УДК 539.3; 624

ЗАКРИТИЧЕСКОЕ ПОВЕДЕНИЕ ТОНКОСТЕННОЙ СВОБОДНО ОПЕРТОЙ БАЛКИ С ОТКРЫТЫМ ПРОФИЛЕМ ПОПЕРЕЧНОГО СЕЧЕНИЯ, ПОКОЯЩЕЙСЯ НА ДВУХПАРАМЕТРИЧЕСКОМ УПРУГОМ ОСНОВАНИИ, ПРИ ЕЕ КРУЧЕНИИ

Ч. К. Рао, Л. Б. Рао*

Объединение институтов Налла Нарсимха Редди, 500088 Хайдарабад, Индия * Школа механических и строительных наук ВИТ-университета, 600127 Ченнай, Индия E-mails: chellapilla95@gmail.com, bhaskarbabu_20@yahoo.com

Исследуется закритическое поведение свободно опертой тонкостенной балки, лежащей на упругом основании Винклера — Пастернака и находящейся под действием осевой сжимающей нагрузки. Предполагается, что материал балки является упругим, деформации балки малы. Деформациями поперечного сдвига и деформациями в плоскости поперечного сечения балки пренебрегается. Определено закритическое поведение свободно опертой балки при различных значениях жесткостей оснований Винклера и Пастернака. Найдены точки бифуркации.

Ключевые слова: балка, открытый профиль сечения, закритическое поведение, скручивание, основание Винклера — Пастернака.

DOI: 10.15372/PMTF20180122

Введение. Тонкостенные призматические балки с поперечным сечением, имеющим открытый профиль, широко применяются в автомобиле-, корабле- и самолетостроении, а также в гражданском строительстве. В ротационных машинах часть элементов также представляют собой балки с открытым профилем поперечного сечения. Поэтому исследование закритического поведения таких балок является актуальной задачей.

При некоторых значениях нагрузок балки с открытым сечением поперечного профиля теряют устойчивость. При этом происходит кручение балок или их изгиб (либо одновременно кручение и изгиб). При проектировании конструкций, содержащих балки в качестве подкрепляющих элементов, необходимо учитывать возможность потери устойчивости балок.

Результаты исследования устойчивости балок в линейной постановке приведены в работах [1, 2]. Однако определить закритическое поведение балок в линейной постановке невозможно.

Впервые в нелинейной постановке поведение тонкостенной конструкции при однородном кручении исследовалось К. Г. Юнгом, который рассматривал балку с круговым поперечным сечением. Результаты этого исследования изложены в работе [3]. В работе [4] изучалась жесткость на кручение балки с прямоугольным поперечным сечением, находящейся под действием осевой растягивающей нагрузки. В [5] исследовано поведение тонкостенной балки с поперечным сечением І-образной и Z-образной формы. С использованием точной нелинейной теории задача о кручении тонкостенной балки с поперечным сечением, имеющим открытый профиль, решалась в работах [6, 7]. При этом использовался принцип минимума потенциальной энергии. Задача решалась с учетом больших деформаций при произвольных нагрузках и произвольных краевых условиях.

Детально нелинейная задача о кручении тонкостенных балок исследовалась в работах [8–13]. В [14] закритическое поведение тонкостенных элементов конструкций с открытым профилем поперечного сечения, находящихся под действием сжимающих нагрузок, изучалось с использованием общей нелинейной теории устойчивости.

Во всех указанных выше работах не учитывалось упругое основание, на котором могут находиться тонкостенные элементы конструкций. В [15, 16] в линейной постановке решалась задача об устойчивости и колебаниях при кручении лежащих на упругом основании Винклера тонкостенных элементов конструкций с поперечным сечением, имеющим открытый профиль [17, 18]. В работах [15, 16] не рассматривалось закритическое поведение таких конструкций. В [19] исследовалось закритическое поведение тонкостенной балки, находящейся под действием осевой сжимающей нагрузки и лежащей на упругом основании Винклера. С использованием общей теории балок в [20] изучалось закритическое поведение тонкостенных призматических элементов конструкций. На основе обобщенной теории балок в работе [20] предложен ряд аналитических моделей закритического поведения при сжатии и изгибе стальных тонкостенных призматических элементов конструкций, изготовленных методом холодной штамповки. В [21] исследовано влияние на устойчивость тонкостенных элементов конструкций ограничений, налагаемых на депланацию поперечных сечений балки. Рассмотрены различные виды ограничений на депланацию торцевых сечений балки, вычислены критические нагрузки и определены соответствующие им формы потери устойчивости.

