УДК 536.33, 532.5, 51-73

Исследование влияния последствий лесных пожаров на перенос тепла и влаги в сезонно-талом слое почвы методами численного моделирования^{*}

К.А. Финников¹, Т.В. Пономарева^{1,2}, Е.И. Пономарев^{1,2}, К.Ю. Литвинцев³

¹Сибирский федеральный университет, Красноярск ²Институт леса им. В.Н. Сукачева СО РАН, Красноярск ³Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: kfinnikov@sfu-kras.ru

Проведено численное моделирование процессов переноса тепла и влаги, а также фазового перехода лед – вода в сезонно-талом слое почвы. Проанализировано влияние последствий природного пожара на температуру почвы и глубину протаивания в зависимости от влагоудерживающих свойств почвы в условиях криолитозоны Сибири. Результаты расчетов демонстрируют существенное увеличение глубины протаивания в результате выгорания верхнего органического горизонта. Количественные показатели воздействия природных пожаров существенно зависят от влагоудерживающих свойств верхних органических горизонтов почвы.

Ключевые слова: перенос влаги, перенос тепла, почва, криолитозона.

Введение

Больше половины территории лесных экосистем Сибири относится к зоне мерзлоты. Современные прогнозы позволяют констатировать значимость процессов, происходящих в мерзлотных почвах, на уровне глобальной климатической системы планеты [1]. Деградация мерзлоты и долговременные аномалии сезонно-талого слоя (СТС) могут определять масштабные изменения в существующих экосистемах. Причиной аномальных процессов в почвах, наряду с влиянием климатических изменений, является значимое воздействие массовых природных пожаров. По данным инструментального спутникового мониторинга пожары в бореальных лесах криолитозоны Сибири приводят к нарушениям не менее 1 % лесопокрытой территории в год [2], что определяет существенный «накопительный» эффект [3].

^{*} Исследование выполнено за счет средств гранта Российского научного фонда № 23-14-20007 Красноярского краевого фонда науки, https://rscf.ru/project/23-14-20007/.

[©] Финников К.А., Пономарева Т.В., Пономарев Е.И., Литвинцев К.Ю., 2023

Послепожарные изменения в лесах криолитозоны характеризуются полным или частичным прогоранием мохово-лишайникового покрова и подстилки — естественного теплоизолирующего слоя. В результате существенно меняется значение альбедо, степень черноты и термическое сопротивление подстилающей поверхности, и, соответственно, температурный режим верхних горизонтов почвы [4]. В условиях отсутствия теплоизолирующего слоя подстилки прогрев почвы определяет ряд возможных изменений в функционировании экосистем, возникающих вследствие сезонного увеличения активного слоя почвы в сравнении со статистической нормой для СТС [5, 6].

Математическая модель

Моделирование и прогноз динамики тепловых процессов в верхних горизонтах почвы и сезонно-талом слое мерзлоты — задача актуальная и широко обсуждаемая в отечественной и зарубежной литературе [1, 7, 8]. В настоящей работе приведены результаты численного моделирования как годового цикла температуры в почве, так и глубины СТС с учетом вариации теплофизических параметров в почвенных горизонтах и горизонтального теплопереноса в границах локального послепожарного участка. Основная цель настоящей работы заключается в оценке влияния температурных аномалий поверхности послепожарных участков на вариацию сезонно-талого слоя с использованием модели переноса тепла и влаги для предельных случаев состояния почв и с учетом неоднородности теплофизических свойств в почвенных горизонтах.

