УДК 536.21: 539.1

Температурное поле пленок диэлектриков в поле непрерывного пучка ионов

Т.Х. Салихов, А.А. Абдурахмонов

НИИ Таджикского национального университета, Душанбе, Таджикистан

E-mail: tsalikhov@mail.ru

В работе теоретически исследованы особенности формирования стационарного температурного поля диэлектриков при облучении непрерывным пучком ионов в воздухе с учетом температурной зависимости теплофизических величин. Найдены аналитические выражения для температурного поля. Получена система взаимосвязанных нелинейных алгебраических уравнений для установившейся температуры облучаемой и тыловой поверхностей образца, а также на границе зоны поглощения ионов (остальная часть образца), численным решением которой установлена нелинейная зависимость этих величин от параметров падающего потока.

Ключевые слова: температурное поле, радиационная физика, диэлектрики.

Введение

В последние десятилетия проводятся широкомасштабные научные исследования различных аспектов взаимодействия потока заряженных частиц с конденсированными средами [1-5]. Одним из направлений этих работ является разработка эффективных технологий изготовления новых материалов, благодаря которым к настоящему времени удается получать материалы, необходимые для нужд современной науки и техники, включая нано- и микроэлектронику. Вместе с тем, в процессе облучения исходного материала потоками заряженных частиц с различными энергиями и плотностью тока происходит целый ряд неравновесных процессов и возникает необходимость детального и всестороннего исследования механизмов развития этих процессов. С другой стороны, известно, что процесс передачи энергии потока заряженных частиц в образец сопровождается существенным нагревом его поверхностного слоя, а накопленная при этом тепловая энергия распространяется по всему объему образца по диффузионному закону. В результате в образце устанавливается стационарное пространственное распределение температуры и возникает необходимость определения его аналитического вида. Особенность этой задачи состоит в том, что чрезвычайно важным становится учет температурной зависимости коэффициентов теплопроводности $\kappa(T)$ и теплоотдачи h(T), а также степени черноты A(T) системы. Целью настоящей работы является теоретическое исследование влияния температурной зависимости теплофизических величин на стационарное температурное поле диэлектриков при их непрерывном облучении пучком ионов.

Теплофизическая модель задачи

Предположим, что поток ионов перпендикулярно падает на поверхность пластинки диэлектрика, находящейся в воздухе, имеющей начальную температуру T_0 и толщину L. Будем рассматривать случай, когда длина пробега ионов в образце R < L, при этом возникает

[©] Салихов Т.Х., Абдурахмонов А.А., 2017

необходимость разделения образца на две соответствующие части и согласно этому будем иметь следующую систему нелинейных уравнений теплопроводности [4, 6]:

$$\frac{d}{dx}\left[\kappa(T_1)\frac{dT_1'}{dx}\right] = -\frac{EJ}{RZe}\theta(R-x), \quad 0 \le x \le R,$$
(1)

$$\frac{d}{dx} \left[\kappa(T_2) \frac{dT'_2}{dx} \right] = 0, \quad R \le x \le L,$$
(2)

где *J*, *Z*, *E* — плотность тока пучка, заряд иона в единицах заряда электрона и энергия ионов, $T'_i = T_i - T_0$ соответствуют приращению температуры в разных частях образца, $\theta(R-x)$ — единичная функция Хэвисайда. Отметим, что выбор ступенчатой формы источника обусловлен, прежде всего, ее простотой и возможностью представления зависимости характеристик поля температур от параметров пучка в явном виде. Видно, что в уравнения (1), (2) входят величины $\kappa(T_1(x))$ и $\kappa(T_2(x))$, температурную зависимость которых примем в виде линейного приближения $\kappa(T'_i) = \kappa^{(0)}(T_0)[1 + \delta_2 T'_i(x)]$, где $\delta_2 = (1/\kappa^{(0)}(T_0)) \cdot (\partial \kappa / \partial T)$ является термическим коэффициентом теплопроводности образца, а $\kappa^{(0)}(T_0)$ — ее начальное значение. Подставляя эти выражения в (1), (2), получим

$$\frac{d}{dx} \left[\frac{dT_1'}{dx} + \frac{\delta_2}{2} \frac{d(T_1')^2}{dx} \right] = -\frac{EJ}{RZe\kappa_1^{(0)}(T_0)}, \quad 0 \le x \le R,$$
(3)

$$\frac{d}{dx}\left[\frac{dT_2'(x)}{dx} + \frac{\delta_2}{2}\frac{d(T_2')^2}{dx}\right] = 0, \quad R \le x \le L.$$
(4)