В работе [22] представлены результаты исследований устойчивости плоских и пространственных стальных тонкостенных ферм, полученные с использованием обобщенной теории балок. В [23] с помощью первой теоремы Кастильяно изучалось кручение тонкостенной балки с сечением открытого профиля с наложенными на нее связями. Поперечное сечение имело две плоскости симметрии. Полученные точные решения были упрощены путем разложения их в ряды. В [24] изучалось влияние депланации на закритическое поведение тонкостенных конструкций. С использованием одномерной модели исследована первая стадия закритического деформирования каркасной конструкции. В [25] с помощью принципа стационарности полной потенциальной энергии исследовано влияние дисторсии на устойчивость упругой, сжатой в осевом направлении балки.

Из приведенного выше обзора работ следует, что влияние двухпараметрического упругого основания Винклера — Пастернака на закритическое поведение тонкостенной балки с сечением открытого профиля не исследовалось.

В данной работе изучается влияние упругого основания Винклера — Пастернака [18, 26] на закритическое поведение свободно опертой однородной тонкостенной балки с сечением открытого профиля при ее кручении.

1. Постановка задачи. Решается задача о закритическом поведении при кручении упругой статически определимой тонкостенной балки длиной *L* с сечением открытого профиля, лежащей на упругом основании Винклера — Пастернака. Балка имеет две плоскости симметрии. Поперечное сечение балки имеет I-образную форму (сечение балки представляет собой двутавр) (рис. 1).

Рис. 1. Схема свободно опертой стальной балки с поперечным сечением І-образной формы, лежащей на упругом основании Винклера — Пастернака: 1 — сдвиговый слой (слой Пастернака) с жесткостью $K_{\rm P}$, 2 — слой Винклера с жесткостью $K_{\rm W}$

2. Математическая формулировка задачи и ее решение. При математической формулировке задачи принимаются следующие предположения:

- 1) деформации в поперечном сечении балки отсутствуют;
- 2) деформации являются малыми и упругими;
- 3) деформации поперечного сдвига отсутствуют.

Выражение для энергии деформации при неоднородном кручении находящейся под действием внешней осевой сжимающей статической силы *P* тонкостенной балки с поперечным сечением открытого профиля площадью *A* записывается в виде

$$U = \frac{1}{2} \int_{0}^{L} \left[EC_w(\varphi'')^2 + GC_s(\varphi')^2 + EF(\varphi')^4 \right] dz,$$
 (1)

выражение для работы осевой сжимающей силы — в виде

$$W = \frac{1}{2} \int_{0}^{L} \sigma I_p(\varphi')^2 dz, \qquad \sigma = \frac{P}{A},$$
(2)

выражение для работы реакции упругого основания — в виде

$$R = \frac{1}{2} \int_{0}^{L} \left[K_{\rm P}(\varphi')^2 + K_{\rm W}(\varphi)^2 \right] dz.$$
(3)

В уравнениях (1)–(3) штрих обозначает производную по координате z; $F = I_p - (I_{pc}/A)^2$; I_p — полярный момент инерции поперечного сечения; $I_{pc} = I_p/2$; $C_w = I_f h^2/2$; $C_s = (2b_f t_f^3 + h t_w^3)/3$; E — модуль Юнга; G — модуль сдвига; φ — угол кручения. Полная потенциальная энергия V сохраняет постоянное значение:

$$V = U - W + R = \text{const}.$$
 (4)

Поперечное сечение рассматриваемой балки представляет собой двутавр, имеющий две плоскости симметрии. Геометрические параметры поперечного сечения следующие: t_f и t_w — толщина полок и стенки соответственно; h — расстояние между центрами полок;

 b_f — ширина полок. Предполагается, что $t_f \ll h$ и $t_w \ll h$. Для такого сечения выражения для введенных выше геометрических параметров I_p и I_{pc} имеют следующий вид [6]:

$$I_p = \frac{h^5 t_w}{320} + \frac{b_f h^4 t_f}{32} + \frac{b_f^5 t_f}{160} + \frac{b_f^3 h^2 t_f}{48}, \qquad I_{pc} = \frac{1}{24} \left(h^3 t_w + 2b_f^3 t_f + 6b_f h^2 t_f\right)$$

