КРАТКИЕ СООБЩЕНИЯ

УДК 536.23

Экспериментальное исследование теплопроводности хладагента R-409A в паровой фазе*

О.И. Верба, Е.П. Расчектаева, С.В. Станкус

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: stankus@itp.nsc.ru

Теплопроводность хладагента R-409A в паровой фазе исследована в интервале температур 306–425 К и давлений 0,12–1,33 МПа. Измерения проводились стационарным методом коаксиальных цилиндров. Погрешность экспериментальных данных по теплопроводности составляла 1,5–2,5 %, погрешности измерения температуры и давления не превышали 0,05 К и 4 кПа соответственно. Получена аппроксимирующая зависимость теплопроводности от давления и температуры. Рассчитана теплопроводность на линии конденсации и в идеально-газовом состоянии.

Ключевые слова: теплопроводность, хладагент, R-409A, паровая фаза.

ВВЕДЕНИЕ

Фреон R-409A представляет смесь 15 мас. % $C_2F_2ClH_3$ (R-142b), 25 мас. % C_2F_4ClH (R-124), 60 мас. % C_2ClH (R-22) и относится к группе переходных хладагентов. Он является перспективным заменителем для фреона R-12 с точки зрения простоты, быстроты замены, низкой стоимости и улучшения рабочих характеристик. R-409A предназначен для ретрофита (процедура замены хладагента в существующем оборудовании) холодильных систем мобильного торгового и транспортного оборудования, бытовых холодильников, промышленных холодильных установок с поршневыми и винтовыми компрессорами. К сожалению, экспериментальных данных по теплофизическим свойствам R-409A в однофазных областях обнаружить не удалось, а проведение точных научных и инженерных расчетов невозможно без такой информации.

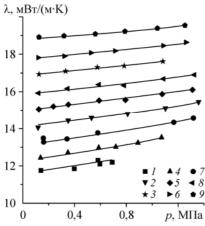
Целью данной работы являлось экспериментальное исследование теплопроводности (λ) хладагента R-409A в паровой фазе и определение температурной зависимости λ на линии конденсации и в идеально-газовом состоянии.

МЕТОДИКА И ЭКСПЕРИМЕНТАЛЬНАЯ ТЕХНИКА

Теплопроводность паров R-409A исследовалась стационарным методом коаксиальных цилиндров. Подробно методика измерений и экспериментальная техника описаны в работе [1]. Измерительная ячейка состояла из двух вертикально

 $^{^*}$ Работа выполнена при финансовой поддержке РФФИ (грант № 11-08-00065) и Министерства образования и науки РФ (госконтракт № 16.518.11.7010).

[©] Верба О.И., Расчектаева Е.П., Станкус С.В., 2011


расположенных соосных никелевых цилиндров: внешний, длиной 140 мм, внутренний — 101,3 мм. Ширина кольцевого зазора между цилиндрами составляла 0,366 ± 0,005 мм. Абсолютные температуры цилиндров и температурный перепад между ними измерялись медь-константановыми термопарами. Данная установка отличается от аналогов тем, что внутри измерительной ячейки не предусмотрены охранные нагреватели и другие устройства, предназначенные для компенсации утечек тепла с торцов внутреннего цилиндра и выравнивания температурного поля по его длине. Влияние свободных торцов в работе учитывалось введением поправок [1]. Тарировка установки проводилась на аргоне чистотой 99,998 об. %. Расхождение со справочными данными не превышало 1 %. Перед началом эксперимента установка вакуумировалась до давления (2–3)·10⁻² Торр. Для того чтобы избежать изменения в составе смеси, заполнение измерительной ячейки происходило из жидкой фазы. Погрешность экспериментальных данных по теплопроводности составляла 1,5–2,5 %, погрешности измерения температуры и давления не превышали 0,05 К и 4 кПа соответственно.

