РОССИЙСКАЯ АКАДЕМИЯ НАУК

СИБИРСКОЕ ОТДЕЛЕНИЕ

АВТОМЕТРИЯ

Nº 4

1999

УДК 535.2

В. Ю. Осипов

(Санкт-Петербург)

ДВУХКОМПОНЕНТНЫЕ КРИСТАЛЛООПТИЧЕСКИЕ ЭЛЕМЕНТЫ ИЗ ОДНООСНЫХ КРИСТАЛЛОВ ДЛЯ ЛАЗЕРНЫХ ИЗМЕРИТЕЛЬНЫХ И ИНТЕРФЕРОМЕТРИЧЕСКИХ УСТРОЙСТВ

Широкие функциональные возможности двухкомпонентных кристаллооптических линз из одноосных кристаллов исландского шпата обусловливают целесообразность их применения в лазерной поляризационной интерферометрии, оптическом приборостроении, метрологии и т. д. Анализируется использование этих элементов для синтеза сложных когерентных полей и разработки ряда лазерных измерительных устройств, в том числе и интерферометрических. На основе кристаллооптических линз сконструированы интерферометры сдвига, предназначенные для измерения малых угловых и линейных перемещений. Приведен обзор результатов, полученных за последние 10 лет при исследовании интерференционно-поляризационных свойств кристаллооптических линз в лазерном излучении.

Введение. В 1970-1984 гг. в работах [1-9] были предложены и исследованы новые двухкомпонентные кристаллооптические элементы (ДКЭ) из одноосных кристаллов исландского шпата (CaCO₃): двупреломляющие призмы переменного угла двоения (ДППУД) модификаций типа ДППУД-1 и ДППУД-2 [1-6], бифокальные линзы (БЛ) модификаций БЛ-1 и БЛ-2 [7-9]. Модификации соответствующих элементов отличаются друг от друга как взаимной ориентацией оптических осей в кристаллических компонентах, так и ориентацией осей относительно входных и выходных граней элементов. Призмы типа ДППУД были использованы для создания лазерных устройств формирования эталонного интерференционного растра с плавно перестраиваемой пространственной частотой [10] и для устройств контроля степени кривизны волновых фронтов от лазерных источников [5]. Из анализа видности интерференционного прямолинейного растра, формируемого призмой типа ДППУД, возможна оценка степени когерентности анализируемого лазерного излучения [11]. Призмы типа ДППУД также были использованы при разработке интерферометров сдвига для измерения малых угловых и линейных перемещений объекта [12]. Кроме того, призмы ДППУД явились и новым типом поляризационных устройств, осуществляющих пространственное расщепление и группирование ортогонально поляризованных волн иначе, чем традиционные призмы Рошона, Волластона и Сенармона.

Существенного расширения функциональных возможностей ДКЭ удается достигнуть с помощью кристаллооптических бифокальных линз. Отечественный приоритет в создании двупреломляющей кристаллической линзы двухкомпонентной конструкции под названием «бифокальная линза» подтверждается изобретением [13]. Последнее замечание сделано в связи с тем, что в работах [14, 15], выполненных значительно позднее изобретения [13], авторы либо сообщали об отсутствии сведений о проведенных где-либо ранее аналогичных разработках, либо вновь описывали «двупреломляющий линзовый поляризатор» в точном соответствии с конструкцией, предложенной в [13]. Исследованию свойств этих линз в когерентном свете уделялось большое внимание в течение 1988-1998 гг. Настоящая работа посвящена обзору результатов, полученных за последние 10 лет при исследовании линз типа БЛ из исландского шпата (CaCO₃) в лазерном излучении, включая синтез и анализ интерференционных и дифракционных полей сложной структуры с возможными применениями в оптическом и оптико-электронном приборостроении. Синтез сложных интерференционных полей является частью современных оптических информационных технологий, поскольку синтезированные по определенным алгоритмам с высокой точностью поля могут использоваться для записи соответствующих эталонных киноформов, дифракционных элементов и голографических решеток.

1. Модификации бифокальных линз. В [8, 9, 16, 17] исследовались бифокальные линзы двух модификаций: БЛ-1 и БЛ-2. В линзе БЛ-1 (рис. 1, *a*) оптические оси в плосковогнутом и плосковыпуклом компонентах задаются соответственно векторами $\mathbf{a}_1 = (1, 0, 0)$ и $\mathbf{a}_2 = (0, 0, 1)$. В линзе БЛ-2 (рис. 1, *b*) оптические оси в плосковогнутом и плосковыпуклом компонентах имеют другую ориентацию: $\mathbf{a}_1 = (1, 0, 0)$ и $\mathbf{a}_2 = (0, 1, 0)$. Следует подчеркнуть, что в обеих модификациях БЛ оптические оси в кристаллических компонентах взаимно ортогональны. В случае БЛ-2 оптические оси \mathbf{a}_1 и \mathbf{a}_2 параллельны входной и выходной граням линзы, а в БЛ-1 имеет место другая ситуация: ось \mathbf{a}_1 параллельна входной грани, а ось \mathbf{a}_2 перпендикулярна выходной грани линзы.

Следуя [8, 9, 16], рассмотрим основные характеристики бифокальных линз для нормального падения на входную грань БЛ коллимированного циркулярно поляризованного лазерного пучка. Проанализируем вначале случай падения пучка со стороны плосковогнутого компонента (из области 1), а затем случай падения пучка со стороны плосковыпуклого компонента (из области 4).