0.0

Дифференциальное уравнение Эйлера для функционала потенциальной энергии V (4) записывается в виде

$$EC_w \frac{d^4\varphi}{dz^4} - 6EF\left(\frac{d\varphi}{dz}\right)^2 \frac{d^2\varphi}{dz^2} - \left(GC_s - \frac{PI_p}{A} + K_P\right)\frac{d^2\varphi}{dz^2} + K_W\varphi = 0,$$

или

$$EC_w\varphi^{\rm iv} - 6EF(\varphi')^2\varphi'' - (GC_s - \sigma I_p + K_{\rm P})\varphi'' + K_{\rm W}\varphi = 0.$$
⁽⁵⁾

Краевые условия для уравнения (5) в случае свободно опертых торцов балки имеют вид

$$Z = 0$$
: $\varphi = 0$, $\varphi'' = 0$, $Z = 1$: $\varphi = 0$, $\varphi'' = 0$, (6)

где штрих обозначает производную по безразмерной переменной Z = z/L.

Уравнение (5) можно записать в безразмерной форме

$$\varphi^{\rm iv} - 6\delta(\varphi')^2 \varphi'' - (K^2 - \Delta^2 + \xi^2)\varphi'' + 4\lambda^2 \varphi = 0, \tag{7}$$

где $\delta = F/C_w$. Для решения уравнения (7) используется метод Галеркина. Угол закручивания $\varphi(Z)$ принимается в виде

$$\varphi(Z) = \beta x(Z),\tag{8}$$

где β — амплитуда кручения. Предполагается, что функция $\varphi(Z)$ удовлетворяет краевым условиям. Подставляя (8) в (7), получаем выражение для невязки

$$\varepsilon = \beta \left[x^{\text{iv}} - 6\beta^2 \delta(x')^2 x'' - (K^2 - \Delta^2 + \xi^2) x'' + 4\lambda^2 x \right].$$
(9)

В соответствии с методом Галеркина уравнение

$$\int_{0}^{1} \varepsilon x(Z) \, dZ = 0 \tag{10}$$

является условием минимизации невязки.

Функцию x(Z), удовлетворяющую краевым условиям (6), примем в следующем виде:

$$x(Z) = \sin\left(\pi Z\right).\tag{11}$$

Подставляя (9), (11) в (10), получаем выражение для критического параметра

$$\Delta_{cr}^{*2} = K^2 + \xi^2 + \pi^2 + 4\lambda^2/\pi^2 + 3\pi^2\delta\beta^2/2.$$

Выражение для критического параметра, полученное с использованием линейной теории, имеет вид

$$\Delta_{cr}^2 = K^2 + \xi^2 + \pi^2 + 4\lambda^2 / \pi^2.$$

Таким образом,

$$\frac{P^*}{P_{cr}} = \frac{\Delta_{cr}^{*2}}{\Delta_{cr}^2} = 1 + \frac{3\pi^4 \delta\beta^2}{2} \frac{1}{\pi^2 (K^2 + \xi^2 + \pi^2) + 4\lambda^2}$$
(12)

 $(P^*$ — критическое значение сжимающей нагрузки; P_{cr} — линейная критическая нагрузка).

При отсутствии основания Пастернака ($\xi = 0$) уравнение (12) приводится к виду

$$\frac{P^*}{P_{cr}} = \frac{\Delta_{cr}^{*2}}{\Delta_{cr}^2} = 1 + \frac{3\pi^4 \delta\beta^2}{2} \frac{1}{\pi^2 (K^2 + \pi^2) + 4\gamma^2},\tag{13}$$

при отсутствии также основания Винклера ($\lambda = 0$) — к виду

$$\frac{P^*}{P_{cr}} = \frac{\Delta_{cr}^{*2}}{\Delta_{cr}^2} = 1 + \frac{3\pi^2 \delta \beta^2}{2(K^2 + \pi^2)}.$$
(14)

Наконец, в случае равенства нулю параметра депланации (или в случае пренебрежимо малого значения этого параметра) уравнение (12) принимает вид

$$\frac{P^*}{P_{cr}} = \frac{\Delta_{cr}^{*2}}{\Delta_{cr}^2} = 1 + \frac{3\delta\beta^2}{2}.$$
(15)

Из уравнений (12)–(15) следует, что для балки с поперечным сечением открытого профиля, имеющей две плоскости симметрии и подвергнутой неоднородному кручению, различие критических нагрузок, полученных с использованием линейной и нелинейной теорий, тем меньше, чем больше параметр депланации K, параметр основания Винклера γ или параметр основания Пастернака ξ . Из приведенных результатов также следует, что в случае продольного изгиба эйлерова критическая нагрузка меньше критических нагрузок Δ_{cr}^* и Δ_{cr} .

