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Решена двумерная нестационарная задача о развитии волнового движения в двухслой-
ной жидкости конечной глубины, ограниченной сверху ледяным покровом, который мо-
делируется тонкой упругой пластиной с учетом сил продольного сжатия. Рассмотрены
случаи, когда в невозмущенном состоянии один из слоев покоится, а в другом (верхнем
или нижнем) горизонтальная скорость потока линейно меняется по толщине. Опреде-
лены дисперсионные зависимости для трех волновых мод, возникающих при наличии
сдвигового потока. Вычислены вертикальные прогибы ледяного покрова, обусловлен-
ные включением пульсирующего источника возмущений, расположенного в изначаль-
но неподвижном слое жидкости. Рассмотрен также частный случай, когда жидкость
ограничена сверху твердой крышкой. Задача рассматривается в линейной постановке,
жидкость полагается идеальной и несжимаемой.
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ны, погруженный пульсирующий источник, сдвиговый слой, дисперсионные зависи-
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Введение. Волновые движения, возникающие в жидкости под ледяным покровом, на-
зываются изгибно-гравитационными волнами (ИГВ), поскольку их свойства зависят от
свойств как жидкости, так и ледяного покрова [1, 2]. В рамках модели Кирхгофа — Ля-
ва ледяной покров обычно моделируется тонкой упругой пластиной. В настоящее время
выполнено большое количество исследований генерации ИГВ различными возмущениями,
как действующими на ледяном покрове, так и погруженными в жидкость или находя-
щимися на дне. Как правило, предполагается, что в невозмущенном состоянии жидкость
либо покоится, либо движется с постоянной по глубине горизонтальной скоростью. Одна-
ко в реальных морских условиях вертикальное распределение скорости жидкости может

существенно меняться как по величине, так и по направлению. Это свидетельствует о
том, что исследование ИГВ также следует проводить в рамках теоретических моделей,
учитывающих вертикальную структуру основного течения.

Одной из первых публикаций на данную тему является работа [3], в которой в двумер-
ной постановке изучено влияние продольно сжатой упругой пластины на развитие волно-
вых возмущений потока с линейным сдвигом горизонтальной скорости под действием ло-
кализованного внешнего давления. В последнее время интерес к этим задачам значительно
возрос в связи с интенсивным освоением полярных районов Мирового океана. Решен ряд
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Рис. 1. Схема течения в невозмущенном состоянии для случая 1 (а) и случая 2 (б):
1 — ледяной покров, 2 — пульсирующий источник

двумерных [4, 5] и трехмерных [6–8] задач. Дальние поля установившихся внутренних гра-
витационных волн, возбуждаемых точечным пульсирующим источником при равномерной
стратификации по плотности и условии твердой крышки на верхней границе жидкости,
исследованы в [9]. Во всех указанных работах изучался наиболее простой случай линейного
сдвигового потока.

В данной работе рассматривается один из наиболее простых примеров сдвигового

течения с непостоянной завихренностью, в одном слое которого (приповерхностном или
придонном) имеется линейный сдвиговый поток, а в другом жидкость покоится. На грани-
це слоев скорость жидкости непрерывна. Волновые возмущения создаются неподвижным
точечным пульсирующим источником в слое первоначально покоящейся жидкости.

Описание волн, возбуждаемых нестационарным погруженным источником, — одна из

классических проблем волновой гидродинамики. В двумерной постановке действие пульси-
рующего источника в первоначально покоящейся жидкости под ледяным покровом изучено

в [10]. Рассмотрен случай жидкости бесконечной глубины и определены волновые возму-
щения, возникающие при длительной работе источника. В [11] построено решение для
прогибов ледяного покрова при нестационарном движении точечного источника перемен-
ной интенсивности в жидкости конечной глубины. В трехмерном случае подобная задача
решена в [12] для жидкости бесконечной глубины и равномерно сжатого ледяного покрова.

1. Постановка задачи. Горизонтальный слой однородной невязкой несжимаемой
жидкости имеет постоянную толщину H. На верхней границе жидкости находится сплош-
ной ледяной покров, который моделируется тонкой упругой напряженной пластиной посто-
янной толщины hi с плотностью ρi. Предполагается, что во все моменты времени ледяной
покров контактирует с водой во всех точках. В невозмущенном состоянии часть жидкости
находится в состоянии покоя, а в верхнем или нижнем слое толщиной h имеет место сдви-
говое течение с линейным профилем скорости (рис. 1). В первом случае в верхнем слое
горизонтальная скорость равна U(y) = U0y/h (см. рис. 1,а), а во втором случае в нижнем
придонном слое U(y) = −U0(y+H1)/h (см. рис. 1,б). Система декартовых координат (x, y)
введена таким образом, что в первом случае горизонтальная ось x совпадает с невозму-
щенной границей между сдвиговым и покоящимся слоями, а во втором случае — с невоз-
мущенной верхней границей жидкости, ось y направлена вертикально вверх. Толщина
покоящегося слоя равна H1, общая толщина составляет H = H1 + h.
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Предполагается, что в покоящемся слое жидкости в момент времени t = 0 в точке
x = 0, y = −l, 0 < l < H1 начинает работать точечный массовый источник, пульсиру-
ющий по гармоническому закону с мощностью S(t) = S0 sin (Ωt). Движение жидкости в
первоначально покоящемся слое полагается потенциальным всюду, за исключением точки
локализации источника.

