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Рассматривается уравнение теплопроводности связанной динамической теории термо-
упругости. Проводится оценка связанности в уравнении теплопроводности для про-
странства с постоянной начальной температурой, содержащего движущуюся с посто-
янной скоростью плоскую полубесконечную трещину, на берегах которой мгновенно
устанавливается постоянная температура, меньшая начальной (термоудар). Движение
трещины и термоудар на ее берегах определяют динамические эффекты, которые необ-
ходимо учесть для оценки связанности в уравнении теплопроводности. Показано, что
в реальных условиях теплового воздействия на массивные тела с трещинами динами-
ческими эффектами и связанностью для материалов, удовлетворяющих определенным
условиям, налагаемым на их термомеханические постоянные, можно пренебречь, что
позволяет значительно упростить решение задач термоупругости для таких тел.

Ключевые слова: термоупругость, трещина, смешанные граничные условия, коэффи-
циент интенсивности напряжений, динамические эффекты, связанное уравнение тепло-
проводности

Введение. В процессе изготовления и эксплуатации детали машин и элементы кон-
струкций, имеющие трещиноподобные дефекты, подвергаются резким тепловым воздей-
ствиям. Строго говоря, в общем случае такие нестационарные тепловые процессы должны
рассматриваться как динамические, т. е. с учетом инерционных эффектов, и как связан-
ные, т. е. с учетом рассеяния различных видов энергии в уравнении теплопроводности.

В данной работе при проведении анализа системы основных уравнений связанной ди-
намической теории температурных напряжений [1] основным является уравнение связан-
ной теории теплопроводности, в которое входят механические члены, зависящие от скоро-
стей деформации:

∇2T − 1

k
Ṫ +

q

λT
− Ts(3λ + 2µ)αT

λT
ε̇nn +

sr
ij ḋ

r
ij

λT
= 0. (1)

Здесь∇2 — оператор Лапласа; T — температура тела; k = λT /(ρc) — температуропровод-
ность; λT — теплопроводность; ρ, c — плотность и удельная теплоемкость материала тела

соответственно; q — интенсивность внутренних источников тепла, не зависящих от про-
цесса деформирования (электрический ток, химические и ядерные реакции); ε̇nn = div u̇ —
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первый инвариант скоростей деформации; по повторяющимся индексам проводится сум-
мирование; точка означает дифференцирование по времени; u — вектор перемещения;
Ts — температура, при которой тело свободно от напряжений; λ, µ — коэффициенты

Ламе; αT — коэффициент линейного температурного расширения материала; sr
ij , dr

ij —
девиаторы тензоров напряжений и вязкой или пластической деформации r-го элемента
соответственно.

В уравнении теплопроводности (1) четвертое слагаемое характеризует упругие свой-
ства материала, поэтому связанность в этом уравнении (рассеяние энергии) определяется
динамическими эффектами через ε̇nn. Последнее слагаемое в уравнении теплопроводности
характеризует вязкие или пластические свойства материала, поэтому связанность в урав-
нении теплопроводности присутствует и в квазистатическом случае. Квазистатический
случай для полого цилиндра, цилиндрические поверхности которого подвергались пооче-
редно нагреву и давлению, рассмотрен в работе [2], где связанность присутствует в урав-
нении теплопроводности за счет механических воздействий. В [3] исследуется одномерное
связанное уравнение теплопроводности, в которое входит член, характеризующий упругие
динамические эффекты, вызванные одноосным механическим нагружением. Кроме того,
уравнение теплопроводности содержит член, характеризующий источники тепла за счет
химических реакций. В работе [4] исследуется квазистатическая задача для связанного
уравнения теплопроводности, в которое входят внутренние источники тепла, вызванные
химическими реакциями, зависящими от механических напряжений, возникающих в ре-
зультате нанесения покрытия на поверхность цилиндра.

В работах [5–7] исследуется связанная задача термоупругости для круглой однослой-
ной или многослойной пластины, защемленной по цилиндрической поверхности. Задача
решалась в двух вариантах: несвязанная с учетом инерции и связанная в квазистатиче-
ской постановке. В [5–7] показано, что связанность замедляет тепловой процесс.

В работе [8] рассматриваются одномерные однородные и составные балки в условиях
термоупругости, термопластичности и ползучести в квазистатическом случае. Поэтому
связанность в уравнении теплопроводности определяется вязкими и пластическими свой-
ствами материалов. В [9] анализируются термоупругие процессы в балках и пластинах в
квазистатическом и динамическом случаях, связанность возникает за счет динамических
процессов, происходящих в упругих телах.