1.1. БЛ-1. При падении плоской волны на БЛ-1 со стороны плосковогнутого компонента (см. рис. 1, *a*) в области 2 распространяются параллельно оси *Oz* две волны с ортогональными поляризациями: *о*-волна и *е*-волна. На сферической границе раздела БЛ-1 возникают в общем случае четыре волны, которым мы присвоим следующие индексы: *оо*, *ое*, *ео*, *ее* (*оо* и *ое* означают преобразование *о*-волны из области 2 в о и *е*-волны в области 3, соответственно *ео* и *ее* –

Рис. 1. Модификации бифокальных линз типа БЛ-1 (*a*) и БЛ-2 (*b*) и трассировка лучей в них

преобразование е-волны из области 2 в ои е-волны в области 3). Пучки оо и ое не претерпевают каких-либо преломлений на сферической границе раздела и на выходе из БЛ-1 остаются параллельными оси Ог. В свою очередь, пучки ео и ее на выходе из БЛ-1 фокусируются. Путем выбора состояния поляризации падающего на БЛ-1 широкоапертурного коллимированного пучка на выходе линзы можем иметь либо только две плоскопараллельные оеи оо-волны, либо только две сходящиеся еои ее-волны, либо все четыре волны вместе. Указанные случаи реализуются соответственно при следующих ориентациях вектора напряженности электрического поля Е в падающем пучке: (0, E_0 , 0); (E_0 , 0, 0) и ($E_0/\sqrt{2}$, $E_0/\sqrt{2}$, 0). Отметим, что если на входную грань нормально падает пучок с вектором поляризации (E_r , 0, 0), то распределение интенсивности электромагнитного поля в каждом из еои ее-пучков будет неоднородным по выходной апертуре. Для ео-пучка распределение интенсивности пропорционально sin² ϕ , а для *ee*-пучка – приближенно пропорционально $\cos^2 \phi$. Здесь ϕ – азимутальный угол между осью Ox и точкой входа парциального е-луча на сферическую границу между компонентами

линзы. Соответствующий так называемый эффект «дуплетной фокусировки» рассмотрен в работах [8, 16, 18]. Сферические аберрации сходящихся *еои ее*-пучков детально исследованы в [16, 19].

При падении плоской волны на БЛ-1 со стороны плосковыпуклого компонента в области 3 возникают взаимно вырожденные еи о-волны, так как различные состояния поляризации распространяются вдоль оптической оси **a**₂ = (0, 0, 1) с одинаковой скоростью и приобретают одинаковый фазовый набег. На сферической границе раздела между компонентами линзы происходит трансформация этой плоской вырожденной волны в сходящуюся (е) и плоскую (о) волны, которые распространяются справа налево в области 2. В итоге на выходе БЛ-1 в области 1 имеем коллимированный о-пучок и сходящийся е-пучок, деформированный сферической аберрацией и астигматизмом. Состояния поляризации обоих пучков взаимно ортогональны. Путем выбора состояния поляризации падающего пучка на выходе можем иметь один лишь сходящийся е-пучок. Астигматизм е-пучка вызван различной кривизной соответствующего волнового фронта в хи у-направлениях на выходе из БЛ-1. Дифракционное поле, возникающее в области фокусировки е-пучка, является так называемой дифракционной катастрофой и подробно проанализировано в [20].

Итак, [8, 21] при нормальном падении плоской волны на БЛ-1 из области 1 происходит ее расщепление на выходе в общем случае на четыре волны, а при падении плоской волны из области 4 на выходе БЛ-1 формируются только два пучка. Таким образом, кристаллооптический элемент типа БЛ-1 демонстрирует случай, когда не только состояние поляризации, но и количество волн на выходе и кар-

Рис. 2. Схема хода лучей при наклонном падении лазерного пучка на БЛ-1 со стороны плосковыпуклого компонента. В правой части рисунка показаны ориентации векторов напряженности электрического поля в ео-, ее-, оо-, ое-парциальных лучах, сформированных в результате наклонного падения на входную грань БЛ-1 парциального луча с волновым вектором \mathbf{k}_0 и поляризацией вектора электрического поля \mathbf{E}_1 ; \mathbf{E}_o и \mathbf{E}_e – векторы напряженности электрического поля для ои е-лучей, возникающих в области 3 линзы; е-луч поляризован в плоскости, содержащей оптическую ось \mathbf{a}_2 и радиус-вектор г. Радиус-вектор проведен из точки O в точку падения парциального луча M_0 ; о-луч в области 3 поляризован в перпендикулярной плоскости ($\mathbf{E}_0 \perp \mathbf{r}$). Векторы напряженности электрического для для ее- и ое-лучей ориентированы в направлении оси \mathbf{a}_1 , а для ео- и оо-лучей – в направлении, перпендикулярном оси \mathbf{a}_1 19

тины интерференции поляризованных волн различаются для противоположных направлений распространения света.

Отметим [21], однако, что уже при небольшом наклонном (до 10°) падении коллимированного пучка на БЛ-1 из области 4 фазовые скорости и направления распространения еи о-лучей в области 3 будут различны (снятие вырождения) и на выходе БЛ-1 будем иметь в общем случае четыре пучка: ео, оо, ое и ее (рис. 2).

1.2. БЛ-2. Следуя [8, 17], рассмотрим нормальное падение коллимированного циркулярно поляризованного пучка на входную грань БЛ-2 со стороны плосковогнутого компонента (см. рис. 1, b). Тогда в области 2 будут распространяться параллельно оси Ог ортогонально поляризованные еи о-волны (аналогично со случаем БЛ-1). Далее на сферической границе раздела между компонентами линзы имеет место трансформация типов волн: так, е-волна из области 2 преобразуется в о-волну в области 3 при сохранении поляризации волны и соответственно о-волна из области 2 преобразуется в е-волну в области 3 также при сохранении поляризации волны. В результате на выходе из линзы в области 4 имеем сходящийся (ео) и расходящийся (ое) пучки (ео и ое указывают преобразование типов волн на сферической границе раздела.) Путем выбора состояния поляризации падающего на БЛ-2 лазерного пучка на выходе можем иметь либо один сходящийся ео-пучок, либо один расходящийся ое-пучок, либо одновременно оба еои ое-пучка. Указанные три случая реализуются соответственно при следующих ориентациях вектора напряженности электрического поля Е во входном пучке: $(E_0, 0, 0)$; $(0, E_0, 0)$ и $(E_0/\sqrt{2}, E_0/\sqrt{2}, 0)$. Отличительной особенностью БЛ-2 является то, что волны типа ее и оо имеют чрезвычайно малую интенсивность при наклонном падении лучей на входную грань БЛ-2 и их появлением можно пренебречь даже при углах падения, меньших 30° [17].

