СТРУКТУРИРОВАНИЕ ПОВЕРХНОСТИ МЕДНОГО ОБРАЗЦА ПЛАЗМОЙ ТЛЕЮЩЕГО РАЗРЯДА

А. В. Петрова, А. И. Сафонов

Институт теплофизики им. С. С. Кутателадзе СО РАН, Новосибирск, Россия E-mails: koltekreit@gmail.com, safonov@itp.nsc.ru

Показана возможность управления шероховатостью поверхности медного образца путем обработки ее плазмой тлеющего разряда. Установлено, что основным процессом, влияющим на морфологию и состав поверхности, является окисление. В результате обработки на поверхности медного образца формируются различные нано- и микроструктуры ее оксида. Показано, что в исследуемом диапазоне параметров давление рабочего газа оказывает более существенное влияние на формирование различных структур, чем плотность тока тлеющего разряда. В результате обработки наблюдаются различные стадии процесса окисления поверхности, вызванные различием ее температур.

Ключевые слова: тлеющий разряд, обработка поверхности, медный образец, окисление, микроструктуры, наноструктуры, шероховатость

Введение. Функционализированные поверхности находят широкое применение в современных технологиях. В результате функционализации поверхность приобретает различные, в том числе уникальные свойства, нехарактерные для ее материала. Основные свойства поверхности определяют два параметра: ее морфология (микро- и наношероховатость) и химический состав приповерхностных слоев. Существуют различные методы и подходы, позволяющие функционализировать поверхность путем изменения этих параметров [1, 2]: лазерная обработка [3–5], химическое травление [6, 7], трехмерная печать [8, 9] и др. Однако большинство методов не универсальны и имеют различные ограничения и недостатки. Таким образом, разработка новых или развитие существующих методов, позволяющих эффективно изменять поверхность путем изменения указанных выше параметров, представляет собой актуальную задачу. Простым и эффективным методом управления этими параметрами является обработка поверхности материала плазмой тлеющего разряда. В результате обработки в приповерхностных слоях могут происходить такие процессы, как "распыление" материала, нагрев, плавление, кипение и ряд химических реакций. Использование этих процессов позволяет не только очищать поверхность и управлять ее шероховатостью [10, 11], но и изменять ее химический состав.

Медь и ее сплавы широко используются в производстве различных теплообменных устройств. Для интенсификации теплообмена необходима значительная шероховатость поверхности [12]. Например, в работе [13] показано, что увеличение степени шероховатости приводит к увеличению теплоотдачи в процессе кипения за счет увеличения количества центров зародышеобразования.

Работа выполнена в рамках государственного задания (бюджетный грант № 121031800218-5).

[©] Петрова А. В., Сафонов А. И., 2023

В данной работе исследуется возможность применения плазмы тлеющего разряда для обработки меди с целью получения сильношероховатых поверхностей. Изучается влияние таких параметров, как давление газа *P* и плотность тока *j*, на структуру и состав поверхности медного образца. Исследуются процессы, обеспечивающие структурирование поверхности в результате обработки ее плазмой тлеющего разряда.

Экспериментальная установка и методы анализа. Исследования проводились на экспериментальной установке, схема которой представлена в работе [14]. В вакуумной камере объемом 0,02 м³ располагались два электрода из нержавеющей стали диаметром 22 мм с изолированными боковыми поверхностями. На катоде размещался образец (медь марки M1) в виде шайбы диаметром 18 мм и толщиной 2 мм. Внутри катода располагалась хромель-алюмелевая термопара, позволяющая измерять температуру образца в процессе обработки. До начала обработки воздух из камеры откачивался вакуумным насосом до давления порядка 10 Па. В качестве рабочего газа использовался воздух. В процессе обработки воздух подавался в камеру из баллона через регулятор расхода. Рабочее давление в диапазоне 70 ÷ 1400 Па регулировалось и поддерживалось путем перекрытия запорного вентиля. Давление измерялось емкостным датчиком Pfeiffer CCR 363. Разряд зажигался и поддерживался источником постоянного тока ВИП-7,5-0,3. Параметры источника позволяли варьировать плотность тока на поверхности образца в диапазоне 32 ÷ 320 A/м². Время обработки образца составляло 20 мин.