3. Обсуждение полученных результатов. Рассмотрим балку, имеющую две плоскости симметрии и поперечное сечение, представляющее собой двутавр, со следующими геометрическими параметрами: L = 760 мм, $t_w = 2,13$ мм, $t_f = 3,11$ мм, $b_f = 31,55$ мм, d = 72,76 мм, h = 69,65 мм. Полярный момент инерции относительно центра тяжести балки с поперечным сечением в форме двутавра, имеющей две плоскости симметрии, равен сумме момента инерции относительно оси x и момента инерции относительно оси y: $I_p = I_{xx} + I_{yy}$. Момент инерции I_p имеет размерность [мм⁴].

Для указанных выше геометрических параметров балки безразмерный параметр K равен 3,106, а безразмерный параметр $\delta - 1,1095$. Уравнение (12) представляет собой зависимость отношения P^*/P_{cr} от амплитуды кручения β при различных значениях параметра основания Винклера λ и параметра основания Пастернака ξ .

Значения отношения P^*/P_{cr} при различных значениях амплитуды кручения β , значениях жесткости основания Винклера $\lambda = 0, 5, 10, 15, 20, 25, 30$ и значении жесткости основания Пастернака $\xi = 0$ приведены в табл. 1.

На рис. 2 представлены зависимости отношения P^*/P_{cr} от отношения амплитуды кручения β при различных значениях жесткостей оснований Винклера и Пастернака. Из зависимостей, приведенных на рис. 2, следует, что при всех рассмотренных значениях жесткостей оснований Винклера и Пастернака отношение P^*/P_{cr} увеличивается с увеличением амплитуды кручения β . При всех рассмотренных значениях жесткости влияние амплитуды кручения β на величину критической нагрузки уменьшается с увеличением жесткости основания Пастернака ξ .

В табл. 2 для значений амплитуды кручения $\beta \in [0,1]$ приведены отношения P^*/P_{cr} при различных значениях жесткостей оснований Винклера и Пастернака. На рис. 3 для значений амплитуды кручения $\beta \in [0,1]$ приведена зависимость отношения P^*/P_{cr} от жесткости основания Винклера λ при различных значениях жесткости основания Пастернака ξ . При $\xi = 0$ имеется существенная зависимость P^*/P_{cr} от жесткости λ . С увеличением жесткости ξ эта зависимость становится более слабой.

В табл. 3 приведены значения отношения P^*/P_{cr} при $\lambda = 0$ и различных значениях амплитуды кручения β и жесткости основания Пастернака ξ . На рис. 4 представлены

Таблица 1

eta	P^*/P_{cr}							
	$\lambda = 0$	$\lambda = 5$	$\lambda = 10$	$\lambda = 15$	$\lambda = 20$	$\lambda = 25$	$\lambda = 30$	
0	1,000 00	1,00000	1,00000	1,00000	1,00000	1,000 00	1,00000	
0,1	1,008 40	$1,\!00553$	1,00273	1,00148	1,00090	1,00060	1,00043	
0,2	$1,\!03359$	$1,\!02212$	$1,\!01093$	$1,\!00593$	$1,\!00361$	1,00241	1,00171	
$_{0,3}$	$1,\!07557$	$1,\!04977$	$1,\!02458$	$1,\!01334$	$1,\!00813$	$1,\!00541$	$1,\!00384$	
0,4	$1,\!13435$	$1,\!08847$	$1,\!04370$	$1,\!02371$	$1,\!01445$	1,00962	$1,\!00683$	
0,5	1,20992	$1,\!13824$	1,06829	$1,\!03704$	$1,\!02258$	$1,\!01503$	$1,\!01067$	
$0,\!6$	1,302 28	$1,\!19906$	$1,\!09833$	$1,\!05334$	$1,\!03252$	$1,\!02165$	$1,\!01537$	
0,7	1,411 44	$1,\!27095$	$1,\!13384$	$1,\!07261$	$1,\!04426$	$1,\!02947$	1,02092	
0,8	$1,\!53739$	$1,\!35389$	$1,\!17481$	$1,\!09483$	$1,\!05781$	$1,\!03849$	$1,\!02732$	
0,9	1,68013	$1,\!44789$	$1,\!22125$	$1,\!12002$	$1,\!07316$	$1,\!04871$	$1,\!03458$	
$1,\!0$	1,83966	$1,\!55295$	$1,\!27314$	$1,\!14818$	$1,\!09032$	$1,\!06014$	$1,\!04269$	