В предложенной модели в качестве входных параметров используются данные о свойствах криогенных почв в лиственничниках (Larix sibirica, Larix gmelinii) Среднесибирского плоскогорно-таежного лесного района (62–66° с.ш., 96–107° в.д.). Математическая модель процесса теплопереноса в почве формулируется как многомерная нестационарная и основывается на уравнении переноса энергии с учетом теплоты фазового перехода:

$$c_{p}(x,T)\rho(x)\frac{\partial T}{\partial t} - \frac{\partial}{\partial x_{i}}\left(\lambda(x,T)\frac{\partial T}{\partial x_{i}}\right) = -y_{w}(x,T)L\frac{\partial\Lambda}{\partial t},$$
(1)

где y_w — объемная доля воды в почве, L — теплота плавления единицы объема льда, Λ — отношение массы воды, находящейся в жидком агрегатном состоянии, к общей массе воды. Последняя величина в каждой точке является функцией времени, описываемой уравнением:

$$\frac{\partial \Lambda}{\partial t} = \nu(\max\left(T - T_0, 0\right) (1 - \Lambda) + \min\left(T - T_0, 0\right) \Lambda), \tag{2}$$

где ν — постоянная, характеризующая интенсивность теплопередачи, T_0 — температура точки фазового перехода. Предложенная формулировка модели, согласно известным подходам в формулировании моделей дисперсных сред [9], позволяет рассматривать перемежаемость фрагментов льда и воды на масштабах меньше масштаба расчетной сетки.

Коэффициенты уравнения (1) зависят от физических свойств грунта в сухом состоянии и от содержания воды или льда. Для описания зависимости коэффициента теплопроводности от насыщенности влагой в соответствии с подходом [8] используется правило смеси:

$$\lambda(N_K) = \lambda_{\text{cyx}} + (\lambda_{\text{Hacbill}} - \lambda_{\text{cyx}}) \operatorname{Ke}(S),$$
(3)

здесь $\lambda_{\text{сух}}$, $\lambda_{\text{насыщ}}$ — коэффициенты теплопроводности почвы в сухом и влагонасыщенном состояниях, Ke(S) — функция Керстена, аргументом которой является относительное влагосодержание, т.е. количество влаги, отнесенное к максимально возможному количеству влаги в данной породе. Функция Керстена в общем случае является растущей и удовлетворяет условиям: Ke(0) = 0, Ke(1) = 1. Зависимости Ke(S) для различных горизонтов могут различаться. В настоящей работе приняты зависимости, выведенные в работе [10] на основе аппроксимации результатов измерений теплопроводности широкого набора почвенных пород. Коэффициенты теплопроводности во влагонасыщенном состоянии зависят от плотности почвы и от доли воды, находящейся в жидком агрегатном состоянии. Для описания этих зависимостей использовались модельные выражения, выведенные в работах [8, 11] для горизонтов подстилки и в [12] — для нижележащих минеральных горизонтов.

Перенос влаги в почве описывается уравнением Ричардса [13]:

$$\frac{\mathrm{d}h}{\mathrm{d}\theta}\frac{\partial h}{\partial t} + \nabla \left(K\nabla h - K\mathbf{e}_{y}\right) = 0,\tag{4}$$

где h — матричный потенциал, \mathbf{e}_{y} — единичный вектор, направленный вверх, $\theta(h)$ — влагосодержание, K(h) — влагопроводность. Зависимость влагосодержания и влагопроводности от матричного потенциала принята в соответствии с моделью ван Генухтена [14]:

$$S(h) = \frac{\theta(h) - \theta_{\rm r}}{\theta_{\rm s} - \theta_{\rm r}} = \left(1 + |\alpha h|^n\right)^m,$$

$$K(h) = K(S(h)) = K_{\rm s} S^{0.5} \left(1 - \left(1 - S^{\frac{1}{m}}\right)^m\right)^2, \ m = 1 - \frac{1}{n},$$
(5)

здесь коэффициенты зависимостей θ_s , θ_r , α , *n* соответствуют предельному влагосодержанию, остаточному влагосодержанию, обратному характерному напору и степенному параметру и являются индивидуальными характеристиками органических и почвенных слоев.