Подчеркнем, что выбор линейной температурной зависимости $\kappa(T_i(x))$, а также других теплофизических величин продиктован необходимостью получения сравнительно несложных выражений для пространственного распределения поля температур в образце.

Для решения системы двух дифференциальных уравнений необходимо записать четыре граничных условия, которые следуют из условия непрерывности температур и потоков на границах между слоями. Другие два условия следуют из наличия теплового излучения и конвективного охлаждения на торцах образца. Таким образом, эти условия принимают следующий вид [4, 6]:

$$T_{1}'(R) = T_{2}'(R) = \Theta_{1}, \quad \kappa^{(0)} (1 + \delta_{2}T_{1}') \frac{\partial T_{1}'}{\partial x}\Big|_{x=0} = h(U)\Theta_{0} + \sigma[A(U)U^{4} - A^{(0)}T_{0}^{4}]\Big|_{x=0},$$

$$\kappa(U_{1}) \frac{\partial T_{1}'}{\partial x}\Big|_{x=R} = \kappa(U_{1}) \frac{\partial T_{2}'}{\partial x}\Big|_{x=R}, \quad -\kappa^{(0)} (1 + \delta_{2}T_{2}') \frac{\partial T_{2}'}{\partial x}\Big|_{x=L} = h(U_{2})\Theta_{2} + \sigma[A(U_{2})U_{2}^{4} - A^{(0)}T_{0}^{4}]\Big|_{x=L},$$

здесь σ — постоянная Стефана-Больцмана, $A^{(0)} = A^{(0)}(T_0)$; $U = \Theta_0 + T_0$, $U_1 = \Theta_1 + T_0$, $U_2 = \Theta_2 + T_0$ — установившиеся температуры облучаемой поверхности образца, границы между облучаемым и не облучаемым слоями образца, а также тыловой его поверхности соответственно, где Θ_0 , Θ_1 и Θ_2 — их приращения. Величины h и A также являются температурно-зависящими [7], и эту зависимость примем в следующем виде:

$$A(U) = A^{(0)}[1 + \delta_3 \Theta_0], \quad A(U_2) = A^{(0)}[1 + \delta_3 \Theta_2], \quad h(U) = h^{(0)}[1 + \delta_4 \Theta_0], \quad h(U_2) = h^{(0)}[1 + \delta_4 \Theta_2],$$

где $h^{(0)} = h^{(0)}(T_0)$, а $\delta_3 = \left(1/A^{(0)}(T_0)\right) \cdot \left(\partial A/\partial T\right)$, $\delta_4 = \left(1/h^{(0)}(T_0)\right) \cdot \left(\partial h/\partial T\right)$ являются термическими коэффициентами указанных величин.

Решение задачи, результаты численного расчета и их обсуждение

Решая систему уравнений (3) и (4) для безразмерных функций $g_1(x) = \delta_2 T'_1(x)$ и $g_2(x) = \delta_2 T'_2(x)$, получим следующие выражения, удовлетворяющие условию непрерывности температур в образце:

$$g_1(x) = -1 + \{1 + \delta_2[(1 - \frac{x}{R})(2\Theta_0(1 + 0, 5\delta_2\Theta_0) + \frac{EJx}{Zek^{(0)}}) + 2\Theta_1(1 + 0, 5\delta_2\Theta_1)\frac{x}{R}]\}^{1/2}, \quad (5)$$

$$g_2(x) = -1 + \left\{1 + \frac{2\delta_2}{L - R} \left[\Theta_2(1 + 0.5\delta_2\Theta_2)(x - R) + \Theta_1(1 + 0.5\delta_2\Theta_1)(L - x)\right]\right\}^{1/2}.$$
 (6)