Значения отношения P^*/P_{cr} при жесткости основания Пастернака $\xi=0$ и различных значениях амплитуды кручения β и жесткости основания Винклера λ

Рис. 2. Зависимости отношения P^*/P_{cr} от амплитуды кручения β при различных значениях жесткостей оснований Винклера λ и Пастернака ξ : $a - \xi = 0, \ \delta - \xi = 25, \ e - \xi = 50, \ e - \xi = 100; \ 1 - \lambda = 0, \ 2 - \lambda = 5, \ 3 - \lambda = 10, \ 4 - \lambda = 15, \ 5 - \lambda = 20, \ 6 - \lambda = 25, \ 7 - \lambda = 30$

Таблица 2

λ	$P^*/P_{cr},\%$							
	$\xi = 0$	$\xi = 25$	$\xi = 50$	$\xi = 75$	$\xi = 100$			
0	$82,\!433560$	$2,\!518370$	$0,\!643955$	0,286991	0,161997			
5	$54,\!440940$	$2,\!478380$	$0,\!641961$	0,286991	$0,\!160997$			
10	26,967380	2,368432	$0,\!633962$	$0,\!284991$	$0,\!160997$			
15	$14,\!648320$	$2,\!206515$	$0,\!621963$	0,282992	$0,\!159997$			
20	8,933959	$2,\!012597$	$0,\!604964$	$0,\!278992$	$0,\!158997$			
25	$5,\!950430$	$1,\!807675$	0,584965	$0,\!274992$	$0,\!157997$			
30	$4,\!224184$	$1,\!608743$	0,561966	0,269992	$0,\!155997$			

Значения отношения Р	$^{st}/P_{cr}$ при зн	ачениях амі	плитуды	кручения	$\beta \in [0,1]$
и различных значениях	жесткостей	оснований	Винклера	λ и Паст	ернака ξ

Рис. 3. Зависимости отношения P^*/P_{cr} от жесткости основания Винклера λ при значениях амплитуды кручения $\beta \in [0, 1]$ и различных значениях жесткости основания Пастернака ξ : $1 - \xi = 0, 2 - \xi = 25, 3 - \xi = 50, 4 - \xi = 75, 5 - \xi = 100$

Таблица 3

Значения отношения P^*/P_{cr} при жесткости основания Винклера $\lambda=0$ и различных значениях амплитуды кручения β и жесткости основания Пастернака ξ

в	P^*/P_{cr}							
ρ	$\xi = 0$	$\xi = 5$	$\xi = 10$	$\xi = 15$	$\xi = 20$	$\xi = 25$	$\xi = 30$	
0	1,000 00	1,000 00	1,000 00	1,000 00	1,00000	1,000 00	1,000 00	
0,1	1,00840	$1,\!00368$	1,00137	1,00067	$1,\!00039$	$1,\!00025$	1,00018	
0,2	$1,\!03359$	$1,\!01473$	1,00549	1,00268	$1,\!00156$	1,00102	1,00071	
0,3	$1,\!07557$	$1,\!03314$	1,01234	1,00603	$1,\!00352$	1,00229	1,00160	
0,4	$1,\!13435$	$1,\!05891$	1,02195	$1,\!01073$	$1,\!00625$	$1,\!00407$	1,00285	
0,5	1,20992	$1,\!09205$	1,03429	1,01676	$1,\!00977$	1,00636	1,00446	
0,6	$1,\!30228$	$1,\!13255$	1,04938	1,02414	$1,\!01407$	1,00916	1,00642	
0,7	$1,\!41144$	$1,\!18042$	1,06721	$1,\!03285$	$1,\!01915$	1,01246	1,00874	
0,8	$1,\!53739$	$1,\!23565$	1,08778	1,04291	$1,\!02501$	1,01628	1,01141	
0,9	$1,\!68013$	$1,\!29825$	1,111 10	$1,\!05431$	$1,\!03165$	1,02060	1,01444	
$1,\!0$	$1,\!83966$	$1,\!36821$	$1,\!13716$	1,06705	$1,\!03908$	$1,\!02544$	1,01783	