При падении коллимированного лазерного пучка на БЛ-2 с противоположной стороны, т. е. со стороны плосковыпуклого компонента, ситуация аналогична рассмотренной выше. Будет иметь место характерное формирование сходящейся (*eo*) и расходящейся (*oe*) волн. Таким образом, в отличие от БЛ-1 линза типа БЛ-2 свойством неинвариантности не обладает.

2. Распространение электромагнитных волн в БЛ. В работах [8, 9, 16] частично рассматривалась векторная формулировка законов преломления для ои *e*-лучей на сферической границе раздела и на выходной грани БЛ. Векторную формулировку законов преломления рассмотрим здесь более подробно и безотносительно к типу БЛ. Векторная запись законов преломления необходима для правильного анализа трассировки парциальных лучей через БЛ, расчета набега фаз и интерференции между различными волнами на выходе БЛ. Будем анализировать более общую ситуацию, когда оптическая ось в плосковыпуклом компоненте задается единичным вектором $\mathbf{a}_2 = (0; \sin\psi; \cos\psi)$, здесь ψ – угол между осью *Oz* и вектором \mathbf{a}_2 . Пусть парциальный луч, распространяющийся слева направо параллельно оси *Oz*, падает на БЛ в точке $M_1(d\cos\varphi; d\sin\varphi)$. Здесь d – расстояние на входной грани от точки начала координат (0, 0) до

точки $M_1; \phi$ – угол между осью Ox и радиусом-вектором **d**, проведенным из точки (0, 0) в точку M_1 . В области 2 волновой вектор парциального луча останется параллельным оси $Oz: \mathbf{k}_1 = (0, 0, 1)$. В области 3 волновой вектор преломленного на сферической границе парциального луча запишем в виде $\mathbf{k}_2 = (\sin \alpha_2 \cdot \cos \varphi; \sin \alpha_2 \cdot \sin \varphi;$ $\cos \alpha_2$), здесь α_2 – угол между осью *z* и волновым вектором \mathbf{k}_2 . Для оо-луча угол $\alpha_2^{oo} = 0$. Угол α_2^{oe} для ое-луча может быть найден из следующего закона преломления на сферической границе:

$$n_o^2 [1 - (\mathbf{k}_1 \mathbf{n}_1)^2] = \frac{n_e^2}{1 + \delta(\mathbf{k}_2^{oe}, \mathbf{a}_2)^2} [1 - (\mathbf{k}_2^{oe}, \mathbf{n}_1)^2],$$
(1)

где $\delta = (n_e^2 - n_o^2) / n_o^2; n_o$ и n_e – главные показатели преломления для

обыкновенной и необыкновенной волн; $\mathbf{n}_1 = \left(\frac{d}{R}\cos\varphi; \frac{d}{R}\sin\varphi; -\sqrt{1-(d/R)^2}\right)$ – единичный вектор нормали, проведенный к сферической границе раздела в точке падения парциального луча. Здесь R – радиус сферической границы раздела. Для ео-луча угол α_2^{eo} находится из закона преломления

$$\frac{n_e^2}{1+\delta(\mathbf{k}_1\mathbf{a}_1)^2} [1-(\mathbf{k}_1\mathbf{n}_1)^2] = [1-(\mathbf{k}_2^{eo}\mathbf{n}_1)^2] n_o^2,$$
(2)

для *ee*-луча угол α_2^{ee} определится из соотношения

$$\frac{n_e^2}{1+\delta(\mathbf{k}_1\mathbf{a}_1)^2} [1-(\mathbf{k}_1\mathbf{n}_1)^2] = \frac{n_e^2}{1+\delta(\mathbf{k}_2^{ee}\mathbf{a}_2)^2} [1-(\mathbf{k}_2^{ee}\mathbf{n}_1)^2].$$
(3)

Отметим, что формулы (2), (3) записаны для общего случая, когда *е*-луч распространяется в области 2 под углом к оси *Oz*.

На выходе из БЛ (область 4) волновой вектор преломленного на выходной грани парциального луча запишем в виде $\mathbf{k}_3 = (\sin\alpha_3 \cdot \cos\varphi \sin\alpha_3 \cdot \sin\varphi; \cos\alpha_3)$, где $\alpha_3 -$ угол между осью z и волновым вектором \mathbf{k}_3 . Для оо-луча угол $\alpha_3^{oo} = 0$. Законы преломления для eo-, oeu ee-лучей на выходной грани при z = l имеют следующий вид:

для ео-луча

$$n_o^2 [1 - (\mathbf{k}_2^{eo} \mathbf{n}_2)^2] = 1 - (\mathbf{k}_3^{eo} \mathbf{n}_2)^2, \qquad (4)$$

для ое-луча

$$\frac{n_e^2}{1+\delta(\mathbf{k}_2^{oe}\mathbf{a}_2)^2} [1-(\mathbf{k}_2^{oe}\mathbf{n}_2)^2] = 1-(\mathbf{k}_3^{oe}\mathbf{n}_2)^2,$$
(5)

для ее-луча

$$\frac{n_e^2}{1+\delta(\mathbf{k}_2^{ee}\mathbf{a}_2)^2} [1-(\mathbf{k}_2^{ee}\mathbf{n}_2)^2] = 1-(\mathbf{k}_3^{ee}\mathbf{n}_2)^2,$$
(6)

где $\mathbf{n}_2 = (0, 0, 1)$ — нормаль к плоскости z = l.

