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Экспериментально измерено газовыделение при разрушении образца угля в мельнице. 
По методике ИГД им. А. А. Скочинского рассчитано количество газа, которое может выде-
литься из угля в зависимости от размера его частиц. Образцы отбирались с выбросоопасного 
угольного пласта. Установлено, что уменьшение размеров частиц угля до 0.1 мм повышает 
газовыделение в несколько раз. Разработана модель силового взаимодействия молекул мета-
на в микропористой структуре с поверхностью макромолекулы угля и методика расчета га-
зовыделения из угля в зависимости от степени его разрушения. 
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Проблема внезапных выбросов угля и газа при подземной разработке угольных пластов 
весьма актуальна. Дискутируется вопрос о количестве выбрасываемого метана, которое как 
минимум на порядок превышает количество метана, определяемое природной газоносностью. 
При достаточно быстром разрушении угольного пласта даже небольшого давления газа доста-
точно для выброса угля в горную выработку и интенсивного газовыделения [1]. Быстрое 
и объемное газовыделение из угля наиболее возможно в пластах, содержащих наряду с проч-
ным углем нарушенные, перетертые пачки углей малой прочности [2 – 5]. Для характеристики 
газодинамического режима призабойной части угольного пласта важно оценить газодинамиче-
ские свойства пласта в зависимости от степени его нарушенности. 

В [6] приведена категорийность шахт Кузбасса по вредным газам: опасные — 17; сверхка-
тегорные — 26; категория III — 8; категория II — 6; категория I — 6. Из функционирующих 
шахт Кузбасса наиболее опасные по выбросам — “Первомайская”, “Березовская”, “Чертин-
ская-Коксовая”. В Кузбассе за 2013 – 2021 гг. зарегистрировано семь внезапных выбросов угля 
и газа, сопровождающихся травмированием и гибелью рабочих. Выявлено, что выделяется газа 
гораздо больше, чем следует из природной газоносности и объема выброшенной горной массы. 
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Так, 14.09.2020 г. в подготовительном забое осевого штрека № 553 на шахте “Чертинская-
Коксовая”, г. Белово, произошел внезапный выброс угля и газа. Выброс зафиксирован при за-
чистке комбайном забоя осевого штрека [7], который предположительно находился вблизи оси 
синклинальной складки, где уголь был разрушен силами горного давления до пылевидного со-
стояния. Согласно заключению АО “НЦ ВостНИИ”, забой был остановлен. Спустя несколько 
дней на место выброса направлен машинист проходческого комбайна для зачистки забоя.  
После нарушения небольшой перемычки произошел внезапный выброс (396 т горной массы 
и 89 515 м3 газовоздушной смеси). Природная газоносность угля шахты “Чертинская-Коксовая” 
составляет 21.5 м3/т, следовательно, должно быть выброшено ~ 8.5 тыс. м3 газа, но в реально-
сти оказалось больше. 

В [2] разработана методика расчета количества газа, которое может выделиться из угля 
в зависимости от размера его частиц. Она основана на определении фракционного состава угля 
и его сорбционных свойств. Для этого отобраны пробы из 63 шахтопластов на 5 шахтах Дон-
басса. По данным анализа угольных проб рассчитывалось количество метана, которое может 
выделиться в течение 30 мин при разрушении 1 т угля каждой пачки. Выявлено, что на разных 
шахтах и участках при разрушении угля одного и того же пласта выделяется различное коли-
чество метана, зависящее от изменения структуры пластов на шахтах и от сорбционной емко-
сти угля. Уголь нарушенных пачек исследуемых пластов Донбасса содержит значительный 
процент фракций частиц меньше 100 мкм [2]. С помощью оптического, седиментометриче-
ского методов и ситового анализа установлено, что в таких пробах преобладают частицы 
с радиусом ~ 10 мкм. 