Задача решается в линейной постановке, случаи верхнего и нижнего сдвиговых слоев
рассматриваются по отдельности.

1.1. Случай 1 (верхний сдвиговый слой). Линеаризованные уравнения Эйлера для сдви-
гового слоя имеют вид( ∂

∂t
+ V · ∇

)
v + v

dV

dy
+
∇p1

ρ
= 0, div v = 0, |x| <∞, 0 6 y 6 h, (1.1)

где V = (U(y), 0) — вектор скорости основного потока; U(y) = U0y/h; v = (u, v) — возму-
щения скорости жидкости, которые полагаются малыми; p1 — динамическое возмущение

давления; ρ — плотность жидкости.
Ледяной покров плывет на поверхности потока жидкости. Кинематическое и динами-

ческое условия на верхней границе жидкости имеют вид

∂η

∂t
+ U0

∂η

∂x
= v, D

∂4η

∂x4
+Q

∂2η

∂x2
+M

( ∂
∂t

+ U0
∂

∂x

)2
η + gρη = p1, y = h, (1.2)

где η(x, t) — вертикальный прогиб ледяного покрова; D = Eh3
i /[12(1− ν2)] — его цилин-

дрическая жесткость; E — модуль Юнга; ν — коэффициент Пуассона; Q — сжимающее

усилие; M = ρihi — коэффициент инерции ледяного покрова; g — ускорение свободного

падения. В частном случае при D = 0, Q = −T , M 6= 0 верхняя граница жидкости пред-
ставляет собой мембрану с коэффициентом натяжения T > 0. При M = 0 в этом случае
T — коэффициент поверхностного натяжения и возникающие волны являются капиллярно-
гравитационными. При D = Q = 0, M > 0 на верхней границе жидкости плавает битый
лед, а если при этом M = 0, то имеет место случай свободной поверхности. При замене
ледяного покрова твердой крышкой на верхней границе жидкости вместо условий (1.2)
следует использовать условие v = 0 при y = h.

При наличии линейного сдвига продольной скорости основного течения компоненты

скорости волнового движения можно представить в виде [5]

u(x, y, t) = U(y) +
∂ϕ1

∂x
, v(x, y, t) =

∂ϕ1

∂y
,

где функция ϕ1(x, y, t) удовлетворяет уравнению Лапласа

∂2ϕ1

∂x2
+
∂2ϕ1

∂y2
= 0, |x| <∞, 0 6 y 6 h. (1.3)

Потенциал скорости возмущенного течения Φ(x, y, t) в слое первоначально покоящейся
жидкости представим в виде, предложенном в [13]:

Φ(x, y, t) = Φ0(x, y, t) + ϕ2(x, y, t), |x| <∞, −H1 6 y 6 0, (1.4)

где Φ0(x, y, t) — потенциал скорости течения, создаваемого точечным пульсирующим ис-
точником в безграничной жидкости:

Φ0(x, y, t) =
S(t)

2π
ln

√
x2 + (y + l)2. (1.5)

Функция ϕ2(x, y, t) удовлетворяет уравнению Лапласа

∂2ϕ2

∂x2
+
∂2ϕ2

∂y2
= 0, |x| <∞, −H1 6 y 6 0. (1.6)
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На границе раздела верхнего и нижнего слоев выполняются условия непрерывности

вертикальной скорости и давления

∂ϕ1

∂y
=
∂Φ

∂y
, p1 = −ρ ∂Φ

∂t
, y = 0, (1.7)

а на ровном горизонтальном дне — условие непротекания

∂Φ

∂y
= 0, y = −H1. (1.8)

На большом расстоянии от источника волновые возмущения затухают.
В начальный момент времени волновые возмущения отсутствуют и поверхность лед—

вода является горизонтальной:

ϕ1 = ϕ2 = 0, η =
∂η

∂t
= 0, t = 0. (1.9)

1.2. Случай 2 (нижний сдвиговый слой). В верхнем первоначально покоящемся слое
жидкости потенциал скорости Ψ(x, y, t) будем искать в виде, аналогичном (1.4):

