2017. Том 58, № 4

Май – июнь

C. 729 – 733

УДК 548.736.4:546.863'161

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ПАРАМЕТРЫ ЯКР ^{121,123}Sb ТРИДЕКАФТОРОТЕТРААНТИМОНАТА(III) АММОНИЯ NH₄Sb₄F₁₃

Л.А. Земнухова¹, А.А. Удовенко¹, Н.В. Макаренко¹, С.И. Кузнецов², Т.А. Бабушкина²

¹Институт химии ДВО РАН, Владивосток, Россия E-mail: makarenko@ich.dvo.ru ²Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия

Статья поступила 18 июля 2016 г.

Синтезированы кристаллы (NH₄)Sb₄F₁₃ (**I**), определена их кристаллическая структура (сингония тетрагональная: a = 9,6431(2), c = 6,5503(2) Å, V = 609,11(3) Å³, Z = 2, $d_{\text{выч}} = 4,100 \text{ г/см}^3$, F(000) = 664, пр. гр. $I\overline{4}$). Основными структурными единицами **I** являются четырехъядерные анионные комплексы [Sb₄F₁₃]⁻ и катионы [NH₄]⁺. Анионные комплексы построены из четырех групп SbF₃, связанных между собой тетраэдрическим мостиковым атомом фтора. Кристаллы (NH₄)Sb₄F₁₃ при комнатной температуре изоструктурны ранее исследованным MSb₄F₁₃ (**M** = K, Rb, Cs и Tl). Изучены спектры ЯКР ^{121,123}Sb соединения **I** в области 77—370 K, показавшие, что с понижением температуры (<250 K) вещество проявляет пьезоэлектрические свойства, как и другие соединения этой группы, но при этом нарушается их изоструктурность.

DOI: 10.15372/JSC20170407

Ключевые слова: тридекафторотетраантимонат(III) аммония, синтез, кристаллическая структура, параметры ЯКР^{121,123}Sb.

введение

Комплексные фториды сурьмы(III) представляют собой большой класс неорганических соединений, в котором обнаружены вещества с полезными для практического использования электрофизическими [1, 2] и биологическими [3] свойствами, зависящими как от состава комплекса, так и от природы внешнесферного катиона. В системе NH₄F—SbF₃—H₂O в области мольных соотношений NH₄F:SbF₃ от 0,1:1 до 2:1 достоверно установлено образование семи веществ в твердом состоянии: $NH_4Sb_4F_{13}$ (I), $NH_4Sb_3F_{10}$ (II), $NH_4Sb_2F_7$ (III), $(NH_4)_2Sb_3F_{11}$ (IV), (NH₄)₃Sb₄F₁₅ (V), NH₄SbF₄ (VI) и (NH₄)₂SbF₅ (VII). Кристаллические структуры определены для соединений II, IV—VII [4—8]. Соединение III изоструктурно $RbSb_2F_7$ [9], а I входит в группу изоструктурных комплексов MSb_4F_{13} (M = K, Rb, Cs, NH₄, TI), из которых структура известна для KSb_4F_{13} и $TISb_4F_{13}$ [10, 11]. При мольных соотношениях $NH_4F:SbF_3$, меньших 0,1:1, в твердом виде выделяется оксофтороантимонит $Sb_3O_2F_5$ [12]. Установлено, что соединения III—VII при изменении температуры претерпевают полиморфные превращения с образованием фаз с высокой ионной проводимостью [8, 13, 14], в то время как I обладает наименьшей подвижностью ионов фтора и аммония [13]. Однако исследование при 77 К спектров ЯКР ^{121,123}Sb изоструктурных при комнатной температуре комплексов ряда MSb₄F₁₃ показало, что они различаются по мультиплетности [15]: синглетны в соединениях с катионами K⁺ и Rb⁺, но дублетны — с катионами Cs^+ , NH_4^+ . Поэтому для получения полных сведений о соединении $NH_4Sb_4F_{13}$

[©] Земнухова Л.А., Удовенко А.А., Макаренко Н.В., Кузнецов С.И., Бабушкина Т.А., 2017