В области 3 для оеи ее-лучей направление переноса энергии, соответствующее лучевому вектору s, не совпадает с направлением волнового вектора \mathbf{k}_{2}^{e} . Ориентация вектора s в области 3 определяется выражением

$$\mathbf{s} = \frac{(n_e^2 - n_o^2)(\mathbf{k}_2 \mathbf{a}_2) \mathbf{a}_2 + n_o^2 \mathbf{k}_2^e}{\sqrt{n_e^4 (\mathbf{k}_2^e \mathbf{a}_2)^2 + n_o^4 [1 - (\mathbf{k}_2^e \mathbf{a}_2)^2]}}.$$
(7)

Рассмотрим теперь ситуацию, когда парциальный луч, параллельный оси Oz, падает на БЛ с ориентацией осей $\mathbf{a}_1 = (1, 0, 0)$, $\mathbf{a}_2 = (0, 0, 1)$ справа налево. В области 3 волновой вектор парциального луча, распространяющегося параллельно оси Oz, запишется в виде $\mathbf{k}_1 = (0, 0, -1)$. Для волнового вектора парциального луча, преломленного на сферической границе раздела и распространяющегося в области 2, имеем следующее выражение: $\mathbf{k}_2 = (\sin\alpha_2 \cdot \cos\varphi; \sin\alpha_2 \cdot \sin\varphi; -\cos\alpha_2)$, где α_2 – угол между осью Oz и волновым вектором луча в области 2. После преломления луча на плоской грани БЛ-1 при z = 0 ориентация его волнового вектора имеет вид: $\mathbf{k}_3 = (\sin\alpha_3 \cdot \cos\varphi; \sin\alpha_3 \cdot \sin\varphi; -\cos\alpha_3)$, где α_3 – угол между осью Oz и волновым вектором луча в области 1. Для о-луча углы $\alpha_2^\circ = 0$ и $\alpha_3^\circ = 0$. Закон преломления для *е*-луча на сферической границе имеет вид:

Рис. 3. Трансформация интерферограмм оптического поля БЛ-2 при центрально-симметричном прохождении коноскопического лазерного пучка ($\lambda = 632,8$ нм) в зависимости от расстояния (Δz) плоскости фокусировки пучка до входной грани БЛ-2. Фотографиям a-i соответствует расстояние Δz , мм: -17; -12,5; -10; -5; 0; +8; +10; +13; +16. Угол раствора коноскопического пучка 28°

$$n_o^2 [1 - (\mathbf{k}_1 \mathbf{n}_1)^2] = \frac{n_e^2}{1 + \delta(\mathbf{k}_2^e \mathbf{a}_1)^2} [1 - (\mathbf{k}_2^e \mathbf{n}_1)^2],$$
(8)

где \mathbf{n}_1 — вектор нормали к сферической границе раздела в точке падения M_1 парциального луча. В свою очередь, на границе z = 0 закон преломления для *е*-луча имеет следующий вид:

$$\frac{n_e^2}{1+\delta(\mathbf{k}_2^e \mathbf{a}_1)^2} [1-(\mathbf{k}_2^e \mathbf{n}_2)^2] = 1-(\mathbf{k}_3^e \mathbf{n}_2)^2.$$
(9)

Здесь вектор $\mathbf{n}_2 = (0, 0, -1)$ – нормаль к плоскости z = 0.

Формулы (1)–(9) использовались в [8, 16, 17] для расчета трассировки лучей в БЛ, а также для анализа аберрационных характеристик еои ее-пучков в БЛ-1 и картин интерференции в БЛ-2.

3. Синтез интерференционных полей при прохождении коноскопического лазерного пучка через БЛ-2. 3.1. Распространение коноскопического пучка вдоль оси системы. Интерференционные поля, формируемые при прохождении циркулярно поляризованного коноскопического лазерного пучка через БЛ-2 в условиях, когда ось коноскопического пучка совпадает с осью Ог линзы, описаны в [17]. Формирование поля интерференции происходит за счет интерференции еои ое-волн на выходе БЛ-2. Анализатор А при этом ориентирован под углом 45° к ортогонально поляризованным еои ое-волнам. На рис. 3 показана трансформация интерференционной картины в зависимости от параметра Δz коноскопического пучка. Здесь Δz – расстояние от точки фокуса коноскопического пучка до входной грани БЛ-2. В эксперименте коноскопический пучок, близкий к гомоцентрическому, создавался путем фокусировки коллимированного (диаметром 50 мм) циркулярно поляризованного лазерного пучка с помощью триплетного объектива с фокусным расстоянием 100 мм. При отрицательных параметрах Δz БЛ-2 оказывается в расходящемся пучке, а при положительных параметрах Δz – в сходящемся пучке. Трансформация интерферограмм на рис. 3 характеризуется циклом воспроизведения кругового растра типа колец Френеля ($a \, u \, i$) через промежуточную интерферограмму гиперболического типа (е). Гиперболической интерферограмме (е) соответствует нулевой параметр Δz . Из рис. 3 видно, что для $+\Delta z$ и -Δг-перемещений линзы относительно точки фокуса коноскопического пучка имеет место неинвариантность (различный характер) перехода от равнобочно-гиперболического к кольцевому растру. Сильная изменчивость интерференционного поля в зависимости от параметра Δz позволяет использовать БЛ-2 для построения продольного интерферометра сдвига, а также для устройств контроля угловой расходимости лазерного излучения. Подразумевается, что указанные устройства содержат анализатор оптических изображений типа CCD-матричного фотоприемника. В результате анализа двумерного сигнала, поступающего из ССД-приемника, на специализированном цифровом процессоре по специальному алгоритму возможна оценка в реальном времени параметров исследуемого

Рис. 4. Принципиальная схема экспериментальной установки для синтеза сложных интерферограмм при внеосевом распространении коноскопического пучка (*a*): 1 – четвертьволновая пластинка, 2 – триплетный объектив, 3 – линза БЛ-2 на трехкоординатном столике, 4 – анализатор, 5 – экран или ССD-приемник изображения; два варианта синтеза интерферограмм, отличающихся поворотом БЛ-2 в плоскости x, y вокруг точки O на угол 45° (b, c)

лазерного излучения. Поляризационный интерферометр [22, 23] позволяет проводить абсолютные измерения малых продольных перемещений объекта в положительном ($+\Delta z$) и отрицательном ($-\Delta z$) направлениях по зависимости вида двумерной интерферограммы от координаты Δz . Величина измеряемого перемещения (до 60 мм) ограничивается циклом воспроизведения кольцевой интерференционной картины.