Обработанные поверхности исследовались методами сканирующей электронной микроскопии с помощью прибора JSM6700F фирмы JEOL (Япония), оснащенного энергодисперсионным детектором Quantax 200 Bruker (Германия) для определения элементного состава поверхности образца. Шероховатость поверхности до и после обработки измерялась с помощью сканирующей зондовой микроскопии с использованием прибора НаноСкан-3D ТИСНУМ (Россия). Прибор измерял и вычислял шероховатость поверхности согласно ГОСТ 25142-82.

Перед осаждением медные образцы промывались с использованием ультразвуковой ванны в 5 %-м растворе поверхностно-активных веществ, дистиллированной воде и этиловом спирте в течение 15 мин. Затем образцы высушивались в потоке аргона особой чистоты. Такая обработка осуществлялась дважды.

На начальном этапе была проведена установочная серия экспериментов, что позволило определить граничные значения давления и расхода рабочего газа для поддержания стабильного тлеющего разряда между электродами (давление $P = 130 \div 1350$ Па, расход воздуха $G = 2 \cdot 10^{-8}$ кг/с). Далее медные шайбы обрабатывались при этих значениях параметров; максимальная плотность тока составляла j = 320 A/M², время экспозиции t = 20 мин. В следующей серии экспериментов давление P поддерживалось равным 670 Па и исследовалось влияние плотности тока на шероховатость поверхности.

Изучение поверхности образцов с помощью сканирующей электронной микроскопии показало, что ее морфология существенно изменяется (рис. 1). Поверхность промытых, не обработанных тлеющим разрядом образцов является относительно гладкой и содержит небольшие вкрапления. Концентрация атомов A в составе поверхности исходного медного образца (образца 1) (см. таблицу) распределяется следующим образом: медь — 78,3 %, кислород — 7,5 %, углерод — 14,2 %. Эти значения концентрации обусловлены естественным окислением поверхности медного образца и ее загрязнением углеводородами из окружающей среды и камеры детектора микроскопа. Другие элементы не регистрируются. После обработки поверхности образца плазмой тлеющего разряда при давлении 133 Па в течение 20 мин на поверхности наблюдается формирование сферических наноструктур размером 30 ÷ 70 нм. Концентрация кислорода увеличивается до 11 % (образец 2), а концентрация углерода уменьшается до 11 %. Происходит сжигание органических загрязнений и

Рис. 1. Морфология поверхности меди, обработанной тлеющим разрядом при различных значениях давления:

а — исходный образец, б — P=133Па,
 в — P=260Па, г — P=670Па,
 ∂ — P=930Па, е — P=1330Па

Основные параметры обработки и результаты элементного анализа поверхности образ	зцов
---	------

Образец	Р, Па	$j, A/m^2$	T°C	A, %		
			1, 0	С	О	Cu
1				14,23	7,51	78,26
2	133	240	202	11,34	$11,\!17$	$77,\!49$
3	260	240	407	7,32	$33,\!23$	$59,\!45$
4	670	240	450	7,98	$39,\!54$	$52,\!48$
5	930	240	491	8,22	41,62	50,16
6	1330	240	545	8,05	39,70	$52,\!25$
7	670	80	315	12,37	$19,\!90$	67,73
8	670	160	414	12,11	$25,\!83$	62,06
9	670	320	443	$12,\!95$	$25,\!81$	$61,\!24$

Рис. 2. Зависимость температуры поверхности образца от времени при различных значениях давления в процессе обработки:

1-P=133Па, 2-P=260Па, 3-P=670Па, 4-P=930Па, 5-P=1330Па Рис. 3. Зависимость шероховатости поверхности от давления в процессе обработки