в настоящей работе была определена его кристаллическая структура при комнатной температуре. Приведены параметры $\text{ЯКР}^{121,123}$ Sb в области 77—300 K для I в сравнении с $\text{RbSb}_4\text{F}_{13}$, исследованный ранее в [15].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. Фтороантимонат(III) аммония $NH_4Sb_4F_{13}$ синтезирован взаимодействием NH_4F и SbF_3 (реактивы ЧДА) в водном растворе при мольном соотношении компонентов 0,05:1. Навеску SbF_3 нагревали в воде в платиновой чашке до полного растворения, а затем к полученному раствору добавляли навеску фторида аммония. Монокристаллы комплекса выращены медленной кристаллизацией из раствора при комнатной температуре. Для полученного соединения (%): найдено Sb 67,4, вычислено 64,76; найдено F 32,5, вычислено 32,84; найдено NH_4 2,7, вычислено 2,39. Элементный анализ проводили по стандартным методикам: сурьму определяли броматометрическим методом; фтор — отгонкой в виде H_2SiF_6 с последующим титрованием раствором нитрата тория; азот — методом Кьельдаля.

Рентгеноструктурный анализ. Бесцветные прозрачные кристаллы (NH₄)Sb₄F₁₃ тетрагональные (M = 752,04, a = 9,6431(2), c = 6,5503(2) Å, V = 609,11(3) Å³, Z = 2, $d_{выч} = 4,100$ г/см³, μ (Mo K_{α}) = 8,922 мм⁻¹, пр. гр. $I\overline{4}$). Рентгеновский эксперимент выполнен с ограненного кристалла пластинчатой формы размерами 0,30×0,18×0,06 мм при температуре 297 K на дифрактометре SMART-1000 CCD фирмы Bruker. Поглощение рентгеновских лучей в образце учтено по эквивалентным отражениям. Интенсивности 5381 рефлекса измерены в интервале углов $2\theta \le 71,48^{\circ}$, из которых 1383 [R(int) = 0,0255)] было независимых. Структура I определена прямым методом и уточнена методом наименьших квадратов в анизотропном приближении неводородных атомов до $R_1 = 0,0152$ и $wR_2 = 0,0396$ для 1363 рефлексов с $F^2 > 2\sigma(F^2)$, GOOF = = 1,123. Параметр Флэка равен 0,03(3). Атом водорода определен из разностной электронной плотности и не уточнялся. Сбор и редактирование данных, уточнение параметров элементарной ячейки проведены по программам SMART и SAINT Plus [16]. Все расчеты по определению и уточнению структур выполнены по программам SHELXTL/PC [17].

СІГ-файл, содержащий полную информацию по исследованной структуре, депонирован в банк данных неорганических структур ICSD под номером 432303, откуда может быть свободно получен по запросу на интернет-сайте: www.ccdc.cam.ac.uk/data_request/cif. Спектры ЯКР^{121,123}Sb соединения I получены на импульсном радиоспектрометре ИСШ-1-

Спектры ЯКР ^{121,123}Sb соединения I получены на импульсном радиоспектрометре ИСШ-1-13 с температурной приставкой в диапазоне 77—400 К. Точность измерения температуры составляла ±0,3 К, частоты ЯКР — ±0,01 МГц. Значения константы квадрупольного взаимодействия (ККВ) $e^2 Qq/h$ и параметра асимметрии ŋ тензора градиента электрического поля (ГЭП) атомов Sb рассчитывали по экспериментальным частотам ЯКР, согласно [1]. Точность определения ККВ и ŋ составляла ±0,1 МГц и ≤ ±0,1% соответственно.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Структурными единицами кристалла $NH_4Sb_4F_{13}$ являются катионы $[NH_4]^+$ и тетрамерные комплексные анионы $[Sb_4F_{13}]^-$ (рис. 1), образованные из четырех молекул SbF₃ (Sb—F 1,929— 1,967 Å), соединенных ионом фтора (Sb—F 2,525 Å). Атомы сурьмы в анионе расположены в вершинах деформированного тетраэдра Sb₄, в центре которого находится ион фтора (Sb—Sb 3,891 (×2) и 4,236 (×4) Å, углы FSbF 100,78° (×2) и 113,98° (×4)) (табл. 1). С учетом мостикового атома фтора координационный полиэдр атома сурьмы в пределах первой координационной сферы [20] представляет собой ψ -тригональную бипирамиду SbF₄E (E — неподеленная пара электронов Sb³⁺). О вхождении в координационный полиэдр сурьмы атома F(1) говорит тот факт, что связь Sb—F 1,967 Å в SbF₃-группе до *транс*-атома F(4) заметно удлинена относительно двух других (Sb—F 1,929 и 1,951 Å), что характерно для аксиальных атомов в тригональной бипирамиде SbEF₄ [18]. В пределах суммы ван-дер-ваальсовых радиусов атомов сурьмы и фтора со стороны Е-пары Sb³⁺ расположены пять атомов фтора (Sb…F 2,72—3,205 Å). Атомы азота