РЕЗУЛЬТАТЫ И ОБСУЖЛЕНИЕ

В экспериментах исследовался хладагент R-409A производства Hangzhou Sporlan Heating and Refrigeration Equipment Company (Китай). Предварительно смесь подвергалась очистке от воздуха и летучих примесей замораживанием образца жидким азотом с последующей откачкой до давления $3\cdot10^{-2}$ Торр. Теплопроводность газообразного R-409A была измерена в интервале температур 306-425 К и давлений 0,12-1,33 МПа вдоль 9 квазиизотерм. Экспериментальные значения теплопроводности в газовой фазе приведены в табл. 1. Первичные данные обрабатывались эмпирической зависимостью от температуры и давления [1]:

Таблица 1 Результаты измерений теплопроводности хладагента R-409A в паровой фазе

<i>T</i> , K	p, МПа	λ, $MBT/(M·K)$	<i>T</i> , K	р, МПа	λ, $MBT/(M·K)$
306,92	0,141	11,8	365,05	0,591	15,5
306,99	0,398	11,9	366,42	0,791	15,6
305,90	0,582	12,3	366,53	1,079	15,9
305,91	0,582	12,2	366,62	1,310	16,2
305,67	0,590	12,1	377,93	0,118	15,8
307,25	0,691	12,3	379,59	0,343	16,2
320,21	0,132	12,5	379,48	0,589	16,4
319,81	0,349	12,7	379,89	0,783	16,4
319,87	0,349	12,7	379,74	1,090	16,7
319,27	0,586	13,0	379,51	1,326	16,9
319,33	0,719	13,0	392,43	0,124	16,8
319,40	0,719	13,0	396,72	0,329	17,2
319,79	0,894	13,3	397,00	0,579	17,4
319,94	1,075	13,6	395,75	0,781	17,4
332,85	0,160	13,3	395,77	0,781	17,4
334,71	0,162	13,3	395,77	1,084	17,6
334,90	0,342	13,5	408,17	0,122	17,7
335,01	0,584	13,8	408,26	0,316	17,8
334,40	1,171	14,3	410,41	0,526	18,1
334,78	1,319	14,6	410,65	0,711	18,2
348,23	0,116	13,9	410,31	1,086	18,5
352,35	0,352	14,5	410,45	1,263	18,7
352,11	0,528	14,7	422,35	0,123	18,7
351,61	0,812	14,8	421,62	0,318	18,7
351,42	1,103	15,1	426,43	0,561	19,2
351,29	1,364	15,5	426,18	0,790	19,3
363,78	0,122	14,9	427,13	1,039	19,5
364,99	0,234	15,2	426,97	1,254	19,6
364,78	0,351	15,3			

Puc. 1. Изотермы теплопроводности пара R-409A.

Точки — экспериментальные данные, линии — уравнение (1). 306,5 (1), 351 (2), 395,5 (3), 319,5 (4), 365,5 (5), 409,5 (6), 334,5 (7), 379,5 (8), 425 (9) К.

Таблица 2 Коэффициенты уравнения (1)

ij	a_{ij}
0	-19,882
10	7,819
20	23,034
11	-0,0678
21	3,407
12	-0,0599
22	1,292

$$\lambda(p,T) = a_0 + a_{10} \frac{T}{100} + a_{20} \frac{100}{T} + p \left(a_{11} \frac{T}{100} + a_{21} \frac{100}{T} \right) + p^2 \left(a_{12} \frac{T}{100} + a_{22} \frac{100}{T} \right), \quad (1)$$

где T — температура в K, p — давление в МПа, λ — в мВт/(м·K). Параметры уравнения a_{ij} приведены в табл. 2. На рис. 1 представлены экспериментальные данные, приведенные к постоянным температурам (изотермам), и результаты аппроксимации по уравнению (1). Среднеквадратичное отклонение полученных экспериментальных значений от сглаженных по (1) не превышает 0,4 %. Из рис. 1 видно, что теплопроводность газообразного R-409A на изотермах практически линейно увеличивается с ростом давления.