В работе [1] при проведении оценки связанности в уравнении теплопроводности ис-
пользовались две задачи несвязанной динамической термоупругости (в уравнении тепло-
проводности отсутствуют вязкие и пластические составляющие деформаций) для полу-
пространства, в котором поверхность свободна от нагрузок. В первой задаче поверхность
полупространства, имеющего нулевую температуру, внезапно соприкасается с высокотем-
пературной средой, при этом возникает теплообмен с конечным или бесконечным (част-
ный случай) значением коэффициента теплообмена. Во второй задаче в полупространстве,
имеющем нулевую температуру, температура поверхности изменяется со временем по ли-
нейному закону и за малый промежуток времени достигает значения, равного температуре
среды, которая далее остается постоянной, что соответствует реальным условиям тепло-
вого воздействия.

Во всех указанных выше работах трещины в материале отсутствуют.

В данной работе оценка связанности в уравнении теплопроводности проводится для

пространства с полубесконечной плоской движущейся трещиной. С учетом симметрии

относительно трещины рассматривается задача динамической термоупругости для по-
лупространства с движущимися смешанными граничными условиями, аналогичная двум
указанным выше задачам для полупространства.
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Целью настоящей работы является получение оценки связанности в уравнении теп-
лопроводности при реальных тепловых воздействиях на массивные термоупругие тела с

трещинами.
1. Постановка задачи. Рассматривается термоупругое пространство с начальной

температурой T0, содержащее полубесконечную плоскую движущуюся трещину, на бере-
гах которой устанавливается температура T1, меньшая начальной. Поскольку тело термо-
упругое, вязкие или пластические составляющие в уравнении (1) связанной теплопровод-
ности отсутствуют. Запишем уравнение (1) в виде

λT∇2T + q = ρcṪ
(
1 + ∆

ε̇nn

3αT Ṫ

)
, (2)

где ∆ = 3(3λ + 2µ)α2
T Ts/(ρc).

В уравнении (2) учитывается влияние связанности, и им можно пренебречь, если

ε̇nn

3αT Ṫ
� 1

∆
.

Проведем оценку величины ε̇nn/(3αT Ṫ ) для двух материалов. При Ts = 353 K для стекла

∆ = 0,005, ε̇nn/(3αT Ṫ )� 200,

для органического стекла (ПММА)

∆ = 0,015, ε̇nn/(3αT Ṫ )� 67.

Использовались следующие осредненные по температурному интервалу (T0, T1) тер-
момеханические постоянные: для стекла λ = 2,48 · 1010 Н/м2, µ = 2,90 · 1010 Н/м2, ρ =
2,55 ·103 кг/м3, λT = 79,42 ·10−2 Дж/(м · с ·К), c = 8,33 ·102 Дж/(кг ·К), αT = 90 ·10−7 1/К
(начальная температура T0 значительно меньше температуры стеклования Tg = 770 К);
для оргстекла λ = 0,46 · 1010 Н/м2, µ = 0,18 · 1010 Н/м2, ρ = 1,18 · 103 кг/м3, λT =
18,64 · 10−2 Дж/(м · с ·К), c = 14,6 · 102 Дж/(кг ·К), αT = 36 · 10−6 1/К (T0 < Tg = 363 К).

В работе [1] при Ts = 363 К для алюминия получены значения∆ = 0,05, ε̇nn/(3αT T )�
20, для стали — ∆ = 0,025, ε̇nn/(3αT T )� 40.

Из приведенных выше неравенств следует, что связанностью в уравнении теплопро-
водности (2) можно пренебречь, если скорость изменения объемной температурной дефор-
мации 3αT Ṫ будет того же порядка, что и скорость изменения полной объемной деформа-
ции ε̇nn, в том числе механической, т. е.

ε̇nn

3αT Ṫ
≈ 1.

Это условие означает, что изменение деформации во времени происходит непосредственно
после изменения температуры. Поэтому при тепловых воздействиях на тела, особенно
массивные, необходимо учитывать инерционные эффекты.

С учетом полученных численных оценок необходимо провести расчет динамических

термоупругих напряжений и зависящего от них коэффициента интенсивности напряжений

(КИН) в несвязанной постановке для пространства с движущейся в нем со скоростью vT

плоской полубесконечной трещиной, на берегах которой, свободных от нагрузок, мгновен-
но устанавливается постоянная температура T1, меньшая начальной T0, вследствие чего
возникает термоудар.