Ψ(x, y, t) = Φ0(x, y, t) + ψ1(x, y, t), |x| <∞, −H1 6 y 6 0

(функция Φ0(x, y, t) задана в (1.5); функция ψ1(x, y, t) удовлетворяет уравнению Лапласа).
В нижнем слое (−H 6 y 6 −H1), в котором имеет место сдвиговое течение U(y) =

−U0(y +H1)/h, справедливы линеаризованные уравнения Эйлера, аналогичные (1.1). По-
этому компоненты скорости волнового движения будем искать в виде

u(x, y, t) = U(y) +
∂ψ2

∂x
, v(x, y, t) =

∂ψ2

∂y
,

где функция ψ2(x, y, t) удовлетворяет уравнению Лапласа.
Кинематическое и динамическое условия на верхней границе жидкости имеют вид

∂η

∂t
=
∂Ψ

∂y
, D

∂4η

∂x4
+Q

∂2η

∂x2
+M

∂2η

∂t2
+ gρη + ρ

∂Ψ

∂t
= 0, y = 0, (1.10)

а на границе между слоями —

∂Ψ

∂y
=
∂ψ2

∂y
,

∂2Ψ

∂x ∂t
=
∂2ψ2

∂x ∂t
− U0

h

∂ψ2

∂y
, y = −H1. (1.11)

Условие непротекания на дне записывается следующим образом:

∂ψ2

∂y
= 0, y = −H. (1.12)

Начальные условия аналогичны (1.9).
2.Метод решения. Для решения начально-краевых задач, сформулированных в п. 1,

используем преобразования Фурье и Лапласа в виде

ϕ̄1(k, y, s) =

∞∫
0

e−st

∞∫
−∞

ϕ1(x, y, t) e−ikx dx dt.

Аналогичные преобразования выполняются для остальных искомых функций.
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Функции ϕ1,2(x, y, t) удовлетворяют уравнениям Лапласа (1.3), (1.6), которые после
преобразования Фурье принимают вид

∂2ϕ̄1,2

∂y2
− k2ϕ̄1,2 = 0.

Аналогичное уравнение имеет место для функций ψ̄1,2(k, y, s).
В случае 1 решения для функций ϕ̄1(k, y, s) и ϕ̄2(k, y, s) будем искать в виде

ϕ̄1 = C1 sh [|k|(h− y)] +D1 ch [|k|(h− y)], 0 6 y 6 h,

ϕ̄2 = C2 sh (|k|y) +D2 ch (|k|y), −H1 6 y 6 0,

а в случае 2 — в виде

ψ̄1 = C3 sh (|k|y) +D3 ch (|k|y), −H1 6 y 6 0; (2.1)

ψ̄2 = C4 sh [|k|(y +H1)] +D4 ch [|k|(y +H1)], −H 6 y 6 −H1, (2.2)

где Cj(k, s), Dj(k, s) (j = 1, 4 ) — неизвестные функции.
При вычислении преобразования Фурье для функции Φ0(x, y, t) и ее производных по x и

y использованы результаты, полученные в работе [13]. Выполняя преобразования Лапласа
для функции S(t), находим

∞∫
0

S(t) e−st dt =
S0Ω

s2 + Ω2
.

В случае 1 неизвестные функции η̄(k, s), Cj(k, s), Dj(k, s) (j = 1, 2) определяют-
ся из системы пяти алгебраических уравнений, следующих из граничных условий (1.2),
(1.7), (1.8):

(s+ ikU0)η̄ + |k|C1 = 0,

F2η̄ + iγC1 + (s+ ikU0)D1 = 0,

C1 ch (|k|h) +D1 sh (|k|h) + C2 = −Λ e−|k|l, (2.3)

C1

[
sh (|k|h) +

iγ

s
ch (|k|h)

]
+D1

[
ch (|k|h) +

iγ

s
sh (|k|h)

]
−D2 = −Λ e−|k|l,

C2 ch (|k|H1)−D2 sh (|k|H1) = Λ e−|k|(H1−l) .

Здесь

γ =
U0

h
sgn k, F2(k, s) = F1(k) +M1(s+ ikU0)

2,

F1(k) =
Dk4

ρ
− Qk2

ρ
+ g, M1 =

M

ρ
, Λ =

S0Ω

2|k|(s2 + Ω2)
.

(2.4)

Решение системы уравнений (2.3) для η̄(k, s) имеет вид

η̄ = S0Ω
[1 + e−2|k|(H1−l)] e−|k|(l+h)

1 + e−2|k|H
s(s+ ikU0)

(s2 + Ω2)P1(k, s)
.