Полученные данные для угольных пластов Донбасса свидетельствуют о том, что количе-
ство метана, которое может выделиться при быстром разрушении угольного пласта зависит 
от мощности нарушенных пачек угля и его сорбционной емкости [2]. Поднятые вопросы о дис-
персионном составе природных углей после механических нагрузок, подобных пригрузкам 
в разрабатываемом угольном пласте, нуждаются в дальнейшем изучении и экспериментальном 
подтверждении. Предложенная методика требует сложных и длительных экспериментов 
по определению сорбционной емкости и пористости углей. 

Цель настоящей работы — теоретический расчет предполагаемого газовыделения, сопро-
вождающего разрушение угля, и его сравнение с экспериментальными данными газовыделе-
ния, сопутствующего разрушению проб угля выбросоопасных угольных пластов. Для этого 
на особо опасной по внезапным выбросам угля и газа “Шахте им. С. Д. Тихова” из пласта 23  
(по геологическому прогнозу природная газоносность шахты составляет 20 м3/т), располо-
женного на глубине 310 м, отбирались пробы угля массой ~ 500 г. С нескольких участков 
пласта брались по две пробы. Одна проба помещалась в герметичный контейнер и доставля-
лась в лабораторию для исследования газовыделения при механическом разрушении в мель-
нице по методике [8], другая подвергалась механическому разрушению и после каждого цик-
ла разрушения измерялся средневзвешенный размер частиц угля. По экспериментальным 
данным газовыделения, полученным при разрушении проб угля, строилась зависимость газо-
выделения от средневзвешенного радиуса частиц (рис. 1). Минимальный размер частиц после 
разрушения в мельнице 1 – 5 мм. 
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Рис. 1. Зависимость газовыделения от средневзвешенного радиуса частиц r 

Объем метана iV , выделяемый из угля при разрушении, в зависимости от фракционного 
состава рассчитывался по методике [2]. Использовались данные о средневзвешенном ради-
усе частиц при разрушении угля в механической мельнице. Введены следующие условия: 
для учета диффузии метана в течение 10 мин средний коэффициент принят постоянным 
(1.5·10–5 см2/с); давление газа на поверхности угля при его разрушении падало с 10 до 1 атм; 
уголь разрушался на сферические частицы. Данные гранулометрического состава образцов 
угольной пыли с частицами диаметром менее 1 мм для расчетов взяты из [9]. Результаты пред-
ставлены на рис. 2. 

 
Рис. 2. Зависимость выделившегося объема метана Vi от радиуса частиц r 

Расчет газовыделения по методике [2], в основе которой рассматриваются процессы диф-
фузии, сорбции и другие, дает газовыделение на порядок меньшее по сравнению с эксперимен-
том при размере частиц ~ 1 мм. Расчет и эксперимент показали увеличение газовыделения при 
разрушении частиц угля до 0.5 – 1.0 мм. В настоящее время методики, позволяющей получить 
при разрушении средневзвешенный размер частиц угля ~ 2 – 5 нм, не существует. Вероятно, 
при разрушении угля в массиве силами горного давления до состояния тонкодисперсной 
угольной пыли газовыделение должно быть значительным. Это возможно в местах геологиче-
ских нарушений, при образовании антиклинальных и синклинальных складок, где проницае-
мость угля практически нулевая. Такие зоны угольных пластов зачастую относят к опасным 
по внезапным выбросам угля и газа. Подобное возможно и в зонах пликативных нарушений. 
В данном контексте растет интерес к изучению физических процессов, связывающих молекулы 
метана в тонкой и ультратонкой структуре угля. Специалисты пытаются понять, почему при 
внезапных выбросах угля и газа выделяются бόльшие объемы газа, чем следует из геологиче-
ских прогнозов [10]. 
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Лабораторные исследования физико-химических свойств углей Кузбасса показали, что 
наибольшей удельной поровой поверхностью обладают угли марки Д (35 – 1220 м2/г), удель-
ный объем микропор в углях различных марок достигает 80.5 – 93.8 % от общего объема 
пор [11, 12]. В [13, 14] выдвинуто предположение, что значительная часть природного метана 
содержится в микропоровой структуре каменного угля, при которой диаметр пор составля-
ет 20 Å. Об этом свидетельствует и дегазация выбросоопасных пластов с помощью пластовых 
скважин. Для ее оценки на основе линейного закона фильтрации Дарси в [14] рассчитана ско-
рость фильтрации метана и количество отсасываемого метана при дегазации угольного пласта 
с помощью скважины. Результаты эксперимента и расчетов показали, что в первые сутки уда-
ляется свободный метан из поровой структуры (из макропор и с поверхности близлежащих 
трещин), затем эффективность дегазационного процесса резко падает. Можно предположить, 
что молекулы метана, находящиеся в микропористой структуре и составляющие бόльшую 
часть природной газоносности каменного угля, не могут быть удалены с помощью дегазации 
вследствие их достаточно сильной связи с поверхностью угля. 