Методы решения

Уравнения тепло- и влагопереноса в двумерной постановке аппроксимировались на прямоугольной равномерной сетке методом конечного объема. Для аппроксимации диффузионных слагаемых использовались центральные разности, для конвективного слагаемого в уравнении влагопереноса — направленные разности против потока. Численный алгоритм тестировался на задачах с аналитическим решением: на задаче Стефана для уравнения теплопроводности, задача о распространении фронта увлажнения для уравнения Ричардса. В задаче о распространении фронта увлажнения принимались модельные выражения для зависимостей $\theta(h)$, K(h), позволяющие получить точное решение [15]. В ходе тестирования было установлено, что решение уравнения Ричардса требует более детальной пространственной дискретизации в сравнении с уравнением переноса тепла. Это закономерно и объясняется тем, что данное уравнение содержит

Рис. 1. Мгновенная картина распределения относительного влагосодержания в задаче о распространении фронта увлажнения.

Глубина отсчитывается от положения передовой границы фронта; h — шаг дискретизации по вертикали; l — аналитическое решение, 2 - h = 4 см, 3 - h = 1 см.

сильно нелинейное конвективное слагаемое, а кроме того, коэффициенты в остальных слагаемых уравнения очень зависимы от матричного влагопотенциала. Сопоставление расчетных результатов и точного решения приведено на рис. 1. Здесь представлены результаты для двух вариантов модельной зависимости:

$$K(S) = K_s S^n$$
 при $n = 2$ и при $n = 4$.

Случай n = 4 отвечает более сильной форме зависимости, следствием чего является и более крутая форма фронта увлажнения, распространяющегося в направлении сверху вниз. Свойства реальных почв, описываемых соотношениями (5), качественно близки свойствам модельной почвы с n = 4. Исходя из данных результатов, шаг дискретизации по вертикали выбирался не более 1 см, и расчетные результаты для реальных почв проверялись на сходимость при уменьшении шага по вертикали до 0,5 и 0,25 см. Сходимость результатов по величине пространственного шага по горизонтали наблюдалась уже при величинах шага на уровне 1/100 горизонтального размера или 40 см, что объясняется отсутствием в данном направлении конвективного переноса влаги, формирующим сильные градиенты влагопотенциала. Временной шаг при решении уравнения теплопереноса составлял 15 минут, для уравнения влагопереноса условия устойчивости требовали величины шага в пределах 0,5-1 минуты. Выбор меньших величин временных шагов не приводил к заметным изменениям результатов.

Объектом моделирования является почва лесной криолитозоны. Используемые параметры моделей тепло- и влагопереноса приведены в таблице.

Граничные условия уравнений переноса тепла и влаги на поверхности почвы определяются в соответствии с метеоусловиями, включающими температуру и относительную влажность воздуха, скорость ветра, наличие и глубину снежного покрова, интенсивность прямого и рассеянного солнечного излучений, падающего излучения в длинноволновом инфракрасном диапазоне, с учетом альбедо поверхности, различного для нарушенных и ненарушенных участков почвы. Для уравнения переноса тепла (1) граничным условием на поверхности является условие III рода:

Таблица

Индекс*	Глубина, м	c_p , Дж/(кг·К)	Плотность в сухом состоянии, кг/м ³	<i>α</i> , м ⁻¹	п	$\theta_{\rm r},\theta_{\rm s},\%$	К _s , м/час
Oao	0,0–0,12	1500	60	80,2	1,46	1; 81	0,3
O(F+H)	0,12–0,17	1880	700	25	1,46	1; 55	0,07
CR	0,17–0,35	750	1100	8,4	1,577	4; 37	0,02
С	> 0,35	920	1500	0,32	1,38	0,9; 42	0,008

Параметры почвенных слоев

^{*}Индексы горизонтов соответствуют следующим морфологиям: Оао — слаборазложившиеся остатки хвои, мхов и лишайников, O(F + H) — сильно разложившиеся бесструктурные органические остатки, CR — смесь суглинистог-глинистого минерального материала и растительных остатков разной степени разложения, C — суглинисто-глинистый минеральный горизонт с включением щебня.