Puc. 1.	Схема	водородных	связей	в	структуре
		$NH_4Sb_4F_{13}$			

аммонийных групп образуют четыре пары вилочных водородных связей с атомами фтора SbF₃-групп (табл. 2), которыми объединяют тетрамерные комплексные анионы $[Sb_4F_{13}]^-$ в каркас совместно со вторичными связями Sb…F.

Из сравнения структур $NH_4Sb_4F_{13}$, KSb_4F_{13} [10] и $TISb_4F_{13}$ [11] следует, что при комнатной температуре одноименные расстояния в полиэдрах (тригональной бипирамиде) сурьмы довольно близки. Искажение полиэдров, найденное из разности максимальной и минимальной длин связей Sb—F, составляет для K⁺ –0,58, TI^+ –0,60 и NH_4^+ –0,59 Å. Наибольшее различие наблюдается в валентных углах полиэдров FSbF (см. табл. 1), что

может быть вызвано влиянием величин ионных радиусов K^+ (1,33), NH_4^+ (1,43) и TI^+ (1,40 Å) и наличием H-связей (в комплексном соединении $NH_4Sb_4F_{13}$ — наименьшая разница в искажении углов).

Проблема взаимосвязи свойств координационных соединений с атомным и электронным строением составляющих их частиц всегда привлекала внимание исследователей.

Поиск корреляций параметров ЯКР (ККВ и ŋ) с прямыми параметрами связи молекулы, определяемыми рентгеноструктурным анализом (длина и углы связи, тип координации лиган-

Таблица 1

Связь	d	Связь	d	Связь	d	Угол	ω
Sb—F(2)	1,929(1)	$Sb-F(3)^{c}$	3,027(2)	F(1)—F(4)	4,334(1)	F(2)—Sb—F(3)	89,98(7)
Sb—F(3)	1,951(2)	$Sb-F(2)^d$	3,138(2)	F(1)—F(2)	2,739(2)	F(2)—Sb—F(4)	84,21(6)
Sb—F(4)	1,967(1)	$Sb-F(2)^{a}$	3,205(2)	F(1)—F(3)	2,719(2)	F(3)—Sb—F(4)	84,65(7)
Sb—F(1)	2,525(1)	F(2)—F(3)	2,743(2)	N—F(4)	2,784(1)×4	F(4)— Sb — $F(1)$	149,24(4)
$Sb-F(4)^{a}$	2,720(2)	F(2)—F(4)	2,612(2)	N—F(2)	3,053(2)×4	$Sb - F(1) - Sb^{c}$	100,78(1)×2
$Sb-F(3)^{b}$	2,830(2)	F(3)—F(4)	2,638(2)			$Sb-F(1)-Sb^d$	113,98(1)×4

Некоторые длины связей (d, Å) и валентные углы (ω, град.) в структуре NH₄Sb₄F₁₃

* Коды симметрии: ^a -y+1, x, -z+2; ^b y-1/2, -x+1/2, -z+3/2; ^c -x, -y+1, z; ^d y-1/2, -x+1/2, -z+5/2.