РАСЧЕТ ГАЗОВЫДЕЛЕНИЯ ПРИ РАЗРУШЕНИИ УГЛЯ ДО СОСТОЯНИЯ  
ТОНКОДИСПЕРСНОЙ ПЫЛИ 

С целью изучения физического состояния молекул метана в микропорах угля рассчитыва-
лась потенциальная энергия U и сила взаимодействия молекул метана с поверхностью угольно-
го вещества [15]: 
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Здесь Bd  — дипольный момент молекулы адсорбата В; Aα , Bα  — поляризуемость молекул ад-
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Сила притяжения молекулы адсорбата к адсорбенту ZF  определялась следующим образом: 
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В расчетах брались справочные данные [16, 17] и аддитивные схемы: концентрация атомов 
углерода (адсорбент) 29

C 0.534 10n = ⋅  1/м3 и молекул метана (адсорбат) CH4
n = 0.0024·1029 1/м3. 

Результаты представлены на рис. 3. На расстоянии 1Z  расположен первый слой молекул мета-
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на, на 2Z  и 3Z  — второй и третий слои (Z1 = 2.07 Å, Z2 = 4.14 Å, Z3 = 6.21 Å). Силы взаимодей-
ствия молекул метана, расположенных в первом слое у поверхности угольного вещества, 
на два порядка превосходят по модулю аналогичные силы притяжения молекул метана после-
дующих слоев [18]. Энергия взаимодействия молекул второго и последующих слоев сравнима 
с энергией теплового движения ~ 3 кДж/моль при Т = 300 К. Молекулы метана в первом слое 
оказываются закрепленными на поверхности угольного адсорбента (они не подвержены сорб-
ции/десорбции) и в свободное состояние могут переходить только при разрушении тонкой по-
ровой угольной структуры. 

 
Рис. 3. Зависимость потенциальной энергии U и силы FZ взаимодействия молекулы метана 
с поровой поверхностью угольного вещества от радиуса микропоры ρ : а — для молекул 
метана, расположенных в первом слое; б — для молекул метана из второго и третьего слоев 

Для объяснения результатов процесса газовыделения при разрушении микропоровой 
структуры разработана методика расчета газовыделения из частиц угля в зависимости от их 
радиуса pr  (рис. 4). Значение pr  рассматривалось в пределах макропоры 200 ‒ 250 нм. 

 
Рис. 4. Модель поверхности частицы угольной пыли при ее сечении плоскостью, проходящей 
через диаметр: 1 — макропоры; 2 — переходные поры; 3 — микропоры 

Площадь поверхности частицы угля определялась как 24p pS rπ= . Зная процентное содер-
жание и размеры микропор (55 %), переходных (28 %) и макропор (17 %) [19], можно вычис-
лить количество пор каждого вида на поверхности частицы угля: 
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Здесь макро 100r =  нм, перех 50r =  нм, микро 2r =  нм — средний радиус макро-, переходных 
и микропор. Число пор каждого вида на поверхности одной частицы угля для указанного диа-
пазона диаметров составляет, шт.: Nмакро = 2 ÷ 4·103, Nперех = 17 ÷ 28·103, Nмикро = 22.0 ÷ 34.4·103. 