окисление приповерхностных слоев медного образца. При увеличении давления до 260 Па размеры сферических структур увеличиваются до 100 ÷ 200 нм (см. рис. 1, e). Концентрация кислорода в приповерхностном слое увеличивается до 33 %, концентрация углерода уменьшается до 7 % (образец 3). Последующее увеличение давления до 670 Па приводит к срастанию сферических структур и формированию на них единичных нанокристаллов диаметром 20÷30 нм и длиной 100÷500 нм (см. рис. 1,e). Концентрация кислорода достигает 40 %. При повышении давления рабочего газа в процессе обработки до 930 и 1330 Па существенного изменения состава поверхности образцов не происходит (образцы 5, 6). Однако морфология продолжает изменяться: кристаллы преобразуются в чешуйки размером порядка 100 нм (см. рис. 1,d), количество и размер чешуек с ростом давления увеличивается (см. рис. 1,e). Температурные зависимости для каждого образца представлены на рис. 2.

Измерение шероховатости образцов показало, что исходная величина шероховатости составляет 160 нм (рис. 3). После обработки с увеличением давления величина шероховатости образцов увеличивается с 200 нм при P = 133 Па до 450 нм при P = 670 Па. Далее значение шероховатости уменьшается до значений $R_a \approx 250$ нм, что, по-видимому, обусловлено выравниванием поверхности вследствие интенсивного окисления в результате нагрева и распыления.

Анализ морфологии поверхности образцов, обработанной при различных значениях плотности тока j, показал, что она существенно изменяется даже при $j = 80 \text{ A/m}^2$ (рис. 4,a). При $j \approx 160 \text{ A/m}^2$ формируются единичные нанокристаллы диаметром $20 \div 30$ нм и длиной $100 \div 500$ нм (рис. $4,\delta$). Дальнейшее увеличение плотности тока приводит к увеличению количества нанокристаллов и их удлинению (рис. 4,6,c).

Измерение шероховатости показало, что при плотности тока $j = 80 \text{ A/m}^2$ величина шероховатости составляет $R_a = 220$ нм (рис. 5). С увеличением плотности тока значения величины шероховатости увеличиваются до 400 нм при $j = 160 \text{ A/m}^2$ и до 420 нм при $j = 240 \text{ A/m}^2$. Затем шероховатость уменьшается до значений $R_a \approx 300$ нм, что по-видимому,

Рис. 4. Морфология поверхности меди в зависимости от плотности тока тлеющего разряда *j*:

a - j = 80 A/m², $\delta - j = 160$ A/m², $\epsilon - j = 240$ A/m², $\epsilon - j = 320$ A/m²

Рис. 5. Зависимость шероховатости поверхности от плотности тока

Рис. 6. Зависимость температуры поверхности образца от времени при различных значениях плотности тока:

 $1-j = 80 \text{ A/m}^2, \ 2-j = 160 \text{ A/m}^2, \ 3-j = 240 \text{ A/m}^2, \ 4-j = 320 \text{ A/m}^2$

обусловлено выравниванием поверхности вследствие ее окисления и распределением на ней неровностей.

Полученные результаты показывают, что при обработке происходит окисление меди различной степени в приповерхностных слоях. Различие степени окисления может быть обусловлено изменением температуры образца в процессе обработки (рис. 6). В результате этих процессов происходит микро- и нанотекстурирование поверхности меди, что приводит к изменению ее структуры и свойств, т. е. к функционализации. Таким образом, метод обработки поверхности медного образца плазмой тлеющего разряда можно использовать не только для ее очистки, но и для модификации. Однако покрытия, сформированные при давлениях P > 670 Па и плотности тока j > 160 A/m^2 , обладают плохой адгезией и когезией и частично или полностью разрушаются даже при незначительном внешнем воздействии. Таким образом, использовать такие поверхности в большинстве приложений невозможно.