Таблица 2

- 7				NILL OL D
- 1	\circ	ndonodultiv coasou	o cummumo	NH Sh.H.
	- EOMETHIJUYELKUE HUIJUMEHIJDI ($\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{D}$	$\mathbf{b} \cup \mathbf{m} \cup \mathbf{v} \times \mathbf{m} \cup \mathbf{v} \cup \mathbf{e}$	1 N I I ALDUAT 17
_				

Crear N. H. F.		Расстоя	VEGENILE DEGE	
Связь N—пг	N—H	$H{\cdots}F$	N·…F	утол мпг, град.
N— $H\cdots F(4) \times 4$	0,81	2,30	2,784(1)×4	119
N— $H \cdots F(2) \times 4$	0,81	2,34	3,053(2)×4	147

Рис. 2. Температурные изменения e^2Qq (1) и параметры асимметрии η ГЭП (2) и в спектре ЯКР ¹²¹Sb соединения RbSb₄F₁₃

дов в полиэдре), показывает, что характер распределения электронной плотности вокруг центрального атома, описываемый параметрами ЯКР, зависит одновременно от многих факторов. Свой вклад в градиент электрического поля квадрупольного атома вносят как прямые параметры химической связи с лигандами, так и параметры, характеризующие свойства лигандов, природу катиона, способ их объединения.

Атомы сурьмы в комплексных MSb_4F_{13} тридекафторотетраантимонатах(III) характери-

зуются более высокими значениями параметра ГЭП ($\eta = 7,9-13,8$ %) по сравнению с атомами сурьмы в SbF₃ ($\eta = 4,3$ %) [15]. Это указывает на понижение симметрии распределения электронной плотности на атомах сурьмы в комплексных соединениях относительно исходного трифторантимонита SbF₃. Все соединения состава MSb₄F₁₃ проявляют пьезоэлектрические свойства ниже 250 K, что свидетельствует о наличии фазовых переходов.

Кристаллы NH₄Sb₄F₁₃ в интервале 90—224 К являются пьезоэлектриками (это установлено качественно по появлению на осциллографе характерной картины шумов при подаче на образец радиочастотных импульсов). Спектр ЯКР ¹²³Sb при 77 К этого соединения указывает на два неэквивалентных положения атомов сурьмы в элементарной ячейке с различной кратностью. Отношение интенсивностей линий атомов Sb₁: Sb₂ равно 1:3. Интенсивность слабых сигналов ЯКР ¹²³Sb₁ с ростом температуры монотонно падает и выше 189 К сигналы не регистрируются. На кривых температурных изменений параметров ЯКР ¹²³Sb наблюдается ряд аномалий, не соответствующих теории Байера. Величина параметра асимметрии ГЭП атомов сурьмы аномально увеличивается в температурные коэффициенты ККВ $\partial e^2 Q q_{zz}/\partial T$ претерпевают изломы в области 100 K, а также 180—210 K. На рис. 2 показаны температурные изменения параметров ЯКР ¹²³Sb в NH₄Sb₄F₁₃. Совокупность данных свидетельствует, что кристаллы NH₄Sb₄F₁₃ претерпевают размытый фазовый переход в области 180—200 K с изменением числа неэквивалентных атомов сурьмы в элементарной ячейке и исчезновением пьезоэффектов, что указывает на изменение симметрии кристалла. По всей видимости, этот фазовый переход можно отнести к фазовым переходам второго рода.

Температура изменения ЯКР ^{121,123}Sb для RbSb₄F₁₃ приведены в [15], а на рис. 2 показана трансформация параметров e^2Qq и η . Температура затухания сигналов ЯКР ^{121,123}Sb в комплексе RbSb₄F₁₃, равная 369 K (для SbF₃ 350 K), указывает на увеличение подвижности SbF₃-групп в этом соединении. В области 120—220 K кристаллы RbSb₄F₁₃ проявляют пьезоэлектрические свойства. Кристаллы RbSb₄F₁₃, как NH₄Sb₄F₁₃ и SbF₃, претерпевают фазовый переход второго рода в области 160—180 K (рис. 3), проявляющийся в изменении температурных коэффициентов линий KKB (от –33,97 до –87,50 кГц · град⁻¹), параметра асимметрии ГЭП (от 3,6 · 10⁻³ до 5,0 · 10⁻³ град.⁻¹) и исчезновении пьезоэффектов. Значение параметра асимметрии градиента поля атомов ¹²¹Sb в RbSb₄F₁₃ возрастает нелинейно от 77 до 260 K, отличаясь большим температурным коэффициентом $\partial \eta / \partial T$ (29,5 · 10⁻³). Сопоставление спектров ЯКР ^{121,123}Sb комплексов MSb₄F₁₃ с катионами Rb и NH₄ указывает на подобие процессов, происходящих с ростом температуры — наличие фазового перехода с повышением симметрии кристалла. *Рис.* 3. Температурные изменения параметров ЯКР ¹²³Sb в NH₄Sb₄F₁₃: $v_1 = \pm (3/2 \leftrightarrow 5/2)$ атомов Sb₁ (4), $v_2 = \pm (1/2 \leftrightarrow 3/2)$ (2), $v_3 = \pm (3/2 \leftrightarrow 5/2)$ (5), η (1) и e^2Qq (3) атомов Sb₂