Количество молекул метана в порах каждого типа по [20] составляет 

 1/2

CH4

V
N

V
= , 

где 1/2V  — половина объема микро-, макро-, переходной поры, соединяющейся с поверхностью 
частицы угля; 29

CH4
3.71 10V −= ⋅  м3 — объем, занимаемый молекулой метана радиусом 0.21 нм. 

Из половины макропоры может выделиться 56.4·106 молекул метана, из половины пере-
ходной поры — 7.1·106, из микропоры — 451. Общее число молекул метана составляет 
243 ÷ 440∙106 шт., число молей метана, который выделится из пор, соединяющихся с поверхно-
стью частицы угля, — 4.04 ÷ 7.31·10–16 моль. 

Рассмотрим в первом приближении частицу угля как сферу, согласно теории плотной упа-
ковки шаров [21]. Число частиц данного размера в 1 т угля равно 
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Принимая 200 250pr = −  нм, имеем 1.1 ÷ 2.1·1019 частиц угля на 1 т. Умножаем число  
частиц на число молей газа, который может выделиться с поверхности одной частицы, и ис-
пользуем уравнение состояния. В результате объем газа на 1 т угля, способного выделиться 
при разрушении угля до частиц 200 ‒ 250 нм, равен Vрасч = 194 ÷ 243 м3. 

Разрушение угля до размеров микропористой структуры позволяет высвободить метан 
из микропорового пространства. Причем объем метана, выделяющегося из микропористой 
структуры несопоставим с объемом метана, выделяющегося из частиц угля ~ 1 мм. 

Рассчитаем газовыделение при внезапном выбросе, произошедшем 14.09.2020 г. в подгото-
вительном забое осевого штрека № 553 шахты “Чертинская-Коксовая” с учетом пористой струк-
туры углей Кузбасса. Вычислим число пор на поверхности частиц, средний радиус которых 
200 нм. Суммарное количество пор каждого вида на поверхности частицы угля согласно [19] 
составляет 22021 шт., согласно [11] — 35 605 шт. Общее число молекул метана равно 
85.5 ÷ 289.2∙106 шт., число моль метана, который выделится из пор, соединяющихся с поверх-
ностью частицы угля — 1.4 ÷ 4.8·10–16 моль. Принимая радиус частиц угля 200 нм, полу-
чим 2.1·1019 частиц угля на 1 т, с поверхности которых может выделиться объем газа 
Vрасч = 72 ÷ 194 м3 на 1 т угля. При внезапном выбросе выброшено 396 т горной массы и 89 515 м3 
газовоздушной смеси, а расчетное значение объема газовыделения 28.5 ÷ 76.8·103 м3, т. е. доста-
точно близкое к реальному. 

ВЫВОДЫ 

На основе рассмотрения гранулометрического состава угольной пыли с помощью разрабо-
танной методики можно объяснить, почему при внезапных выбросах угля и газа выделяется газ 
в бόльших объемах, чем при определении природной газоносности угольного пласта. Установ-
лено, что основная масса газа находится в ультратонкой структуре угля и не может ее покинуть 
вследствие значительных сил, связывающих молекулы метана с угольной матрицей. 
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Основное газовыделение при внезапных выбросах угля и газа происходит вследствие меха-
нического разрушения микропористой структуры угля. При снятии минимального главного 
напряжения возможно резкое снижение прочности угля (под совместным действием сил упру-
гого восстановления формы сжатого угля и давления газа, действующего на растяжение) и его 
разрушение до частиц, сравнимых с размерами тонкодисперсной угольной пыли. Зная структу-
ру угольного пласта, можно оценить эффективность различных методов дегазации, основан-
ных на ламинарной фильтрации газа к дегазационной скважине. 
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