3.2. Внеосевое распространение коноскопического пучка. Случай внеосевого прохождения коноскопического лазерного пучка через БЛ-2 (рис. 4) описан в работе [24]. Рассмотрим вначале ориентацию БЛ-2 относительно оси коноскопического пучка, которая представлена на рис. 4, b. Интенсивность поля интерференции в произвольной точке M(x, y) экрана определяется разностью фаз между приходящими в эту точку парциальными еои ое-волнами. Соответствующая трансформация интерферограмм в зависимости от параметра Δz показана на рис. 5. При внеосевом прохождении коноскопического пучка по варианту, приведенному на рис. 4, b, в плоскости x, y экрана синтезируются интерференционные поля вида

$$I(x, y) = (I_0/2)[\cos(ax(x^2 + y^2 - R^2)) + 1].$$

Рис. 5. Трансформация интерференционного поля, формируемого при прохождении через БЛ-2 внеосевого коноскопического лазерного пучка в зависимости от параметра Δz . Параметр Δz , мм: a - +2,25; b - +0,35; c - 0; d - -0,6; e - -2,35; f - -4,5; $\lambda = 632,8$ нм. Полный угол раствора коноскопического пучка 28° , смещение центра S коноскопического пучка в x-направлении 4 мм. Регистрация интерферограмм осуществлялась с помощью TV-датчика типа диссектора с диаметром вырезывающего отверстия 3 мкм при сканировании по квадратной апертуре. Вывод изображений осуществлялся по данным компьютера, сопряженного с TV-датчиком. Расстояние от экрана до БЛ-2 60 мм

Здесь a, R^2 – параметры интерференционной картины; I_0 – интенсивность в максимумах поля. Трансформация интерферограмм от (*a*) до (f) соответствует плавному уменьшению параметра aR^2 из области положительных значений в область отрицательных значений. Детальный фурье-анализ данного вида интерференционных полей содержится в работах [25-27]. Поле фраунгоферовской дифракции на микродиапозитивах интерферограмм с большими положительными параметрами aR^2 аналогично полю каустики, сформированному фокусирующим фазовым элементом с аберрациями комы третьего порядка [25]. Известно, что фокусирующиеся волновые фронты с аберрациями комы третьего порядка, сдвинутые в поперечном направлении, характеризуются в плоскости апертуры следующим законом отклонения фазы волнового фронта от идеальной опорной сферы: $\Delta \phi(x, y) = ax(x^2 + y^2 - R^2)$. Поэтому данный класс интерференционных полей можно использовать для записи фазовых киноформов и голографических решеток, предназначенных для коррекции аберраций комы третьего порядка у волновых фронтов. Как и для предыдущего класса полей, высокая чувствительность интерферограмм к продольному сдвигу коноскопического пучка может быть использована при построении интерферометрических устройств для измерения малых линейных перемещений. В работе [24] также отмечена высокая чувствительность вида интерференционной картины с большим параметром aR^2 к малому углу

Рис. 6. Трансформация интерферограмм, синтезированных при дополнительном повороте БЛ-2 на 45° в плоскости x, y вокруг точки O, в зависимости от параметра Δz .(Анализатор поворачивался в плоскости (x, y) вместе с БЛ-2.) Параметр Δz , мм: a - +2,5; ...; d - -4,5; $\lambda = 632,8$ нм

наклона БЛ-2 относительно коноскопического пучка. Так, при малых углах наклона линзы β интерференционное поле описывается законом

$$I(x, y) = (I_0/2)[\cos(ax(x^2 + y^2 - R^2) + ky) + 1]$$

Здесь параметр k линейно зависит от угла наклона β в интервале $0-10^{\circ}$. Как видно из формулы и рис. 5, наличие добавки +ky, вносимой в разность фаз между интерферирующими еои ое-пучками из наклона, приводит к следующему. В результате неточной ориентации БЛ-2 или после разъюстировки на угол β часть интерференционных линий становится незамкнутой – появляются крюкообразные линии (см. рис. 5, a, b). При дополнительном вращении БЛ-2 вместе с анализатором вокруг точки O в плоскости (x, y) на угол γ интерференционное поле еще более усложняется [28] и описывается законом

$$I(x, y) = (I_0/2)[\cos(a(x-d)(x^2 + y^2 - R^2) + ky) + 1],$$

где d – параметр, зависящий от угла поворота γ . На практике плавное изменение интерференционного растра достигается за счет трехкоординатного управления перемещением БЛ-2 относительно коноскопического пучка с помощью прецизионного столика и дополнительных вращений БЛ-2 с помощью поворотных устройств. Интерферограммы, синтезированные при дополнительном вращении БЛ-2 в плоскости x, y на угол $\gamma = 45^{\circ}$ (рис. 4, с), трансформируются в зависимости от параметра Δz так, как это показано на рис. 6.

Рис. 7. Дифракционные структуры вблизи «дуплетного» фокуса БЛ-1 при различных положениях экранной плоскости. Картины $a - c - для E_x$ -компоненты вектора напряженности электрического поля; картины $d - f - для E_y$ -компоненты вектора электрического поля. Положение плоскости экрана f, мм: a, d - 137; b, c - 139; c, f - 141; $\lambda = 632,8$ нм. Дифракционное изображение приводится только для одного из квадрантов xOy. Размеры квадранта 65×65 мкм

Высокая чувствительность вида интерферограмм к малым углам наклона β и поворота γ делает режим синтеза при внеосевом распространении коноскопического пучка еще более пригодным для создания устройств типа анализатора оптического изображения для оценки малых угловых и линейных перемещений объекта, контроля угловой расходимости лазерного излучения. Учитывая компактность и виброустойчивость элемента, осуществляющего разделение и последующее смешение интерферирующих пучков, возможно использование БЛ-2 в оптических системах прецизионной ориентации объектов.

Рис. 8. Дифракционные структуры в окрестности астигматического фокуса БЛ-1 при различных параметрах дефокусировки Δz (a = 5,8 мм, b = 3,8 мм) и углах поворота БЛ-1 ($1 = 0^{\circ}$, $2 = 6^{\circ}$, $3 = 9^{\circ}$). Регистрация на фотопленку осуществлялась при помощи микроскопа, $\lambda = 632,8$ нм

Отметим, что вид интерференционного поля не зависит от направления распространения падающего на БЛ-2 коноскопического пучка.