Теплопроводность на линии конденсации λ_d и идеально-газовая теплопроводность λ_0 (при $p_0=0,101325$ МПа) были рассчитаны двумя способами: экстраполяцией изотерм теплопроводности пара R-409A на линию конденсации или к давлению p_0 , а также расчетом по обобщающему уравнению (1). Данные по давлению пара на линии конденсации были взяты из [2]. Сопоставление показало, что значения теплопроводностей, получаемые двумя способами, совпадают в пределах случайных погрешностей 0,4-4,1% для λ_d и 0,01-0,92 % для λ_0 . В дальнейшем для сохранения единства описания свойств во всей области параметров состояния был выбран второй способ расчета. Полученные значения λ_d аппроксимировались зависимостью:

$$\lambda_d = b_1 + b_2 \cdot T + b_3 \cdot T^2, \tag{2}$$

где $b_1 = 42,221$, $b_2 = -0,2662$, $b_3 = 5,525 \cdot 10^{-4}$. Значения давления пара и теплопроводности на линии конденсации приведены в табл. 3. Зависимость λ_d (T) приведена на рис. 2.

Для λ_0 из уравнения (1) получено:

$$\lambda_0 = c_1 + c_2 \cdot T + c_3 / T, \tag{3}$$

где $c_1 = -19,882$, $c_2 = 0,07812$, $c_3 = 2339,3$.

Таблица 3 Теплопроводность R-409A на линии конденсации

T, K	p_d , МПа	λ_d , мВт/(м·К)
300	0,6856	12,09
310	0,9079	12,79
320	1,1804	13,61
330	1,5102	14,54
340	1,9052	15,58
350	2,3748	16,73

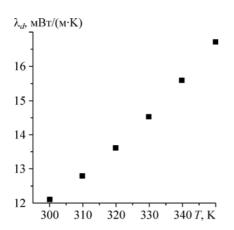
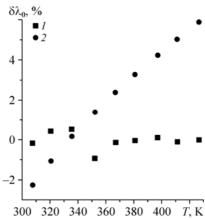



Рис. 2. Теплопроводность R-409A на линии конденсации.

Puc. 3. Относительные отклонения идеально-газовой теплопроводности R-409A от уравнения (3): I — расчета λ_0 экстраполяцией изотерм, 2 — расчета λ_0 в аддитивном приближении.

Величина λ_0 в аддитивном приближении была рассчитана по экспериментальным данным идеально-газовой теплопроводности чистых компонентов R-22, R-124 и R-142b [2]. Расхождения между экспериментальными значениями, и значениями, рассчитанными указанным образом, лежат в пределах 0,2–5,9 % (символы 2 на рис. 3). Это дает основание предполагать, что расчет теплопроводности в идеально-газовом состоянии по правилу аддитивности можно применить к расчетам этого свойства других смесевых хладагентов, содержащих те же компоненты.

ЗАКЛЮЧЕНИЕ

Получены новые экспериментальные данные по теплопроводности хладагента R-409A в паровой фазе в интервале температур 306—425 К и давлений 0,1–1,4 МПа и оценены их погрешности. Установлено, что аппроксимирующее уравнение (1) описывает теплопроводность R-409A в широкой области параметров состояния: от идеально-газового до линии конденсации. Показано, что в идеально-газовом состоянии теплопроводность трехкомпонентной смеси можно рассчитать по правилу аддитивности.

СПИСОК ЛИТЕРАТУРЫ

- Верба О.И., Груздев В.А. Теплопроводность гептафторпропана НFC-227ea // Теплофизика и аэромеханика. 2002. Т. 9, № 3. С. 467–476.
- Lemmon E.W., McLinden M.O., Huber M.L. NIST Standard Reference Database 23: Reference fluid thermodynamic and transport Properties-REFPROP, Version 8.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, Maryland, 2002.

Статья поступила в редакцию 16 июня 2011 г.