Движение вершины трещины и термоудар на ее берегах определяют динамические

эффекты, которые необходимо учесть при оценке связанности в уравнении теплопровод-
ности. Решение динамической задачи термоупругости получено в работе [10], в которой
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для расчета КИН к берегам полубесконечной движущейся трещины была приложена на-
грузка −σT

yy(x, 0, t) — напряжение на движущейся со скоростью vT полуплоскости с тем-
пературой T1 в пространстве без трещины, имеющем начальную температуру T0. Это

напряжение было получено в виде изображения по Лапласу — Фурье ˜̄σ
T
yy(ξ, 0, s) при x < 0

(на берегах трещины), в котором не удалось перейти к оригиналу во всем интервале изме-
нения времени. Поэтому рассматривались предельные случаи малых (s→∞, t� k/(2c2

||))

и больших (s→ 0, t→∞) времен.
Оригинал напряжения для малых времен имеет вид

σT
yy(x, 0, t) = −µ

1 + ν

1− ν
αT (T1 − T0)

c2
||

c2
⊥

χ(t), t� k

2c2
||
, (3)

где χ(t) — функция Хевисайда; ν — коэффициент Пуассона; c||, c⊥ — скорости продольной

и поперечной волн соответственно.
Для относительно больших, но меньших бесконечности времен (s мало, k/(2c2

||)� t <

∞) выражение для изображения по Лапласу σ̄T
yy(x, 0, s) имеет вид

σ̄T
yy(x, 0, s) =

1√
2π

√
2

π
µ

1 + ν

1− ν
αT

T1 − T0

s

1− v2
T /(2c2

⊥)√
1− v2

T /c2
||

√
γ + β ×

×
(
− 2

β−γ∫
0

√
β − γ − τ eτx dτ

β2 − 2γτ − γ2

)
, (4)

где γ = vT /(2k); β =
√

γ2 + s/k; k = λT /(ρc).
Затем определялся КИН. Таким образом, в [10] КИН оценивался лишь в предельных

точках t → 0 и t → ∞, что не позволяет оценить КИН в промежуточном временном

интервале.
2. Расчет коэффициента интенсивности напряжений. Расчет КИН проводится

не только для предельных значений времени (t → 0 и t → ∞), но и в промежуточном
временном интервале (0 < t <∞). Для этого используются результаты работы [11].

Для определения КИН при малых временах (s → ∞, t → 0) на берегах трещины
согласно (3) создается термоудар.

В работе [11] показано, что при механическом ударе на берегах полубесконечной тре-
щины, совершаемом постоянной нагрузкой σ, КИН выражается зависимостью

Kd
I (t) = 2

√
2

π
σ

cR − vT√
c|| − vT S+(0)

√
t, (5)

где S+(0) =
√

1− ν cR/c⊥; cR — скорость волны Рэлея.
Подставляя σT

yy из (3) в (5) вместо σ получаем безразмерное выражение для КИН

(Kd
I )∗ = 2

c2
||

c2
⊥

1− vT /cR√
1− vT /c||

√
η

/( c||
cR

√
π S+(0)

)
, η � 1

2
, (6)

где (Kd
I )∗ = −Kd

I (1− ν)/(
√

2 µ(1 + ν)αT (T1 − T0)
√

k/c|| ); η = c2
||t/k.

Для определения КИН при относительно больших временах к берегам трещины необ-
ходимо приложить нормальную нагрузку, изображение которой по Лапласу определяется
выражением (4).
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После преобразований с использованием таблиц интегралов [12, 13] это выражение
принимает вид

σ̄T
yy(x, 0, s) = − 1√

π

1− v2
T /(2c2

⊥)√
1− v2

T /c2
||

µ
1 + ν

1− ν
αT

T1 − T0

s
×

×
∞∑

n=1

( 2γ

β + γ

)n−1
√

β − γ

β + γ

Γ(n)

Γ(n + 3/2)
1F1

[
n,

3

2
+ n, (β − γ)x

]
, (7)

где Γ(n) — гамма-функция; 1F1 — вырожденная гипергеометрическая функция.
Следует отметить, что в [11] при определении КИН предполагалось, что к берегам

движущейся трещины симметрично приложены нормальные сосредоточенные ступенча-
тые во времени нагрузки. С использованием принципа суперпозиции [14] эти результаты
можно обобщить на случай произвольного распределения нагрузки на берегах трещины и