Условие непрерывности потоков тепла на границе между облучаемым и не облучаемым слоями, а также наличие теплового излучения и конвективного охлаждения на торцах образца позволяет получить следующую систему нелинейных алгебраических уравнений для определения величин Θ_0 , Θ_1 , Θ_2 :

$$\delta_2(\Theta_0^2 - \Theta_1^2) + 2(\Theta_0 - \Theta_1) - \frac{EJR}{Zek^{(0)}} + \frac{2h^{(0)}R}{k^{(0)}}\Theta_0(1 + \delta_4\Theta_0) + \frac{2A^{(0)}R\sigma}{k^{(0)}}[(1 + \delta_3\Theta_0)U^4 - T_0^4] = 0, \quad (7)$$

$$\delta_2 \Theta_0^2 + 2\Theta_0 - (\delta_2 \Theta_1^2 + 2\Theta_1)(1 + \frac{R}{L - R}) + (\frac{R}{L - R})(\delta_2 \Theta_0^2 + 2\Theta_0) + \frac{EJR}{Zek^{(0)}} = 0,$$
(8)

$$\delta_{2}(\Theta_{2}^{2} - \Theta_{1}^{2}) + 2(\Theta_{2} - \Theta_{1}) + \frac{2(L - R)A^{(0)}\sigma}{k^{(0)}} [(1 + \delta_{3}\Theta_{2})(T_{0} + \Theta_{2})^{4} - T_{0}^{4})] + \frac{2h^{(0)}(L - R)}{k^{(0)}} (1 + \delta_{4}\Theta_{2})\Theta_{2} = 0.$$
(9)

Система уравнений (7)-(9) совместно с выражениями (5), (6) представляет собой решение сформулированной задачи и позволяет исследовать влияние температурной зависимости величин k(T), h(T) и A(T) на формирование температурного поля в твердых диэлектриках. Путем численного решения системы (7)-(9) можно определить зависимости величин Θ_0 , Θ_1 и Θ_1 от параметров падающего потока ионов. Авторами выполнено численное решение системы (7)–(9) для MgO при $R = 2,10^{-8}$ м [6, 7], L = 0,001 м и следующих значениях параметров: $k^{(0)} = 58 \text{ Br/}(\text{м}\cdot\text{K})$ [7, 8], $\delta_2 = -0.92 \cdot 10^{-3} \text{ K}^{-1}$, $A^{(0)} = 0.72$ [8], $\delta_3 = -0,59 \cdot 10^{-3}, h^{(0)} = 8,40$ Вт/(м² · K) [9], $\delta_4 = 7,14 \cdot 10^{-3}$ K⁻¹ (все термические коэффициенты рассчитаны для температурного интервала 300-1100 К), график которого приведен на рисунке. Очевидно, что в формировании поля температур существенную роль играют не только значения теплофизических величин, но и знаки термических коэффициентов. Так, при $\delta_2 < 0$ происходит уменьшение величины $\kappa(T)$ и перенос тепла от облучаемой поверхности образца к ее тыльной стороне. В результате этого происходит рост (возможно, и незначительный) температуры облучаемой поверхности образца Θ_0 (кривая 2) по сравнению со случаем $\delta_2 = \delta_3 = \delta_4 = 0$ (кривая 1). При $\delta_3 < 0$ происходит существенное уменьшение теплового излучения образца, что и приводит к соответствующему возрастанию температуры обоих поверхностей образца (кривая 3). Существенный рост конвективного переноса тепла с поверхности образца в воздушную среду соответствует значению $\delta_4 > 0$ и это проводит к значительному охлаждению рассматриваемых поверхностей (кривая 4). Результирующая зависимость $\Theta_0(I)$ формируется под влиянием всех этих трех факторов (кривая 5). В случае отсутствия конвективного механизма охлаждения ($h^{(0)} = 0$, вакуум) происходит значительный нагрев образца (кривая 6).