$$\lambda \partial T / \partial n = \alpha (T(0) - T_{air}) - q_{LR} - (1 - A)q_{SR}$$

здесь *а* — коэффициент теплоотдачи, зависимость которого от скорости ветра и температуры воздуха задана согласно выражению [16]

$$\alpha = \sqrt{u_{\rm lm}} \left(7 + 3,6\Delta T \,/\, u_{\rm lm}^2\right),$$

в котором используется скорость ветра на высоте 1 м и перепад температур между поверхностью и воздухом ΔT , q_{LR} — воспринятый поток тепла в длинноволновом инфракрасном диапазоне, образованный падающим атмосферным и излученным тепловыми излучениями; q_{SR} — падающий поток тепла в диапазоне видимого и коротковолнового инфракрасного излучения, создаваемый Солнцем; A — альбедо поверхности. Потоки лучистого тепла рассчитывались с учетом метеоданных, широты, времени года и суток. Значения альбедо для неповрежденной и поврежденной почвы в соответствии с измерениями [17] приняты соответственно 0,18 и 0,13, а значения поглощающей способности в области теплового инфракрасного излучения соответственно равны 0,9 и 0,98. В представленном исследовании не рассматривался процесс изменения радиационных свойств почвы с течением времени. Учет этого процесса как составной части восстановительной сукцессии является предметом дальнейших исследований.

Граничным условием на поверхности почвы для уравнения переноса влаги (4) также является условие III рода:

$$-K\left(\frac{\partial h}{\partial y}+1\right) = \alpha_m \left(\rho_s(T)\exp\left(\frac{gh}{RT}\right) - \rho_s(T_{\rm air})\varphi\right),$$

где $\alpha_m = \alpha D_V / \lambda_{air}$ — коэффициент массоотдачи пара на поверхности почвы, определяемый по рассчитанному коэффициенту теплоотдачи α , коэффициенту диффузии пара в воздухе D_V и коэффициенту теплопроводности воздуха λ_{air} , $\rho_s(T)$, $\rho_s(T_{air})$ — плотность насыщенного пара воды, определяемая, соответственно, при температуре верхней границы почвы и при температуре воздуха, g — ускорение свободного падения, R — индивидуальная газовая постоянная пара, φ — относительная влажность воздуха. В случае выпадения осадков в верхнем слое почвы, характеризуемым высокой влагопроводностью, включается однородный источник влаги. На противоположной, нижней границе расчетной области, а также на ее боковых границах принимались условия отсутствия потока тепла и влаги:

$$\frac{\partial T}{\partial n} = 0, \quad \frac{\partial h}{\partial n} = -\mathbf{n}\mathbf{e}_y.$$

Влияние данных граничных условий на решение незначительно при условии достаточности глубины расчетной области и отдаленности ее боковых границ от области нарушенной почвы, расположенной в центральной части расчетной области. В качестве начальных условий задачи приняты равномерные распределения температуры и потенциала влаги: температура равна температуре воздуха на момент начала расчета, потенциал влаги h = -3 м. На 3-4 год времени задачи устанавливается периодическое решение с длиной периода 1 год, не зависящее от начальных условий. Сопоставление максимальных глубин протаивания и других характеристик нестационарного процесса, полученных при различных составах почвы, проводится для установившихся периодических решений. В ходе вычислений использовались годовые данные по глубине снежного покрова, температуре воздуха и скорости ветра метеостанции Тура (64,27° с.ш., 100,22° в.д.).

Результаты моделирования

Моделирование тепло- и влагопереноса выполнялось на многолетнем временном промежутке, в течение которого устанавливалось периодическое решение с периодом, равным 1 году. Расчетная область имела размер 30 м по ширине и 6 м по высоте. Влияние пожара моделировалось тем, что на части расчетной области отсутствовал верхний органический горизонт почвы Оао, а верхняя граница следующего по глубине горизонта рассматривалась как поверхность граничных условий уравнений переноса тепла и влаги и, кроме того, учитывалось изменение альбедо.