3.3. Интерференция поляризованных волн на выходе БЛ-1. Интерференционные поля, формируемые при прохождении лазерного пучка через линзу БЛ-1, описаны в [21]. В этой работе отмечаются два новых свойства: неинвариантность картин интерференции для различных направлений распространения падающего на БЛ-1 пучка и так называемый режим «безанализаторной» интерференции. «Безанализаторная» интерференция возникает при наклонном падении коллимированного лазерного пучка на БЛ-1 со стороны плосковыпуклого компонента и связана с появлением двух систем интерференционных концентрических колец, наблюдаемых непосредственно за выходной гранью БЛ-1 в отсутствие анализатора. При этом внутренняя система интерференционных колец обусловлена интерференцией ое и ее-лучей с поляризацией в плоскости *xOz*, а внешняя система колец – интерференцией оои *ео*-лучей с поляризацией в плоскости уОг. Таким образом, данный режим характеризуется совместной попарной интерференцией (ое, ее) и (оо, ео) волн, причем в каждой паре комбинируются волны с одинаковым состоянием поляризации. Плоскость поляризации интерферирующих волн в первой паре ортогональна плоскости поляризации интерферирующих волн во второй паре.

4. Дифракционное поле в области фокусировки линзы типа БЛ-1. Фокусировка еои ее-волн, реализуемая при падении плоской волны на БЛ-1 со стороны плосковогнутого компонента, исследовалась теоретически в [19]. Рассчитанные на компьютере картины дифракционных полей при различных параметрах дефокусировки приведены на рис. 7. Изображения a - c соответствуют дифракционным полям, формируемым вблизи фокуса в результате эволюции E_r-компонент векторов напряженности электрического поля для еои ее-волн. В свою очередь, дифракционные изображения d-fформируются в результате эволюции Е_и-компонент векторов напряженности электрического поля для еои ее-волн. Дифракционные картины, соответствующие E_x или E_y -компонентам поля, реализуются при ортогональных ориентациях анализатора, устанавливаемого за выходной гранью БЛ-1. В отсутствие анализатора результирующее распределение интенсивности дифракционного поля в х, у-плоскости есть сумма интенсивностей полей, формируемых за счет E_x и E_y -компонент векторов напряженности электрического поля. Видно, что часть дифракционных линий с картин d-f дополняет дифракционные линии с картин a - c до полностью замкнутых.

В этом разделе мы приведем данные работ [20, 29] по исследованию фокусировки *e*-пучка в результате падения плоской волны со стороны плосковыпуклого компонента. Сходящийся *e*-пучок искажен сферической аберрацией и астигматизмом. В результате дифракционное поле в области фокусировки относится к классу структурно-стабильных полей (так называемых дифракционных катастроф). Экспериментальные фотографии дифракционных картин, регистрируемых в плоскости экрана при помощи микроскопа, представлены на рис. 8 при различных параметрах дефокусировки Δz и углах наклона коллимированного пучка относительно входной грани БЛ-1. В [20] геометрически правильная ячеистая структура в центрах дифракционных картин, формирующихся вблизи фокуса при нормальном падении на БЛ-1 коллимированного пучка, объяснена на базе геометрооптической интерпретации результатов дифракции. Так, анализируя стационарные точки дифракционного интеграла, удалось показать, что центральные ячеистые элементы сформированы в результате 5-лучевой интерференции парциальных волн, исходящих из различных точек на апертуре исходного волнового фронта. Расположенные снаружи протяженные серповидные элементы сформированы, в свою очередь, в результате 3-лучевой интерференции парциальных волн.

Как отмечалось в [29], дискретные размеры регулярной ячеистой структуры дифракционного поля линейно зависят от малых углов поворота БЛ-1 относительно падающего коллимированного пучка (см. рис. 8). Так, при увеличении угла поворота от 6 до 9° ромбовидная ячеистая структура в центре дифракционной картины изменяет свой дискретный размер от 3 × 3 до 4 × 4 (при параметре $\Delta z = 3,8$ мм). Здесь имеется в виду следующее: «крупные» ячейки дифракционного поля с максимальной интенсивностью расположены в узлах правильной ромбовидной сетки, при этом с увеличением угла поворота число «крупных» ячеек, задаваемое количеством узлов в сетке, изменяется от 3×3 до 4×4 . В свою очередь, при параметре дефокусировки $\Delta z = 5,8$ мм и угле поворота 6° в центре дифракционной картины имеем «крупные» ячейки поля, расположенные в узлах правильной прямоугольной сетки размером 3 × 4. В междоузлиях «крупных»ячеек и частично вокруг них расположены «маленькие» ячейки поля со значительно меньшей интенсивностью. Изменение угла поворота от 6 до 9° приводит к изменению дискретного размера прямоугольной ячеистой структуры, составленной из «крупных» ячеек, от 3×4 до 4×5 . Таким образом, одинаковые углы поворота БЛ-1 приводят при разных параметрах дефокусировки ($\Delta z = 3,8$ мм и $\Delta z = 5,8$ мм) к одинаковому увеличению дискретного размера ячеистой структуры – на единицу по каждому из измерений.

В [20] приведены результаты компьютерных расчетов трехмерного дифракционного поля, возникающего при нормальном падении на БЛ-1 лазерного пучка. При этом показано, что амплитудная волновая функция внутри остроконечной четырехгранной пирамиды, отделяющей область 5-лучевой интерференции парциальных волн от области 3-лучевой интерференции, характеризуется трубчато-ячеистой структурой. В *z*-направлении структура преимущественно трубчатая, а в плоскости (x, y) – ячеистая. В свою очередь, фазовая функция волнового поля характеризуется сложной системой дислокаций дифракционного волнового фронта.

Сильная изменчивость вида дифракционных картин от параметра дефокусировки Δz и угла наклона БЛ-1 относительно коллимированного пучка может найти применение при создании устройств измерения малых угловых и линейных перемещений.

5. Другие применения бифокальных линз. Интерференционные поля сложной структуры, формируемые линзой БЛ-2, можно использовать в гетеродинных лазерных акустооптических устройствах корреляционной обработки сигналов [30]. В [28] эти интерференционные поля предлагается использовать для синтеза сложных радиосигналов (например, квадратично-частотно-модулированного сигнала). Быстроизменяющийся во времени по определенному закону электрический сигнал вырабатывается в результате сканирования изображения интерферограммы, подаваемого на вход передающей TV-трубки мгновенного действия типа диссектора через малую апертуру диаметром 3–10 мкм.