Здесь P1(k, s) — полином третьей степени:

P1(k, s) = s3 + ia1s
2 + a2s+ ia3; (2.5)
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a1(k) = 2kU0 + γ[b+ + |k|M1b− − th (|k|H)]/f1,

a2(k) = [(γkU0 + |k|F1) th (|k|H)− 2γkU0(b+ + |k|M1b−) + γ2b−]/f1 − k2U2
0 , (2.6)

a3(k) = γ[(γkU0 + |k|F1)b− − k2U2
0 (|k|M1b− + b+)]/f1;

b±(k) = (1± e−2|k|h)
1− e−2|k|H1

2(1 + e−2|k|H)
, f1(k) = 1 + |k|M1 th (|k|H). (2.7)

Полином P1(k, s) представим в виде

P1(k, s) =
3∏

n=1

(s− sn),

где sn(k) (n = 1, 3 ) — корни уравнения P1(k, s) = 0.
После выполнения обратных преобразований Лапласа и Фурье получаем решение для

вертикального прогиба ледяного покрова

η(x, t) =
S0Ω

π

∞∫
0

1 + e−2k(H1−l)

1 + e−2kH
e−k(l+h)[A1(k, t) cos kx−B1(k, t) sin kx] dk, (2.8)

где A1(k, t), B1(k, t) — соответственно вещественная и мнимая части суммы
5∑

n=1

αn(k) esn(k)t, s4,5 = ±iΩ. Функции αn(k) (n = 1, 5) удовлетворяют равенству

s(s+ ikU0)

(s2 + Ω2)P1(k, s)
=

5∑
n=1

αn(k)

s− sn(k)
, (2.9)

и их определение сводится к решению системы пяти линейных алгебраических уравнений,
следующих из равенства числителей в левой и правой частях соотношения (2.9). При выво-
де (2.8) использовано свойство функций sn(k) (n = 1, 3) и αn(k) (n = 1, 5), заключающееся
в том, что их значения при k > 0 и k < 0 являются комплексно-сопряженными. При усло-
вии твердой крышки на верхней границе и U0 6= 0 также возникают волновые движения,
обусловленные наличием в жидкости стратификации по завихренности. Вертикальные
смещения границы между слоями ζ(x, t) определяются из кинематического условия

∂ζ

∂t
= v, y = 0.

В этом случае в результате преобразований Фурье и Лапласа функция ζ̄(k, s) имеет вид

ζ̄ =
S0Ωa4(k)

[s+ iγa5(k)](s2 + Ω2)
,

где

a4(k) =
ch [|k|(H1 − l)] sh (|k|h)

sh (|k|H)
, a5(k) =

sh (|k|H1) sh (|k|h)
sh (|k|H)

.

После выполнения обратных преобразований Фурье и Лапласа решение для функ-
ции ζ(x, t) принимает вид

ζ(x, t) =
S0Ω

π

∞∫
0

ch [|k|(H1 − l)] sh (|k|h)
sh (|k|H)

[A0(k, t) cos (kx)−B0(k, t) sin (kx)] dk,

где A0(k, t), B0(k, t) — соответственно вещественная и мнимая части суммы

σ1 es0(k)t + σ2 es4t + σ3 es5t, s0(k) = −iγa5(k).
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Функции σn(k) (n = 1, 3 ) определяются из равенства

1

(s− s0)(s− s4)(s− s5)
=

σ1

s− s0
+

σ2

s− s4
+

σ3

s− s5
.

При U0 = 0 волновое движение в жидкости отсутствует, так как в этом случае s0 = 0,
σ1 = Ω−2, σ2 = σ3 = −σ1/2 и функции A0, B0 равны соответственно A0 = [1−cos (Ωt)]/Ω2,
B0 = 0.

Аналогичным образом строится решение задачи в случае 2. С использованием для

функций ψ̄1(k, y, s) и ψ̄2(k, y, s) представлений (2.1) и (2.2) неизвестные функции η̄(k, s),
Cj(k, s), Dj(k, s) (j = 3, 4) определяются из системы уравнений, следующих из граничных
условий (1.10)–(1.12):

sη̄ − |k|C3 = |k|Λ e−|k|l,

F3η̄ + sD3 = sΛ e−|k|l,

C3 ch (|k|H1)−D3 sh (|k|H1)− C4 = Λ e−|k|(H1−l),

C3 sh (|k|H1)−D3 ch (|k|H1) + iγC4/s+D4 = −Λ e−|k|(H1−l),

C4 −D4 th (|k|h) = 0.

