” членов уравнения принимают вид
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Решения, зависящие от ξ = −x + W̃ t (W̃ — скорость структуры), описываются си-
стемой обыкновенных уравнений. После однократного интегрирования этой системы по ξ
получаем

2c0

∑
k

νiku
′
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∂Q

∂ui
− 2c0(W̃ − c0)uk + Hi, Hi = const . (12)

Постоянные Hi определяются, если известно состояние ui = u−i перед структурой раз-
рыва при ξ = −∞. Как и в рассмотренном выше случае, структуру разрыва, движущегося
со скоростью W̃ , представляет интегральная кривая, выходящая из особой точки ui = u−i
и идущая в другую особую точку ui = u+

i при ξ →∞.
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Особые точки уравнений (10), (12) определяются равенством нулю правых частей этих
уравнений. Правые части (10), (12) совпадают, если выполняется равенство

W 2 − c2
0 = 2c0(W̃ − c0) (13)

или

W̃

c0
=

1

2

(W 2

c2
0

+ 1
)
.

При выполнении равенства (13) и одинаковых u−i все особые точки систем уравнений
(10), (12) совпадают в пространстве ui. Это означает совпадение ударных адиабат для
уравнений (2) и (3). Подобие формул (7) и (13) для c̃ и W̃ свидетельствует о том, что
условия Жуге, т. е. условия равенства скорости разрыва характеристической скорости, а
также условия эволюционности, следуют из равенств (7), (13) при одинаковых значени-
ях ui. Если помимо равенства (13) задать пропорциональность матриц νik и µik:

νik = λµik, λ > 0, (14)

то интегральные кривые уравнений (10) и (12) совпадут. Иными словами, при выполне-
нии (13) и (14) для систем уравнений (2) и (3) совпадут множества разрывов, имеющих
структуру.

Во многих случаях требуется решить автомодельную задачу типа x/t в области x > 0
для системы уравнений (1). В этом случае, как показано выше, можно использовать более
простую систему уравнений (3). Также можно получать автомодельные решения в виде
асимптотик при t→∞, решая более простые системы уравнений только для ui типа (11)
при условии (14), что удобно в том случае, если задача решается численно. Такой подход
применялся в [4] при n = 2.

Следует отметить, что для систем уравнений (2) и (3) для всех n типов простых

волн и всех типов разрывов, движущихся в направлении x > 0, интегральные кривые
простых волн, а также ударные адиабаты совпадают. Это справедливо при произвольных
величинах амплитуд соответствующих волн. Скорости волн систем (2) и (3) различают-
ся, но имеется единая формула для пересчета характеристических скоростей и скоростей
ударных волн, представленная равенствами (7) и (13).

Автор выражает благодарность А. П. Чугайновой за обсуждение содержания работы.
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