Результаты моделирования приведены на рис. 2–4. Сопоставляются результаты, полученные для различных влагоудерживающих свойств почвы. В базовом варианте данные свойства полностью соответствуют данным таблицы. В двух других вариантах изменяются свойства двух верхних горизонтов. На диаграммах представлена временная зависимость температуры на глубине 20 см и глубины границы талого слоя. Талый слой отсутствует в зимний период времени, в осенний же период, когда от поверхности распространяется фронт замерзания, наблюдаются две границы талого слоя – верхняя и нижняя. В конце осени данные границы сходятся друг с другом, талый слой исчезает.

Рис. 2. Временные зависимости температуры на глубине 20 см (*a*) и глубины протаивания в случае базового варианта (*b*).

I — Нарушенная почва (нижняя и верхняя границы (b)). 2 — Фоновая почва (нижняя граница (b)).

Puc. 3. Временные зависимости температуры на глубине 20 см (*a*)
 и глубины протаивания в случае двукратно уменьшенного параметра *α* в слое O(F+H) (*b*).
 l — Нарушенная почва (нижняя и верхняя границы (*b*)).

Во всех рассмотренных вариантах послепожарный участок характеризуется большей амплитудой изменения температуры в течение года и большей глубиной протаивания вечной мерзлоты в сравнении с неповрежденным участком. В течение большей части годового цикла температура на послепожарном участке превышает температуру на неповрежденном. Этот эффект существенно усиливается при снижении значения параметра α , характеризующего влагоудерживающие свойства горизонта О(F+H). Снижение указанного параметра приводит к увеличению влагонасыщенности при одинаковой величине матричного потенциала, что видно при сравнении рис. 2 и 4. Вследствие снижения величины α в верхнем органическом горизонте Оао уменьшаются сезонные колебания температуры, но практически не изменяется глубина протаивания, что можно наблюдать при сравнении рис. 2 и 3. Влияние влагосодержания на температурное поле двояко. С одной стороны, при увеличении влагосодержания возрастает теплоемкость и теплота фазового перехода воды, приходящиеся на единицу объема, что в среднем снижает амплитуду сезонных колебаний температуры. С другой стороны, вследствие увеличения влагосодержания существенно возрастает коэффициент теплопроводности почвы, в особенности для слоев с высоким содержанием органического вещества и с низкой плотностью в сухом состоянии. Расчетные результаты показывают, что влияние второго фактора может быть более существенным, чем первого: увеличение влагосодержания в горизонте O(F+H) приводит к росту амплитуды сезонных колебаний температуры.

Puc. 4. Временные зависимости температуры на глубине 20 см (*a*)
 и глубины протаивания в случае двукратно уменьшенного параметра *α* в слое Оао (*b*).
 I — Нарушенная почва (нижняя и верхняя границы (*b*)).

Заключение

Численное моделирование тепло- и влагопереноса в сезонно-талом слое почвы демонстрирует существенное изменение температурного и влажностного режимов в результате распространенного варианта повреждения структуры почвы лесным пожаром выгорания верхнего почвенного слоя, включающего слаборазложившиеся остатки хвои, мхов и лишайников. В нижележащих почвенных слоях существенно увеличивается амплитуда сезонных колебаний температуры, глубина протаивания. Учет влияния влажностного режима почвы важен для адекватности расчета температурного поля ввиду сильного влияния влажности на теплофизические свойства почв.