Также возможно применение линзы БЛ-1 в качестве астигматического элемента в блоке контроля фокусировки в системах дисковой оптической и магнитооптической памяти высокой плотности. В последнем случае используется свойство сильной изменчивости вида дифракционных картин от параметра дефокусировки.

Использование линз типа БЛ-1 и БЛ-2 целесообразно в оптических схемах, формирующих коллимированные, сходящиеся и расходящиеся лазерные пучки с ортогональной поляризацией.

Заключение. Лазерная интерферометрия имеет различные направления построения схемных решений и обширные применения [31]. В интерферометрических схемах часто используются различные оптические элементы. В [32], например, предлагалось включать компьютерно-синтезированные голограммы (киноформы) в качестве дополнительных элементов в интерферометры Маха – Цендера и различные варианты интерферометров сдвига. Работы [5, 9, 10, 12] положили начало самостоятельному направлению в интерферометрии – поляризационной интерферометрии на основе ДКЭ. Поскольку ДКЭ являются многофункциональными элементами, то они могут использоваться как расщепители и группирователи поляризованных пучков и в других задачах.

На основе БЛ возможно построение новых поляризационных интерферометров продольного и поперечного сдвигов. Как и призмы ДППУД, линза типа БЛ-2 является элементом, который одновременно совмещает три функции: расщепляет пучок на две еои ое-волны, вносит разность фаз между последними и осуществляет смешивание обеих волн на выходе. Ясно, что элемент, выполняющий все эти функции, имеет преимущества для интерферометрии сдвига по сравнению, например, с интерферометрической системой, состоящей из светоделительных призм (или пластин) и плоских зеркал. Связано это с тем, что в первом случае интерферометр на основе БЛ отличается повышенной виброустойчивостью и компактностью. Во втором случае, в связи с наличием не менее чем двух элементов, осуществляющих расщепление и последующее смешивание волн, будет иметь место «разрушение»интерференционной картины при малой некоррелированной вибрации составных элементов. БЛ-2 имеет преимущества в тех интерферометрических схемах, в которых ставится задача определения угловой сходимости (расходимости) лазерного излучения и угла его наклона относительно входного окна интерферометрической системы. По точностным характеристикам интерферометр на основе БЛ-2 эквивалентен схеме, в которой интерферируют попутные коллимированные лазерные пучки, распространяющиеся относительно друг друга

под углом не более $\approx 6^{\circ}$ и формирующие интерференционный растр с пространственной частотой не выше 170 пер./мм. Точность измерения угловых и линейных перемещений в интерферометре на основе БЛ-2 определяется процедурой распознавания изменения интерферограммы после перемещения объекта. Точность такой процедуры при использовании компьютера составляет примерно 0,1 и 0,001 интерференционной полосы соответственно для локальных участков интерференционного растра с высокими (≅150 пер./мм) и низкими (1,5 пер./мм) пространственными частотами. В интерферометре на основе БЛ-2 для прецизионного анализа могут использоваться фрагменты интерферограмм с высокими пространственными частотами, где чувствительность к угловым и линейным перемещениям велика. Однако на периферии интерференционных картин контраст полос (глубина модуляции) снижается и достигает 12 % при пространственной частоте 170 пер./мм. В центральной части интерференционного растра контраст полос составляет около 100 % для всех значений пространственных частот из интервала 0-170 пер./мм. Преимуществом интерферометра на БЛ-2 является и то, что информацию об абсолютной величине Δz можно получить по одному только виду интерференционной картины. Для интерферограмм на рис. 3 диапазон изменения Δz составляет от -40 до +20 мм, а для интерферограмм на рис. 5 -от -4,5 до +2,5 мм.

В статье рассмотрены интерференционные и дифракционные поля, формируемые бифокальными линзами из одноосных кристаллов исландского шпата. В оптическом приборостроении могут широко использоваться лишь те двупреломляющие одноосные кристаллы, которые практически нерастворимы в воде и негигроскопичны и обладают приемлемыми для практики механическими свойствами. Исландский шпат (CaCO₃) является единственным кристаллом из этого класса материалов, обладающим наибольшим значением $(n_o - n_e)/n_o$ и широкой областью спектральной прозрачности 300-2300 нм. Для длины волны гелий-неонового лазера (632,8 нм) главные показатели преломления равны $n_o = 1,65504$ и $n_{e} = 1,4849$. Выбор этого природного материала благоприятен также и потому, что его кристаллы могут быть выбраны с высокой пространственной однородностью оптических характеристик, тогда как большинство искусственно выращиваемых одноосных кристаллов, таких как ниобат лития (LiNbO₃), молибдат свинца (PbMoO₄), рутил (TiO₂), парателлурит (TeO₂), имеют в ряде случаев небольшую пространственно неоднородную анизотропию по объему кристалла. Поэтому в оптическом приборостроении поляризационные призмы и поляризационные расщепители пучков традиционно изготовляются из природных кристаллов исландского шпата, которые по-видимому еще долгое время будут актуальны. Дальнейшее широкое использование в оптической промышленности этого материала ограничено, что связано с отсутствием эффективных методов искусственного выращивания кристаллов CaCO₃.

В связи с этим необходимо отметить, что в последние 10 лет успехи технологии роста оптических кристаллов позволили разработать эффективный процесс выращивания отрицательного одноосного кристалла BaB_2O_4 (так называемый α -BBO-кристалл) методом Чохральского. Указанным способом, пригодным для промышленного использования, выращиваются совершенные α -BBO-кристаллы с областью спектральной прозрачности 189-3500 нм, высокой лучевой прочностью, низкой гигроскопичностью, хорошими механическими свойствами и следующими параметрами для показателей преломления: $n_o = 1,652$, $n_e = 1,530$ при $\lambda = 632,8$ нм. Для кристалла α -BBO величина $(n_o - n_e)/n_o$ меньше, чем в случае исландского шпата. Однако в связи с возможностью искусственного выращивания больших кристаллов α -BBO с высокой оптической однородностью ($\Delta n = 10^{-6}$ см⁻¹) актуально их широкое использование в оптическом приборостроении и технике ультрафиолетового диапазона.