Заключение. Проведенное исследование показало возможность изменения морфологии поверхности медного образца при определенных значениях параметров тлеющего разряда ($P = 133 \div 1333$ Па, $j = 80 \div 320$ A/m²). Установлено, что, как и в случае кремния [14], при обработке плазмой тлеющего разряда главным процессом является не только окисление меди, но и "распыление" атомов и кластеров заряженными ионами газа. Измерение температуры образца в процессе обработки показало, что она может оказывать значительное влияние на процесс окисления. Чем выше температура образца при обработке, тем более существенно увеличивается концентрация кислорода в приповерхностном слое образца. Это обусловливает появление различных стадий процесса окисления меди, на которых формируются различные нано- и микроструктуры оксида меди. В то же время обработанные при одной и той же температуре образцы могут иметь различную морфологию, что подтверждает влияние процесса "распыления". Показано, что в результате указанных выше процессов происходит существенное изменение шероховатости поверхности

ЛИТЕРАТУРА

- 1. Чесноков А. Е., Клинков С. В., Косарев В. Ф. и др. Влияние интенсивности механической обработки частиц бронзы на характеристики покрытий, формируемых методом холодного газодинамического напыления // ПМТФ. 2022. Т. 63, № 1. С. 57–64.
- Голышев А. А., Оришич А. М. Влияние параметров лазерного воздействия на формирование ванны расплава металлокерамической смеси В₄С Ti-6Al-4V // ПМТФ. 2022. Т. 63, № 2. С. 104–116.
- Dong C., Gu Y., Zhong M., et al. Fabrication of superhydrophobic Cu surfaces with tunable regular micro and random nano-scale structures by hybrid laser texture and chemical etching // J. Materials Process. Technol. 2011. V. 211, N 7. P. 1234–1240.
- Bizi-Bandoki P., Benayoun S., Valette S., et al. Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment // Appl. Surface Sci. 2011. V. 257, N 12. P. 5213–5218.
- Starinskiy S. V., Rodionov A. A., Shukhov Y. G., et al. Formation of periodic superhydrophilic microstructures by infrared nanosecond laser processing of single-crystal silicon // Appl. Surface Sci. 2020. V. 512. 145753.
- Cao L., Hu H. H., Gao D. Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials // Langmuir. 2007. V. 23, N 8. P. 4310–4314.
- Taskin N. U., Ordu F. Effect of etching duration on roughness and wettability of different carbon steel substrates // Materials Chem. Phys. 2021. V. 257. 123746.

- Kang B., Hyeon J., So H. Facile microfabrication of 3-dimensional (3D) hydrophobic polymer surfaces using 3D printing technology // Appl. Surface Sci. 2020. V. 499. 143733.
- He Z., Chen Y., Yang J., et al. Fabrication of polydimethylsiloxane films with special surface wettability by 3D printing // Composites. B. Engng. 2017. V. 129. P. 58–65.
- 10. Крапивина С. А. Плазмохимические технологические процессы. Л.: Химия. Ленингр. отд-ние, 1981.
- Таран В. М., Митин Б. С., Бобров Г. В. Очистка поверхности изделий перед напылением газовыми разрядами // Теория и практика газотермического нанесения покрытий: Тез. докл. 10-го Всесоюз. совещ. Димитров: Б. и., 1983. С. 52–56.
- 12. Суртаев А. С., Сердюков В. С., Павленко А. Н. Нанотехнологии в теплофизике: теплообмен и кризисные явления при кипении // Рос. нанотехнологии. 2016. Т. 11, № 11/12. С. 18–32.
- Vlachou M. C., Lioumbas J. S., Karapantsios T. D. Heat transfer enhancement in boiling over modified surfaces: a critical review // Interfacial Phenomena Heat Transfer. 2015. V. 3, N 4. P. 341–367.
- 14. Петрова А. В., Богословцева А. Л., Старинский С. В., Сафонов А. И. Структурирование поверхности кремния плазмой тлеющего разряда // ПМТФ. 2023. Т. 64, № 3. С. 131–136.

Поступила в редакцию 5/VI 2023 г., после доработки — 21/VI 2023 г. Принята к публикации 26/VI 2023 г.