произвольных зависимостей ее от времени. В случае относительно больших времен изоб-
ражение по времени для КИН определяется соотношением

K̄d
I (s) =

√
2

π

∞∫
0

σ̄T
yy(−ζ, 0, s)
√

ζ
dζ,

подставляя в которое (7) находим

K̄d
I (s) = −

√
2

π

1− v2
T /(2c2

⊥)√
1− v2

T /c2
||

µ
1 + ν

1− ν
αT

T1 − T0

s
×

×
∞∑

n=1

( 2γ

β + γ

)n−1 1√
β + γ

Γ(n− 1/2)

nΓ(n)
. (8)

Переходя в (8) к оригиналу с использованием обозначения β и таблиц обратных ин-
тегральных преобразований Лапласа [15], получаем

Kd
I (t) = −

√
2

π

1− v2
T /(2c2

⊥)√
1− v2

T /c2
||

µ
1 + ν

1− ν
αT (T1 − T0)

∞∑
n=1

(2γ)n−1Γ(n− 1/2)

nΓ(n)
×

× k

√
2

π

(
n− 1

2

) 1

k
γ−(n−1/2)

√
2kγ2t∫
0

xn−1/2−1 e−x2/4 D−(n−1/2)−1(x) dx, (9)

где D(x) — функция параболического цилиндра.
С использованием таблицы интегралов [16] выражение (9) принимает вид

Kd
I (t) = −

√
2 µ

1 + ν

1− ν
αT (T1 − T0)

√
k

c||

1− v2
T /(2c2

⊥)√
1− v2

T /(2c2
||)

F (η),

где

F (η) =
1√
π

∞∑
n=1

(2γ∗)n−1 Γ(n− 1/2)

Γ(n + 1)

(
n− 1

2

){ η(n−1/2)/2

2Γ(n/2 + 3/4)(n/2− 1/4)
×
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× 2F2

[
− 1

2
n +

1

4
,
1

2

(
n− 1

2

)
;
1

2
,
1

2

(
n− 1

2

)
+ 1;−(γ∗)2η

]
− η(n+1/2)/2

Γ[(n + 1/2)/2](n/2 + 1/4)γ
∗ γ∗ ×

× 2F2

[
− 1

2
n +

3

4
,
1

2

(
n +

1

2

)
;
3

2
,
1

2

(
n +

1

2

)
+ 1;−(γ∗)2η

]}
,

1

2
< η <∞,

2F2 — обобщенная гипергеометрическая функция; γ∗ = γk/c||; η = c2
||t/k.

Таким образом, безразмерный КИН для относительно больших времен выражается

зависимостью

(Kd
I )∗ =

1− v2
T /(2c2

⊥)√
1− v2

T /(2c2
||)

F (η),
1

2
< η <∞. (10)

Рассмотрим поведение КИН при t→∞.
Так как при s→ 0 (t→∞), β → γ выражение (8) упрощается, то изображение имеет

вид

K̄d
I (s) = −2

1− v2
T /(2c2

⊥)√
1− v2

T /c2
||

µ
1 + ν

1− ν
αT

T1 − T0

s

1
√

γ
.

Поэтому при t→∞ оригинал записывается следующим образом:

Kd
I (t) = −

√
2 µ

1 + ν

1− ν
αT (T1 − T0)

√
k

c||

1− v2
T /(2c2

⊥)√
1− v2

T /c2
||

√
c||
k

√
2

√
γ

, t→∞.

В безразмерном виде КИН определяется выражением

(Kd
I )∗ =

1− v2
T /(2c2

⊥)√
1− v2

T /c2
||

√
2

γ∗
, η →∞. (11)

Из (11) следует, что при t→∞ зависимость (Kd
I )∗(η) стремится к постоянному значению.

Это обусловлено тем, что с течением времени вершина трещины входит в область нераз-
вившихся температурных градиентов, причем чем больше скорость вершины трещины,
тем меньше эти градиенты и тем меньше (Kd

I )∗.
В случае неподвижной трещины (γ∗ = 0) выражения (6), (10) записываются в виде

(Kd
I )∗ = η1/4 1√

2

[
−M

(1

η

)]
, (12)

где функция M определяется из выражений

1√
2

[
−M

(1

η

)]
= 2

c2
||

c2
⊥

4
√

η
√

π S+(0)c||/cR
, η � 1

2
; (13)

1√
2

[
−M

(1

η

)]
=

4

π

Γ(3/4)√
2

, η � 1

2
, (14)