Таким образом, рассмотренные выше новые интерференционно-поляризационные свойства бифокальных линз из отрицательных одноосных кристаллов делают эти элементы (при условии их изготовления либо из исландского шпата, либо из α-BBO) привлекательными для использования в лазерных и оптических устройствах.

СПИСОК ЛИТЕРАТУРЫ

- 1. Осипов В. А., Осипов Ю. В. Двупреломляющая призма с переменным углом двоения // Опт.-мех. пром-сть. 1970. № 11. С. 68.
- 2. Осипов Ю. В. Пространственный мультипликатор сигналов // Изв. вузов СССР. Сер. Радиофизика. 1972. 15, № 12. С. 1822.
- 3. Осипов Ю. В. Об одной модификации двупреломляющей призмы из исландского шпата и ее свойствах // Опт.-мех. пром-сть. 1976. № 4. С. 58.
- 4. Барсуков К. А., Осипов Ю. В., Попов В. Н. О свойствах двупреломляющих призм переменного угла двоения // Оптика и спектроскопия. 1980. **48**, № 3. С 605.
- 5. Барсуков К. А., Осипов Ю. В., Попов В. Н. Об интерференционных растрах, формируемых двупреломляющими призмами переменного угла двоения // Оптика и спектроскопия. 1981. 50, № 1. С. 191.
- А. с. 879537 СССР. Двупреломляющая призма переменного угла двоения /Ю. В. Осипов, В. Н. Попов. Опубл. 07.11.81, Бюл. № 41.
- 7. Осипов Ю. В. Поляризационные линзы бинарной конструкции // Опт.-мех. пром-сть. 1973. № 5. С. 5.
- Барсуков К. А., Осипов Ю. В., Умбетов А. У. Оптические свойства бифокальных линз из одноосных кристаллов // Оптика и спектроскопия. 1984. 56, № 3. С.523.
- 9. Осипов Ю.В. Лазерные измерительные устройства с кристаллооптическими элементами из исландского шпата. Л.: ЛДНТП, 1984.
- А. с. 838638 СССР. Интерференционный резольвометр /Ю. В. Осипов, В. Н. Попов. Опубл. 15.06.81, Бюл. № 22.
- Осипов Ю. В. Влияние когерентности излучения на видность полос в интерферометре на основе двупреломляющей призмы переменного угла двоения // Опт. журн. 1997. 64, № 6. С. 24.
- А. с. 913056 СССР. Поляризационный интерферометр сдвига /Ю.В. Осипов, В. Н. Попов, Е. А. Сизова, В. С. Фирсов. Опубл. 15.03.82, Бюл. № 10.
- А. с. 106823 СССР. Бифокальная кристаллическая линза /В.А. Осипов. Заявл. 04.06.56. Опубл. 28.05.57, Бюл. № 6.

- Eng R. S., Leib K. G. Multiple imagery with birefringent lenses // Appl.Opt. 1969. 8, N 10. P. 2117.
- Chandrasekharan V., Damany H. Birefringent lens polarizer for the vacuum ultraviolet // Appl. Opt. 1971. 10, N 3. P. 681.
- 16. **Осипов Ю. В., Осипов В. Ю.** Сферическая аберрация бифокальной линзы // Опт.-мех. пром-сть. 1988. № 7. С. 21.
- 17. **Осипов Ю. В., Осипов В. Ю.** Интерференционное поле бифокальной линзы из одноосных кристаллов // Опт.-мех. пром-сть. 1991. № 1. С. 26.
- Осипов В. Ю. Тонкая структура волнового поля в окрестности дуплетного фокуса бифокальной линзы из одноосных кристаллов // Оптика и спектроскопия. 1994. 76, № 3. С. 534.
- Осипов В. Ю. Сферическая аберрация для обыкновенного и необыкновенного пучков, формируемых бифокальной линзой из одноосных кристаллов // Автометрия. 1995. № 6. С. 82.
- Осипов В. Ю. Дифракционная катастрофа в области фокусировки волнового фронта, деформированного сферической аберрацией и астигматизмом // Автометрия. 1996. № 5. С. 48.
- 21. Осипов Ю. В. Интерференционно-поляризационные свойства кристаллооптической бифокальной линзы // Опт. журн. 1998. 65, № 3. С. 25.
- 22. А. с. 1026001 СССР. Поляризационный интерферометр /Ю.В.Осипов, А.У. Умбетов. Опубл. 30.06.83, Бюл. № 24.
- 23. А. с. 1095033 СССР. Поляризационный интерферометр сдвига /Ю.
 В. Осипов, А. У. Умбетов, В. С. Фирсов. Опубл. 30.05.84, Бюл. № 20.
- 24. Осипов В. Ю., Осипов Ю. В. Оптический синтез и двумерный фурье-анализ сложных КЧМ-интерференционных полей // ЖТФ. 1992. 62, № 6. С. 140.
- 25. Осипов В. Ю. Дифракция на сложных синтезированных решетках-интерферограммах // Автометрия. 1993. № 4. С. 54.
- 26. **Осипов В. Ю.** Оптически реализуемый двумерный фурье-анализ сложных интерференционных полей // Автометрия. 1993. № 6. С. 60.
- 27. Осипов В. Ю. Дифракция плоской волны на одном классе практически важных сложных интерферограмм // Автометрия. 1994. № 4. С. 75.
- Osipov Yu. V., Metlitsky E. A. Synthesis, analysis and processing of two-dimensional interferograms with quadratic frequency modulated and cubic frequency modulated signal structure // Pattern Recognition and Image Analysis. 1991. 1, N 2. P. 247.
- Осипов В. Ю. Ячеистая структура волнового поля в окрестности дуплетного фокуса бифокальной линзы из одноосных кристаллов // Опт. журн. 1995. № 2. С. 31.
- Осипов Ю. В. Лазерные гетеродинные интерферометры // Опт. журн. 1998.
 № 11. С. 88.
- Коронкевич В. П., Соболев В. С., Дубнищев Ю. Н. Лазерная интерферометрия. Новосибирск: Наука, 1983.
- 32. Bryngdahl O. Computer-generated holograms as generalized optical components // Opt. Eng. 1975. 14, N 5. P. 426.

Поступила в редакцию 13 мая 1998 г.