Здесь F3(k, s) = F1(k) + s2M1 и использованы обозначения (2.4). Решение этой системы
уравнений для η̄(k, s) имеет вид

η̄ = S0Ω
(1 + e−2|k|h) e−|k|l

1 + e−2|k|H
s(cs+ d)

(s2 + Ω2)P2(k, s)
,

где P2(k, s) — полином третьей степени:

P2(k, s) = s3 + ib1s
2 + b2s+ ib3,

b1(k) = γf+f2/f1, b2(k) = F1|k| th (|k|H)/f1, b3(k) = γF1|k|f−/f1, (2.10)

f±(k) = (1± e−2|k|H1)
1− e−2|k|h

2(1 + e−2|k|H)
, f2(k) = 1 +M1|k| th (|k|H1);

c(k) =
1 + e−2|k|(H−l)

1 + e−2|k|h , d(k) = 0,5iγ(1 + e−2|k|(H1−l)) th (|k|h).

После выполнения обратных преобразований Лапласа и Фурье решение, описывающее
прогиб ледяного покрова, имеет вид

η(x, t) =
S0Ω

π

∞∫
0

(1 + e−2kh) e−kl

1 + e−2kH
[A2(k, t) cos (kx)−B2(k, t) sin (kx)] dk, (2.11)

где A2(k, t), B2(k, t) — соответственно вещественная и мнимая части суммы
5∑

n=1

βn(k) esn(k)t. Функции βn(k) (n = 1, 5) определяются из равенства

s(cs+ d)

(s2 + Ω2)P2(k, s)
=

5∑
n=1

βn(k)

s− sn(k)

после решения соответствующей системы линейных алгебраических уравнений.
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Полагая в решении (2.11) U0 = 0, получаем решение задачи о действии пульсирую-
щего источника в слое первоначально покоящейся жидкости толщиной H. В этом случае
решение для η̄(k, s) имеет вид

η̄ =
S0Ω[e−|k|l + e−|k|(2H−l)]

(1 + e−2|k|H)f1(k)

s

(s2 + Ω2)[s2 + ω0(k)2]
,

где

ω0(k) =
√
|k|F1(k) th (|k|H)/f1(k). (2.12)

После выполнения обратных преобразований Лапласа и Фурье получаем решение для

прогиба ледяного покрова, которое в этом случае является четной по x функцией:

η(x, t) =
S0Ω

π

∞∫
0

[e−|k|l + e−|k|(2H−l)][cos (Ωt)− cos (ω0t)]

(1 + e−2|k|H)f1(k)(ω2
0 − Ω2)

cos (kx) dk. (2.13)

При D = Q = M = 0 данное решение совпадает с полученным в [13] для пульсирующе-
го источника, действующего в слое первоначально покоящейся жидкости под свободной
поверхностью.

3. Дисперсионные соотношения. Полученные решения позволяют исследовать
дисперсионные свойства ИГВ, возникающих в рассматриваемых случаях. Дисперсионное
соотношение устанавливает для каждой волны зависимость ее частоты ω от волнового
числа k.

Для случая 1 используем уравнение P1(k, s) = 0, где функция P1(k, s) определена
в (2.5). Выполняя замену ω = is, получаем полином для определения дисперсионных соот-
ношений каждой из трех волновых мод:

ω3 − a1(k)ω
2 − a2(k)ω + a3(k) = 0 (3.1)

(значения an(k) (n = 1, 3) определены в (2.6)). Анализируя функции an(k), нетрудно пока-
зать, что для каждой из трех волн выполняется равенство ωn(k) = −ωn(−k).

Групповая скорость каждой волновой моды равна c
(n)
g = dωn/dk. Используя (3.1),

получаем

c
(n)
g =

a′1ω
2
n + a′2ωn − a′3

3ω2
n − 2a1ωn − a2

,

где штрих означает дифференцирование по k.
В частном случае однослойной жидкости с линейным сдвиговым потоком h = H

(H1 = 0) функции b±(k) в (2.7) тождественно равны нулю и уравнение (3.1) становит-
ся квадратным:

ω2 − ā1(k)ω − ā2(k) = 0,

где

ā1(k) = 2kU0 − γ th (|k|H)/f1, ā2(k) = (γkU0 + F1|k|) th (|k|H)/f1 − k2U2
0 .

Следовательно, в этом случае существует только две волновые моды

ω1,2 = ā1/2±
√

(ā1/2)2 + ā2.

При наличии твердой крышки на верхней границе жидкости существует только од-
на волновая мода, для которой дисперсионная зависимость имеет вид ω = U0a5(k)/h и
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Рис. 2. Вертикальные прогибы ледяного покрова в первоначально покоящейся
жидкости при различных значениях t:
а — t = 4 с, б — t = 12 с, в — t = 30 с; X0, X1 — положение волновых фронтов

длинноволновых возмущений и колебаний с частотой Ω

представляет собой функцию, монотонно возрастающую от нуля при k = 0 до lim
k→∞

ω(k) =

0,5U0/h. Значение групповой скорости cg = dω/dk при k = 0 равно cg(0) = U0H1/H.
Известно, что для кубического уравнения с вещественными коэффициентами (см., на-

пример, [14]) возможно существование двух сопряженных комплексных корней. Для урав-
нения (3.1) это имеет место при условии, что значение Z положительное:

Z = (r/3)3 + (q/2)2, (3.2)

r(k) = −(a2(k) + a2
1(k)/3), q(k) = a3(k)− 2(a1(k)/3)3 − a1(k)a2(k)/3.