Список литературы

- Anisimov O.A. Potential feedback of thawing permafrost to the global climate system through methane emission // Environmental. Research Letters. 2007. Vol. 2, No. 4. P. 1–7.
- 2. Харук В.И., Пономарев Е.И. Пространственно-временная горимость лиственничников Центральной Сибири // Экология. 2017. № 6. С. 413–419.
- 3. Пономарев Е.И., Пономарева Т.В. Влияние послепожарных температурных аномалий на сезонное протаивание почв мерзлотной зоны Средней Сибири по дистанционным данным // Сибирский экологический журнал. 2018. № 4. С. 477–486.
- Fernández-Manso A., Quintano C., Roberts D.A. Can landsat-derived variables related to energy balance improve understanding of burn severity from current operational techniquess // Remote Sensing. 2020. Vol. 12, No. 5. P. 890–895.
- Knorre A.A., Kirdyanov A., Prokushkin A., Krusic P., Buntgen U. Tree ring-based reconstruction of the longterm influence of wildfires on permafrost active layer dynamics in Central Siberia // Sci. of the Total Environment. 2019. Vol. 652. P. 314–319.
- 6. Николаев А.Н., Федоров П.П., Десяткин А.Р. Влияние гидротермического режима почв на радиальный прирост лиственницы и сосны в Центральной Якутии // Сибирский экологический журнал. 2011. Т. 17, № 2. С. 189–201.
- 7. Десяткин Р.В., Десяткин А.Р., Федоров П.П. Температурный режим мерзлотно-таежных почв Центральной Якутии // Криосфера Земли. 2012. Т. XVI, № 2. С. 70–78.
- 8. Porada P., Ekici A., Beer C. Effects of bryophyte and lichen cover on permafrost soil temperature at large // The Cryosphere. 2016. Vol. 10, No. 5. P. 2291–2315.
- Nourgaliev R.R., Dinh T.N., Haraldsson H.O., Sehgal B.R. The multiphase Eulerian-Lagrangian transport (MELT-3D) approach for modeling of multiphase mixing in fragmentation processes // Progress in Nuclear Energy. 2003. Vol. 42, No. 2. P. 123–157.
- Tarnawski V.R., Leong W.H., Bristow K.L. Developing a temperature-dependent Kersten function for soil thermal conductivity // Intern. J. Energy Res. 2000. Vol. 24. P. 1335–1350.
- 11. Ekici A., Beer C., Hagemann S., Boike J., Langer M., Hauck C. Simulating high-latitude permafrost regions by the JSBACH terrestrial ecosystem model // Geoscientific Model Development. 2014. Vol. 7, No. 2. P. 631–647.
- 12. Семенов С.М., Сиротенко О.Д., Фролов И.Е., Хлебникова Е.И., Шерстюков Б.Г. Методы оценки последствий изменения климата для физических и биологических систем. М.: Гидрометеоиздат, 2012. 509 с.
- Richards L.A. Capillary conduction of liquids through porous mediums // Phys. J. Gen. Applied Physics. 1931. Vol. 1. P. 318–333.
- 14. Van Genuchten M.T., Cleary R.W. Movement of solutes in soil: computer-simulated and laboratory results // Developments in Soil Sci. 1979. Vol. 5. P. 349–386
- **15. Hayek M.** An exact explicit for one-dimensional, transient, nonlinear Richards' equation for modeling infiltration with special hydraulic functions // J. of Hydrologu. 2016. Vol. 535. P. 662–670.
- 16. Павлов А.В. Теплофизика ландшафтов. Новосибирск: Наука, 1979. 285 с.
- 17. Безкоровайная И.Н., Иванова Г.А., Тарасов П.А., Сорокин Н.Д., Богородская А.В., Иванов В.А., Конард С.Г., Макрае Д.Дж. Пирогенная трансформация почв сосняков средней тайги Красноярского края // Сибирский экологический журнал. 2005. Т. 1. С. 143–152.

Статья поступила в редакцию 1 июня 2023 г.,

после доработки — 25 июля 2023 г.,

принята к публикации 17 августа 2023 г.,

после дополнительной доработки — 29 сентября 2023 г.