Рис. Зависимость приращения температуры облучаемой поверхности оксида магния от величины I = EJ/(Ze) при $\delta_2 = \delta_3 = \delta_4 = 0$ (1), $\delta_2 \neq 0, \ \delta_3 = 0, \ \delta_4 = 0$ (2), $\delta_2 \neq 0, \ \delta_3 \neq 0, \ \delta_4 = 0$ (3), $\delta_2 \neq 0, \ \delta_4 \neq 0, \ \delta_3 = 0$ (4), $\delta_2 = -0.92 \cdot 10^{-3} \text{ K}^{-1}, \ \delta_3 = -0.59 \cdot 10^{-3} \text{ K}^{-1}, \ \delta_4 = 7.12 \cdot 10^{-3} \text{ K}^{-1}$ (5), $h^{(0)} = 0$ (6).

Отметим, что из-за малости значения R с точностью до четвертого знака отличие величин Θ_0 и Θ_1 не обнаруживается, то есть $\Theta_0 \approx \Theta_1$. Это означает, что пространственное распре-

деление величины $T'_1(x)$ в диапазоне 0 < x < R проходит через максимум. Вычисляя $\partial T'_1(x) / \partial x = 0$, находим, что $x_{max} = 0, 5R$, а максимальное значение температуры в этой точке $T'_1(x_{max}) \approx \Theta_0 + EJR/(2Zek^{(0)})$. Поскольку значение величины $EJR/(2Zek^{(0)})$ значительно меньше одного градуса, то этот максимум является весьма пологим. Отличие между Θ_0 и Θ_2 ($\Theta_2 < \Theta_0$) при малых значениях интенсивности также весьма незначительно, но с ростом интенсивности падающего потока эта разность несколько возрастает и при $I = 2 \cdot 10^5$ Вт/м² составляет порядка десяти градусов.

Заключение

Теоретически исследовано влияние температурной зависимости коэффициентов теплопроводности, теплоотдачи и степени черноты образца на формирование температурного поля диэлектриков при облучении пучком ионов в воздухе. Получены аналитические выражения для температурного поля диэлектрического образца, а также система нелинейных алгебраических уравнений для установившейся температуры облучаемой и тыловой поверхностей и границы между облучаемой и не облучаемой частями. Путем численного решения системы нелинейных алгебраических уравнений получены нелинейные зависимости температуры облучаемой поверхности образца, границы между ее облучаемым и не облучаемым слоями, а также ее тыловой поверхности от параметров падающего пучка ионов.

Список литературы

- 1. Фортов В.Е., Хоффманн Д., Шарков Б.Ю. Интенсивные ионные пучки для генерации экстремальных состояний вещества // Успехи физических наук. 2008. Т. 178, № 2. С. 113–138.
- 2. Овчиников В.В. Радиационно-динамические эффекты. Возможность формирования уникальных структурных состояний и свойств конденсированных сред // Успехи физических наук. 2008. Т. 178, № 9. С. 991–1001.
- 3. Бойко В.И., Валяев А.Н. Погребняк А.Д. Модификация металлических материалов импульсными пучками частиц // Успехи физических наук. 1999. Т. 169, № 11. С. 1243–1271.
- 4. Бойко В.И., Скворцов В.А., Фортов В.Е., Шаманин И.В. Взаимодействия импульсных пучков заряженных частиц с веществом. М.: Физматлит, 2003. 288 с.
- 5. Черняев А.П. Взаимодействия ионизирующего излучения с веществом. М.: Физматлит, 2004. 152 с.
- 6. Вайсбурд Д.И., Пичугин В.Ф., Чебодаев М.И. Методика определения термического сопротивления контакта диэлектрик-подложка при интенсивных режимах облучения диэлектрика // Изв. вузов. Физика. 2001. Т. 44, № 12. С. 36-43.
- 7. Физические величины: справочник / под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- 8. Физико-химические свойства окислов: справочник / под ред. Г.В. Самсонова. М.: Наука, 1978. 471 с.

9. Тепловая изоляция: справочник / под ред. Г.Ф. Кузнецова. М.: Стройиздат, 1976. 440 с.

Статья поступила в редакцию 25 января 2017 г., после доработки — 6 марта 2017 г.