Для случая 2 из уравнения P2(k, s) = 0, используя соотношения (2.10), находим

ω3 − b1(k)ω
2 − b2(k)ω + b3(k) = 0. (3.3)

В частном случае однослойной жидкости при h = H (H1 = 0) аналогично случаю 1
получаем квадратное уравнение

ω2 − b̄1(k)ω − b2(k) = 0,

где b̄1(k) = γf+/f1.
4. Результаты численных расчетов. Для характеристик пульсирующего источ-

ника использованы значения, приведенные в работе [13]:

H = 1 м, Ω = 2π c−1, S0 = 1 м2/c, (4.1)

а для ледяного покрова — значения, полученные в работе [15] в результате экспериментов
в ледовом бассейне:

E = 5 · 109 Па, ν = 0,3, hi = 4 мм, ρi = 922, 5 кг/м3, ρ = 103 кг/м3. (4.2)

Ускорение свободного падения равно g = 9,81 м/c2.
На рис. 2 представлены прогибы ледяного покрова в моменты времени t = 4, 12, 30 c,

возникающие в первоначально покоящейся жидкости при включении пульсирующего ис-
точника, который расположен на расстоянии 0,5 м от верхней границы жидкости. Для
случая свободной поверхности жидкости подобные расчеты проведены в [13]. Известно,
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Рис. 3. Области неустойчивости значений волновых чисел в зависимости от

скорости сдвигового потока Ũ0 при различных значениях параметра сжатия:
1 — Q̃ = 0, 2 — Q̃ = 0,7, 3 — Q̃ = 1,5, 4 — Q̃ = 1,9; сплошные кривые — M > 0,
штриховые — M = 0

что дисперсионное соотношение (2.12) накладывает ограничение на максимальное зна-
чение коэффициента сжатия Q. Устойчивость колебаний плавающей упругой пластины
гарантирует условие Q̃ ≡ Q/

√
gρD < 2 [1, 2]. Подробно влияние коэффициента сжатия

на дисперсионные характеристики ИГВ исследовано, например, в [11]. Представленные на
рис. 2 результаты получены при Q = 0.

Зависимость групповой скорости cg от волнового числа k позволяет определить поло-
жение волновых фронтов возбуждаемых колебаний. Значение cg(0) соответствует скорости
распространения длинноволновых возмущений. Как для свободной поверхности, так и для
ледяного покрова cg(0) =

√
gH. В рассматриваемой задаче волновые движения порожда-

ются периодическим источником, фиксированная частота Ω которого определяет волновой
фронт распространения возмущений заданной частоты. Положение этого волнового фрон-
та в случае свободной поверхности определено в [16]. Бегущая волна распространяется при
больших временах внутри сектора R = {(x, t): −V t < x < V t}, V > 0 со скоростью, кото-
рая при t→∞ асимптотически стремится к скорости V = cg(k0) (k0 — корень уравнения

ω0(k0) = Ω).
Внутри сектора R устанавливается волновое движение с длиной волны 2π/k0. При

заданных параметрах (4.1) в случае свободной поверхности k0 ≈ 4,027 м−1, cg(k0) ≈
0,784 м/с, а в случае ледового покрова с параметрами (4.2) k0 ≈ 3,154 м−1, cg(k0) ≈
1,916 м/с. (При M = 0 k0 ≈ 3,135 м−1, cg(k0) ≈ 1,923 м/с.) Сравнение результатов, при-
веденных на рис. 2 и в работе [13], показывает, что в секторе R амплитуда ИГВ меньше

амплитуды поверхностной волны, а длина ИГВ — больше. На рис. 2,б,в указаны также
координаты волновых фронтов X0 = tcg(0) и X1 = tcg(k0).