S+(0) =
√

1− ν cR/c⊥ [14, 17].
В случае неподвижной трещины формулы (12)–(14) получены в работе [18] другим

методом. Кроме того, в [18] функция −M(1/η)/
√

2 для неподвижной трещины определе-
на численно для различных времен; показано, что результаты численного расчета КИН
для больших и малых времен совпадают с результатами соответствующего расчета по

формулам (12)–(14).
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Рис. 1. Зависимость КИН (KI)∗ от времени η для неподвижной (γ∗ = 0) (1–3)
и подвижной (γ∗ = 0,1) (4–6) трещин:
1 — динамическое решение, полученное по формуле (12) с использованием результатов
численных расчетов [18], 2 — динамическое решение, полученное по формуле (13) для
малых времен, 3 — динамическое решение, полученное по формуле (14) для больших
времен (квазистатическое решение для любых времен), 4 — динамическое решение,
полученное по формуле (6) для малых времен, 5 — динамическое решение, полученное
по формуле (10) для больших времен, 6 — квазистатическое решение, полученное по
формуле (10) при c⊥ →∞, c|| →∞

Квазистатический случай реализуется, если в полученных решениях массовую плот-
ность материала пространства положить равной нулю (c|| → ∞, c⊥ → ∞, cR → ∞).
Тогда асимптотические решения (6), (13) для малых времен справедливы только при

t = 0, а асимптотические решения (10), (14) для больших времен переходят в соответ-
ствующие квазистатические решения, так как в этом случае η � 1/2 на всем интервале
0 < t < ∞. Этот результат получен также в работе [19] в случае подвижной трещины
и в работах [20, 21] в случае неподвижной трещины при исследовании квазистатической
задачи.

По формулам (12)–(14) проведен расчет (KI)
∗ для оргстекла в зависимости от безраз-

мерного времени η при различных значениях скорости движения трещин γ∗. При ν = 0,36
согласно [22] c⊥/c|| = 0,48, cR/c|| = 0,45.

На рис. 1 приведена зависимость (KI)
∗ от безразмерного времени η для покоящейся и

движущейся трещин. Как отмечено выше, решение (KI)
∗ =

√
2/γ∗ при η →∞ (кривая 6),

получено в работе [19]. На рис. 1 видно, что при η ≈ 2 · 103 кривая 6 выходит на гори-
зонтальную прямую (KI)

∗ = 4,47. Аналогично кривая 5 выходит на постоянное значение
(KI)

∗ = 4,06 при η = 2 · 103.
Рассмотрим случай неподвижных трещин, поскольку, во-первых, согласно рис. 1 ди-

намические эффекты проявляются более отчетливо для неподвижных трещин, во-вторых,
зависимости (KI)

∗ от η для динамического (кривая 1) и квазистатического (кривая 3)
случаев известны во всем временном интервале.

3. Оценка связанности в уравнении теплопроводности. Сначала проведем оцен-
ку динамических эффектов для рассмотренного выше случая наиболее интенсивного теп-
лообмена между берегами трещины, расположенной в пространстве с начальной темпера-
турой T0, и средой с температурой T1, находящейся в трещине (коэффициент теплообмена
α→∞).
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Рис. 2. Зависимость относительного изменения КИН K1, характеризующего
инерционные эффекты, от времени η при различных значениях H:
1 — H = 0,1, 2 — H = 0,5, 3 — H = 5,0, 4 — H = 15,0, 5 — H =∞

Введем относительное изменение КИН

K∞(η) = [(Kst
I )∗(η)− (Kd

I )∗(η)]∞ /[(Kst
I )∗ − (Kd

I )]max
∞ .

Здесь значения (Kst
I )∗(η) и (Kd

I )∗(η) соответствуют зависимостям, приведенным на рис. 1;

[(Kst
I )∗ − (Kd

I )∗]max
∞ — максимальная во времени разность (Kst

I )∗(η) и (Kd
I )∗(η) в случае

мгновенного достижения на берегах трещины температуры, равной температуре T1 окру-
жающей среды. На рис. 2 зависимость K∞(η) (H = αk/(λT c||)→∞) показана кривой 5.

Ниже исследуются две задачи о тепловом воздействии на берега трещины. В пер-
вой задаче рассматривается теплообмен с конечным коэффициентом α между берега-
ми трещины и средой с температурой T1 и определяется безразмерная температура

θ1(η) = [T1(0, η)− T0]/(T1 − T0) в зависимости от времени η при различных значениях H.
Построены зависимости θ1(η) при H = ∞; 15,0; 5,0; 0,5; 0,1. При H = ∞ и η = 0 θ1(η)
мгновенно изменяется от 0 до 1.