Рис. 4. Зависимости отношения P^*/P_{cr} от амплитуды кручения β при различных значениях жесткостей оснований Пастернака ξ и Винклера λ : $a - \lambda = 0, \ \delta - \lambda = 25, \ s - \lambda = 50, \ z - \lambda = 100; \ 1 - \xi = 0, \ 2 - \xi = 5, \ 3 - \xi = 10, \ 4 - \xi = 15, \ 5 - \xi = 20, \ 6 - \xi = 25, \ 7 - \xi = 30$

зависимости отношения P^*/P_{cr} от амплитуды кручения β при различных значениях жест-костей оснований Пастернака ξ и Винклера λ .

Из приведенных на рис. 4 зависимостей следует, что с увеличением β отношение P^*/P_{cr} увеличивается. Скорость изменения отношения P^*/P_{cr} увеличивается с увеличение β . При одном и том же значении β отношение P^*/P_{cr} уменьшается при увеличении ξ . При увеличении ξ влияние амплитуды кручения β на отношение P^*/P_{cr} уменьшается.

В табл. 4 для значений амплитуды кручения $\beta \in [0, 1]$ приведены отношения P^*/P_{cr} при различных значениях жесткостей оснований Винклера и Пастернака. На рис. 5 для значений амплитуды кручения $\beta \in [0, 1]$ приведены зависимости отношения P^*/P_{cr} от жесткости основания Пастернака ξ при различных значениях жесткости основания Винклера λ .

Следует отметить, что зависимости $P^*/P_{cr}(\beta)$, представленные на рис. 2, сближаются при увеличении ξ от 0 до 100 быстрее, чем зависимости $P^*/P_{cr}(\beta)$, представленные на рис. 4, при увеличении λ от 0 до 100. Из уравнения (12) следует, что при фиксированных значениях β , K, λ критическая нагрузка, вычисленная с использованием нелинейной теории, увеличивается с увеличением параметра δ . Увеличение любого из параметров K, λ

Таблица 4

ξ	$P^*/P_{cr}, \%$							
	$\lambda = 0$	$\lambda = 25$	$\lambda = 50$	$\lambda = 75$	$\lambda = 100$			
0	82,433 560	5,950430	1,572748	0,706951	0,398984			
5	$36,\!319340$	$5,\!450002$	$1,\!534754$	$0,\!698951$	$0,\!395984$			
10	13,560420	$4,\!354084$	$1,\!433799$	$0,\!676953$	0,388984			
15	$6,\!633556$	3,260924	$1,\!290832$	$0,\!643961$	$0,\!377985$			
20	3,867492	2,412421	$1,\!133875$	$0,\!601964$	0,362985			
25	2,518370	$1,\!807675$	0,978902	0,554967	$0,\!345990$			
30	1,764682	1,383806	$0,\!840933$	0,507975	$0,\!326990$			

Значения отношения P^*/P_{cr} при значениях амплитуды кручения $\beta \in [0,1]$ и различных значениях жесткостей оснований Винклера и Пастернака

Рис. 5. Зависимость отношения P^*/P_{cr} от жесткости основания Пастернака ξ для значений амплитуды кручения $\beta \in [0, 1]$ при различных значениях жесткости основания Винклера λ : $1 - \lambda = 0, 2 - \lambda = 25, 3 - \lambda = 50, 4 - \lambda = 75, 5 - \lambda = 100$

приводит к уменьшению критической нагрузки. Следует отметить, что при постоянных значениях K, δ скорость изменения критической нагрузки P^* , вычисленной с использованием нелинейной теории, уменьшается при увеличении β и λ (см. рис. 2) и при увеличении β и ξ (см. рис. 4).