Далее приводятся результаты расчетов для случая 1 (верхний сдвиговый слой). С уве-
личением скорости U0 при некоторых значениях волнового числа k и докритических зна-
чениях коэффициента сжатия Q̃ < 2 в уравнении (3.1) появляются комплексные корни.
Это означает, что в рамках линейной теории возникающее волновое движение стано-
вится неустойчивым. Границы области устойчивости на плоскости (k̃, Ũ0), где k̃ = kh,
Ũ0 = U0/

√
gh, можно определить, используя нулевую изолинию функции Z в (3.2). На

рис. 3 показаны нулевые изолинии функции Z при толщине сдвигового слоя h = 0,3 м и
значениях безразмерного коэффициента сжатия Q̃ = 0; 0,7; 1,5; 1,9 (кривые 1–4). Сплош-
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Рис. 4. Дисперсионные зависимости ω̃n(k̃):
а — Q̃ = 0, б — Q̃ = 1,5; 1, 2 — зависимости ω̃0(k̃), −ω̃0(k̃) в (2.12) в случае первона-
чально покоящейся жидкости соответственно, 3–5 — Ũ0 = 0,2 (3 — ω̃1(k̃), 4 — ω̃2(k̃),
5 — ω̃3(k̃)); 6–8 — Ũ0 = 0,5 (6 — ω̃1(k̃), 7 — ω̃2(k̃), 8 — ω̃3(k̃))

ные кривые соответствуют значениям инерционного коэффициента M > 0, штриховые —
M = 0. Видно, что допустимые значения U0, которые могут быть рассмотрены в линейной
постановке при заданном значении толщины сдвигового слоя h, с ростом параметра сжа-
тия уменьшаются. Из рис. 2, 3 следует, что влияние инерции ледяного покрова на устой-
чивость течения незначительно, поэтому дальнейшие расчеты выполнены при M = 0.

На рис. 4 приведены дисперсионные зависимости ω̃n(k̃) при h = 0,3 м, где ω̃n =

ωn

√
h/g. Рис. 4,а соответствует значению параметра сжатия Q = 0, рис. 4,б — значе-

нию Q̃ = 1,5. Корни полинома (3.1) нумеруются в порядке убывания их значений. В обоих
случаях значения корня ω̃2 малы по абсолютной величине по сравнению со значениями кор-
ней ω̃1 и ω̃3. Дисперсионные зависимости ω̃1,2 определяют поведение волновых возмущений

при x > 0, зависимость ω̃3 — при x < 0.
Представленные на рис. 4 дисперсионные зависимости позволяют сделать вывод, что

при наличии сдвигового слоя вертикальные прогибы ледяного покрова существенно от-
личаются от прогибов в случае первоначально покоящейся жидкости (U0 = 0). В этом

случае при больших значениях времени бегущие волны распространяются внутри сек-
тора R1 = {(x, t): −V−t < x < V+t}, V− > 0, V+ > 0 со скоростями, асимптотически
стремящимися при t → ∞ к скоростям V+ = cg(k+) и V− = cg(k−) (k+ — корень уравне-
ния ω1(k) = Ω; k− — корень уравнения ω3(k) = −Ω). Внутри сектора R1 устанавливается

волновое движение с различными длинами волн при x > 0 и x < 0, причем при x > 0
длины волн больше, чем при x < 0. Это различие возрастает с увеличением скорости U0

и параметра сжатия Q.
Вертикальные прогибы ледяного покрова η(x, t) при h = 0,3 м, l = 0,2 м, t = 12 с,

Ũ0 = 0,5 определены в результате численного интегрирования (2.8) и представлены на

рис. 5 при Q̃ = 0; 1,5. При наличии сдвигового потока прогибы ледяного покрова стано-
вятся несимметричными относительно точки x = 0. Характер волнового движения под-
тверждает выводы, сделанные выше с использованием дисперсионных зависимостей. При
x > 0 амплитуды вертикальных смещений больше, чем при x < 0.

На рис. 6 показаны зависимости вертикальных смещений ледяного покрова от време-
ни t в фиксированных точках x = −15 м (рис. 6,а) и x = 15 м (рис. 6,б) при Ũ0 = 0,5,
Q = 0. Видно, что с увеличением времени волновое движение выходит на установившийся
режим с периодом 2π/Ω = 1 с.
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Рис. 5. Вертикальные прогибы ледяного покрова при t = 12 с, Ũ0 = 0,5:
а — Q̃ = 0, б — Q̃ = 1,5
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Рис. 6. Зависимость вертикальных прогибов ледяного покрова от времени при
Ũ0 = 0,5, Q = 0 в фиксированных точках:
а — x = −15 м, б — x = 15 м

На рис. 7 представлены вертикальные смещения поверхности раздела слоев ζ(x, t) в
моменты времени t = 4, 12, 30 c для случая твердой крышки на верхней границе жидкости
при h = 0,3 м, l = 0,2 м и Ũ0 = 1,5. В этом случае волновое движение, обусловленное нали-
чием неравномерной завихренности, существует только при x > 0. Скорость распростра-
нения длинноволновых возмущений при заданных параметрах равна cg(0) ≈ 1,801 м/с. На
рис. 7,б,в указаны также координаты фронта длинноволновых колебаний X0 = tcg(0). При
указанных выше параметрах не возникает волнового фронта, обусловленного частотой Ω
пульсаций источника, так как скорость сдвигового потока U0 достаточно мала и предель-
ное значение дисперсионного соотношения 0,5U0/h ≈ 4,289 c−1 меньше заданной частоты