ЗАКЛЮЧЕНИЕ

Из водного раствора трифторида сурьмы и фторида аммония выделено кристаллическое комплексное соединение состава $NH_4Sb_4F_{13}$, изоструктурное аналогичным комплексам с катионами K, Rb, Cs и Tl. Согласно данным ЯКР ^{121,123}Sb, при температуре ниже 250 K происходит нарушение изоструктурности. Кристаллы $NH_4Sb_4F_{13}$ в интервале 90—224 K являются пьезоэлектриками.

СПИСОК ЛИТЕРАТУРЫ

- 1. Земнухова Л.А. Синтез, спектроскопия ЯКР и строение координационных соединений сурьмы(III), висмута(III), индия(III) и теллура(IV). Дис. ... д-ра хим. наук. Владивосток: Ин-т химии ДВО РАН, 1998.
- 2. Кавун В.Я., Сергиенко В.И. Диффузионная подвижность и ионный транспорт в кристаллических и аморфных фторидах элементов IV группы и сурьмы(III). Владивосток: Дальнаука, 2004.
- 3. Ковалева Е.В., Земнухова Л.А., Никитин В.М., Корякова М.Д., Спешнева Н.В. // Журн. прикл. химии. 2002. **75**, № 6. С. 971.
- 4. Ducourant B., Fourcade R., Masherpa G. // Rev. Chim. Min. 1983. 20, N 3. P. 314.
- 5. Удовенко А.А., Земнухова Л.А., Горбунова Ю.А., Михайлов Ю.Н., Давидович Р.Л. // Координац. химия. – 2002. – **28**, № 1. – С. 14.
- 6. Удовенко А.А., Горбунова Ю.Е., Земнухова Л.А., Михайлов Ю.Н., Давидович Р.Л. // Координац. химия. – 2001. – 27, № 7. – С. 514.
- 7. Овчинников В.Е., Удовенко А.А., Соловьева Л.П., Волкова Л.М., Давидович Р.Л. // Координац. химия. 1982. **8**, № 5. С. 697.
- 8. Удовенко А.А., Волкова Л.М., Гордиенко П.С., Давидович Р.Л., Антипин М.Ю., Стручков Ю.Т. // Координац. химия. – 1987. – 13, № 4. – С. 558.
- 9. Tichit D., Ducourant B., Fourcade R., Mascherpa G. // J. Fluor. Chem. 1979. 13, N 1. P. 45.
- 10. Ducourant B., Fourcade R., Philippot E., Mascherpa G. // Rev. Chim. Min. 1975. 12, N 6. P. 553.
- 11. Удовенко А.А., Земнухова Л.А., Горбунова Ю.Е., Михайлов Ю.Н., Давидович Р.Л. // Координац. химия. – 2003. – **29**, № 5. – С. 334.
- Удовенко А.А., Земнухова Л.А., Ковалева Е.В., Федорищева Г.А. // Координац. химия. 2004. 30, № 9. – С. 656.
- 13. *Кавун В.Я., Уваров Н.Ф., Земнухова Л.А., Бровкина О.В.* // Журн. неорган. химии. 2004. **49**, № 6. С. 1012.
- 14. Avkhutskii L.M., Davidovich R.L., Zemnukhova L.A., Gordienko P.S., Urbonavicius V., Grigas J. // Phys. Stat. Sol. (b). 1983. 116. P. 483.
- 15. Zemnukhova L.A., Davidovich R.L. // Z. Naturforsch. 1998. 53a. P. 573.
- 16. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the Smart System. Bruker AXS Inc. Madison (WI, USA), 1998.
- 17. *Sheldrick G.M.* SHELXTL/PC. Versions 5.0. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc. Madison, (WI, USA), 1998.
- 18. Удовенко А.А., Волкова Л.М. // Координац. химия. 1981. 7, № 12. С. 1763.