Во второй задаче для имеющего начальную температуру T0 пространства с полубес-
конечной трещиной температура T2(0, η) на берегах этой трещины изменяется со временем
по линейному закону от значения T0 до значения, равного температуре среды T1, за ма-
лый промежуток времени t0 и далее не изменяется, что соответствует реальным условиям
теплового воздействия. Построены зависимости θ2(η) = [T2(0, η) − T0]/(T1 − T0) для раз-
личных временных интервалов линейного изменения температуры на берегах трещины

η0 = c2
||t0/k = 0; 102; 5 · 102; 103; 2 · 103. При η0 = 0 θ2(η) мгновенно изменяется от 0 до 1.

Случаи H → ∞ в первой задаче и η0 = 0 во второй задаче одинаковы, поэтому
зависимость K∞(η) соответствует второй задаче для η0 = 0 (кривая 1 на рис. 3).

Для реальных условий теплового воздействия на берега трещины в первой (H < ∞)
и второй (η0 > 0) задачах для определения относительной погрешности K1,2(η), кото-
рая возникает в том случае, если динамическую задачу термоупругости рассматривать

как квазистатическую, необходимо использовать теорему Дюамеля, аппроксимируя θ1,2(η)
ступенчатыми функциями.

На рис. 2, 3 приведены зависимости K1(η) (задача 1) при различных значениях ин-
тенсивности теплообмена H и зависимости K2(η) (задача 2) для различных временных
интервалов линейного изменения температуры на берегах трещины η0.
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Рис. 3. Зависимость относительного изменения КИН K2, характеризующего
инерционные эффекты, от времени η при различных значениях η0:
1 — η0 = 0, 2 — η0 = 102, 3 — η0 = 5 · 102, 4 — η0 = 103, 5 — η0 = 2 · 103

Из рис. 2 следует, что по мере уменьшения интенсивности теплообмена H относи-
тельная разность КИН K1 с учетом и без учета инерционных эффектов уменьшается, что
обусловлено уменьшением градиентов температуры вблизи берегов трещины. Наибольшее
реальное значение коэффициента теплообмена равно α = 5,8 · 106 Дж/(м2 · с ·К) [1], а наи-
большие реальные значения H равны 1,28 · 10−3 для оргстекла и 0,48 · 10−3 для стекла,
т. е. эти значения пренебрежимо малы.

Данный вывод справедлив также для второй задачи, в которой температура на бере-
гах трещины на некотором начальном временном интервале η0 изменяется по линейному

закону от T0 до T1. На рис. 3 видно, что по мере увеличения линейного участка η0 отно-
сительная разность КИН K2 с учетом и без учета инерционных эффектов уменьшается.
В частности, при значении η0 = 2 · 103, соответствующем нереально малым временным
интервалам линейного изменения температуры на берегах трещины t0 = 2,34 · 10−11 c для
стекла и t0 = 3,11 ·10−11 c для оргстекла, максимальное значение K2 составляет приблизи-
тельно 14 % максимального значения K∞ при η0 = 0, т. е. влияние инерционных эффектов
незначительно.

На основе рассмотренных задач динамической термоупругости можно сделать вывод,
что задачи термоупругости для оргстекла и стекла (∆� 1) при наличии внешнего тепло-
обмена, которые встречаются на практике, можно рассматривать как квазистатические,
а значит, и как несвязанные.

Заключение. В работе для оргстекла, температура которого меньше температу-
ры стеклования Tg = 363 К, и для стекла, температура которого значительно меньше
Tg = 770 К, рассматривается несвязанная динамическая задача термоупругости для про-
странства с полубесконечной плоской движущейся трещиной. В диапазоне температур

360÷273 К для оргстекла и 450÷273 К для стекла термомеханические постоянные осред-
нялись и полагались не зависящими от времени. Повышенная температура оргстекла в на-
чальные моменты времени частично компенсируется большой скоростью охлаждения.

На берегах трещины моделировалось реальное тепловое воздействие. Показано, что
в этом случае динамическими эффектами для оргстекла и стекла можно пренебречь, а зна-
чит, для этих материалов (∆ � 1) можно пренебречь также связанностью в уравнении
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теплопроводности. В этих случаях задача теплопроводности рассматривается независимо
от механической, что позволяет значительно упростить решение задачи термоупругости.
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