Ω = 2π c−1.
Для случая 2 (придонный сдвиговый слой) расчеты выполнены при значениях исход-

ных параметров (4.1), (4.2), толщине придонного слоя h = H − H1 = 0,3 м и глубине
погружения пульсирующего источника l = 0,5 м. На рис. 8 представлены дисперсионные
зависимости ω̃n(k̃) при Ũ0 = 2,5 для значений параметра сжатия Q = 0 (рис. 8,а) и Q̃ = 1,5
(рис. 8,б). Кривые 1–3 соответствуют номеру волновой моды и определены как корни поли-

нома (3.3), а кривые 4, 5 представляют собой дисперсионную зависимость ±ω̃0(k̃) в (2.12)
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новых возмущений
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Рис. 8. Дисперсионные зависимости ω̃n(k̃) при Ũ0 = 2,5:
а — Q̃ = 0, б — Q̃ = 1,5; 1–3 — номер волновой моды для придонного сдвигового

слоя (1 — ω̃1, 2 — ω̃2, 3 — ω̃3), 4, 5 — зависимости ω̃0(k̃), −ω̃0(k̃) в (2.12) в случае
первоначально покоящейся жидкости

для случая первоначально покоящейся жидкости. Следует отметить, что в данном случае
все возбуждаемые волновые моды являются устойчивыми при докритических значениях

параметра сжатия Q̃ < 2, так как значение величины Z в (3.2) для полинома (3.3) при
рассматриваемых параметрах остается отрицательным при всех значениях волнового чис-
ла k.

Распределение вертикальных смещений ледяного покрова в случае придонного сдви-
гового слоя определено в результате численного интегрирования (2.13) и представлено на
рис. 9 при фиксированном значении времени t = 12 с, а на рис. 10,а,б при фиксированных
значениях продольной координаты x = −15; 15 м соответственно. Рис. 9,а и рис. 10 соот-
ветствуют значению коэффициента сжатия Q = 0, рис. 9,б — значению Q̃ = 1,5. Заметим,
что вертикальные смещения ледяного покрова при x < 0 и Q = 0 на рис. 9,а близки к
его прогибам в первоначально покоящейся жидкости (см. рис. 2,б). Это объясняется тем,
что дисперсионные зависимости ω3(k) в случае сдвигового течения в нижнем слое и ω0(k)
(см. (2.12)) в случае бессдвигового течения практически совпадают (см. рис. 8,а).
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Рис. 10. Зависимость вертикальных прогибов ледяного покрова от времени при
Ũ0 = 2,5, Q = 0 в фиксированных точках:
а — x = −15 м, б — x = 15 м

Из рис. 10,а следует, что при x < 0 достаточно быстро устанавливаются периодиче-
ские колебания ледового покрова с частотой Ω пульсаций погруженного источника. Одна-
ко при x > 0 (см. рис. 10,б) появляется модуляция волновых возмущений, так как вторая
волновая мода становится сопоставимой с первой модой, что приводит к суперпозиции ко-
лебаний с различными волновыми числами. В отличие от случая верхнего сдвигового слоя
амплитуда колебаний при x > 0 значительно меньше, чем при x < 0.

Заключение. Исследовано волновое движение, возникающее в жидкости под ледя-
ным покровом при наличии сдвиговых слоев и включении погруженного пульсирующего

источника. Ледяной покров моделируется тонкой упругой пластиной с учетом сжимаю-
щих усилий. В рамках линейной теории волн построено интегральное представление ре-
шения, описывающего вертикальные прогибы ледяного покрова. Показано, что и в случае
верхнего сдвигового слоя, и в случае придонного сдвигового слоя колебания ледяного по-
крова существенно отличаются от колебаний, имеющих место при пульсациях источника
в изначально покоящейся жидкости. Наличие сжимающих усилий в ледяном покрове и
сдвигового течения в жидкости оказывает существенное влияние на вертикальные проги-
бы ледяного покрова. В случае верхнего сдвигового слоя волновое движение становится
неустойчивым с увеличением как скорости сдвигового потока, так и коэффициента сжа-
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тия ледяного покрова. В случае придонного сдвигового потока возникает суперпозиция

колебаний с различными длинами волн. Показано, что даже при замене ледяного покрова
твердой крышкой возникают волновые движения, вызванные стратификацией жидкости
по завихренности. При этом волновое движение существует только вниз по потоку.
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