ЛИТЕРАТУРА

- 1. Timoshenko S. P. Theory of elastic stability. 2nd ed. / S. P. Timoshenko, J. M. Gere. N. Y.: McGraw-Hill, 1961. P. 212–229.
- 2. Vlasov V. Z. Thin-walled elastic beams. 2nd ed. Washington: Nat. Sci. Found., 1961.
- 3. Timoshenko S. P. Strength of materials. 3rd ed. Washington: D. VanNostarnd, 1961. Pt 1.
- 4. Buckley J. C. The bifilar property of twisted strips // Philos. Mag. 1914. V. 28. P. 778–787.
- 5. Cullimore M. S. G. The shortening effect a non-linear feature of pure torsion // Engineering structures. L.: Butterworths, 1949. P. 153–164.
- Tso W. K., Ghobarah A. A. Non-linear non-uniform torsion of thin-walled beams // Intern. J. Mech. Sci. 1971. V. 13. P. 1039–1047.

- Ghobarah A. A., Tso W. K. A non-linear thin-walled beam theory // Intern. J. Mech. Sci. 1971. V. 13. P. 1025–1038.
- Bazant Z. P., El Nimeiri M. Large deflections spatial buckling of thin-walled beams and frames // J. Engng Mech. Div. Proc. ASCE. 1973. V. 99. P. 1259–1281.
- Epstein M., Murray D. W. Three-dimensional large deformation analysis of thin-walled beams // Intern. J. Solids Structures. 1976. V. 12. P. 867–876.
- Szymzak C. Buckling and initial post-buckling behaviour of thin-walled I-columns // Comput. Structures. 1980. V. 11. P. 481–487.
- Roberts T. M., Azizian Z. G. Instability of thin-walled bars // Proc. ASCE. J. Engng Mech. 1983. V. 109. P. 781–794.
- Wekezer J. W. Instability of thin walled bars // Proc. ASCE. J. Engng Mech. 1985. V. 111. P. 923–935.
- Wekezer J. W. Non-linear of torsion of thin-walled bars of variable cross-sections // Intern. J. Mech. Sci. 1985. V. 27. P. 631–641.
- Grimaldi A., Pignataro M. Postbuckling behavior of thin-walled open cross-section compression members // J. Structural Mech. 1979. V. 7, N 2. P. 143–159.
- 15. Kameswara Rao C., Gupta B. V. R., Rao D. L. N. Torsional vibrations of thin-walled beams on continuous elastic foundations using finite element method // Proc. of the Intern. conf. on finite element methods in engineering. Coimbatore: Coimbatore Inst. of technol., 1974. P. 231–248.
- Kameswara Rao C., Appala Satyam A. Torsional vibrations and stability of thin-walled beams on continuous elastic foundation // AIAA J. 1975. V. 13. P. 232–234.
- 17. Hatenyi M. Beams on elastic foundation. Ann Arbor: Univ. Michigan Press, 1946. P. 151–155.
- 18. Selvadurai A. P. S. Elastic analysis of soil-foundation interaction. N. Y.: Elsevier Sci., 1979.
- 19. Kameswara Rao C., Mirza S. Torsional post-buckling of thin-walled open section beams resting on a continuous elastic foundation // Thin-walled Structures. 1989. V. 8. P. 55–62.
- 20. Simão P. D. Post-buckling bifurcational analysis of thin-walled prismatic members in the context of the generalized beam theory: PhD Thesis. Coimbra: Univ. Coimbra, 2007.
- Pignatoro M., Rizzi N., Puta G., Varano V. The effects of warping constraints on the buckling of thin-walled structures // J. Mech. Materials Structures. 2009. V. 4, N 10. P. 1711–1727.
- Camotim D., Basaglia C., Silvestre N. GBT buckling analysis of thin-walled steel frames: A state-of-the-art report // Thin-walled Structures. 2010. V. 48. P. 726–743.
- Kujawa M. Torsion of restrained thin-walled bars of open constant bi-symmetric cross-section // Task Quart. 2011. V. 16, N 1. P. 5–15.
- Rizzi N. L., Varano V. The effects of warping on the post-buckling behaviour of thin-walled structures // Thin-walled Structures. 2011. V. 49. P. 1091–1097.
- Kujava M., Szymczak C. Elastic distortional buckling of thin-walled bars of closed quadratic cross section // Mech. Mech. Engng. 2013. V. 17, N 2. P. 119–126.
- 26. **Pasternak P. L.** Fundamentals of a new method for calculating elastic two-parameter foundations. M.: Gos. Izd. Lit. Stroit. Arkhit., 1954.

Поступила в редакцию 15/VIII 2016 г., в окончательном варианте — 27/XII 2016 г.