УДК 539.376

ПОЛЗУЧЕСТЬ И РЕЛАКСАЦИЯ НАПРЯЖЕНИЙ В ПЛАСТИНЕ, НАГРУЖАЕМОЙ ПО КОНТУРУ КРУГЛОГО ОТВЕРСТИЯ

В. М. Чуйко, В. М. Ярушина

Институт автоматики и процессов управления ДВО РАН, 690041 Владивосток E-mail: vyarush@iacp.dvo.ru

В рамках модели неустановившейся ползучести, построенной с использованием неклассических представлений для упругих и вязких свойств материалов, получены аналитические решения краевых задач ползучести и релаксации напряжений в пластине, внешнее воздействие на которую осуществляется по контуру круглого отверстия. При этом заданными считаются одна из составляющих граничного усилия и одна из компонент перемещения.

Ключевые слова: неустановившаяся ползучесть, релаксация напряжений, плоское напряженное состояние.

1. Исходные зависимости модели. Как было замечено в [1], уравнения классической теории упругости следуют из предположений

$$e_{ij} = \frac{\partial U}{\partial \sigma_{ij}}, \qquad U = U_1(\sigma) + U_2(\Sigma) = \frac{3(1-2\nu)}{2E} \sigma^2 + \frac{1+\nu}{3E} \Sigma^2,$$

$$\sigma = \sigma_{kk}/3, \qquad \Sigma = \sqrt{3/2} \{ (\sigma_1 - \sigma)^2 + (\sigma_2 - \sigma)^2 + (\sigma_3 - \sigma)^2 \}^{1/2},$$
(1.1)

где e_{ij} , σ_{ij} — компоненты тензоров деформаций и напряжений; σ_1 , σ_2 , σ_3 — главные значения тензора напряжений; E — модуль Юнга; ν — коэффициент Пуассона. Выбираемая конкретная квадратичная зависимость потенциала Гиббса U от инвариантов σ и Σ тензора напряжений приводит к классическому линейному изотропному закону Гука для упругой среды. Инвариант тензора напряжений Σ является однородной функцией своих аргументов $\sigma_i - \sigma$. В [1] предлагалось рассмотреть другие возможности для определения Σ , сохраняя свойство однородности. Особую роль играют здесь кусочно-линейные зависимости

$$\Sigma = \max |\sigma_i - \sigma_j|; \tag{1.2}$$

$$\Sigma = (3/2) \max |\sigma_i - \sigma|. \tag{1.3}$$

Они ограничивают возможный выбор Σ . Действительно, в пространстве главных напряжений поверхности $\Sigma = \text{const}$, определяемые зависимостями (1.2), (1.3), представляют собой шестиугольные призмы с образующими, параллельными прямой $\sigma_1 = \sigma_2 = \sigma_3$. Их сечения девиаторной плоскостью $\sigma_1 + \sigma_2 + \sigma_3 = 0$ показаны на рис. 1. Внешний шестиугольник соответствует функции (1.3), а внутренний — (1.2). В [2] показано, что все возможные выпуклые поверхности $\Sigma = \text{const}$ должны лежать между этими двумя призмами. Таким образом, зависимости (1.2), (1.3) интересны как предельные случаи.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 02-01-01128, 02-01-011-34) и фонда содействия отечественной науке (гранты № НШ 890.2003.1, № МД 362.2003.05).

Рис. 1

В [3] высказана возможность описания ползучести материалов на основе аналогичных соотношений. В этой работе полагалось

$$e_{ij} = e^{e}_{ij} + e^{v}_{ij}, (1.4)$$

где e_{ij} — малые полные деформации среды; e_{ij}^e , e_{ij}^v — компоненты тензоров упругих деформаций ползучести соответственно. Для упругих деформаций принимались зависимости (1.1), а для деформаций ползучести — зависимости

$$\dot{e}_{ij}^{v} = \frac{de_{ij}^{v}}{dt} = \frac{\partial V}{\partial \sigma_{ij}}, \qquad V = V(\Sigma).$$
(1.5)

Для потенциала скоростей ползучести, в частности, можно принять

$$V = \frac{B}{n+1} \Sigma^{n+1}.$$

В этом случае ползучесть протекает в соответствии со степенным законом Нортона. Свойства полученных модельных соотношений подробно изучены в [3, 4].

Рассмотрим бесконечную тонкую пластину с круглым вырезом радиуса r_0 , находящуюся в равновесии под действием сил, приложенных к контуру выреза. Будем считать, что она находится в условиях плоского напряженного состояния. В дальнейшем будем рассматривать следующие граничные задачи.

1. В круглое отверстие пластины впрессовывается жесткий штамп, в результате чего оно деформируется так, что на контуре отверстия известны радиальные перемещения, которые в дальнейшем остаются неизменными. Всюду в пластине происходит релаксация напряжений и накопление необратимых деформаций ползучести. Касательные напряжения на контуре отсутствуют:

$$u_r\big|_{r=r_0} = u(\theta), \qquad \sigma_{r\theta}\big|_{r=r_0} = 0.$$
(1.6)

Здесь и далее (r, θ) — полярные координаты; u_i — компоненты вектора перемещений.

2. Под действием касательных усилий и заданного постоянного давления, приложенных к вырезу, происходит скручивание круглого отверстия так, что известно тангенциальное перемещение:

$$u_{\theta}|_{r=r_0} = v(\theta), \qquad \sigma_{rr}|_{r=r_0} = P = \text{const}.$$
 (1.7)

В обоих случаях полагается, что напряжения всюду в пластине удовлетворяют условию

$$\sigma_1 = -\sigma_2 < \sigma_3 = 0. \tag{1.8}$$

Кроме того, считается, что в начальный момент времени t = 0 в пластине нет необратимых деформаций ползучести. Температура в течение всего процесса не меняется. А система сил, действующих на контур, является самоуравновешенной. На бесконечности и напряжения, и перемещения в пластине отсутствуют.

2. Вывод разрешающих уравнений задачи. В [4] показано, что в случае принадлежности напряжений ребру кусочно-линейной поверхности $\Sigma = \text{const}$ плоское напряженное состояние является статически определимым. Там же рассмотрены особенности модельных соотношений на различных гранях и ребрах поверхности $\Sigma = \text{const}$.

Заметим, что условие (1.8) предопределяет принадлежность напряжений ребру кусочно-линейной поверхности (1.3), образованному пересечением граней

$$\Sigma = 3(\sigma - \sigma_1)/2, \qquad \Sigma = 3(\sigma_2 - \sigma)/2. \tag{2.1}$$

В силу того, что $\sigma_3 = 0$, уравнения (2.1) можно рассматривать как систему двух алгебраических уравнений относительно двух неизвестных σ_1 , σ_2 . Разрешая ее, получим

$$\sigma_1 = -2\Sigma/3, \qquad \sigma_2 = 2\Sigma/3$$

Тогда для компонент тензора напряжений можно записать:

$$\sigma_{11} = -\sigma_{22}, \qquad \sigma_{22} = (2\Sigma/3)\cos 2\varphi, \qquad \sigma_{12} = -(2\Sigma/3)\sin 2\varphi,$$
(2.2)

где φ — угол между первым главным направлением тензора напряжений и осью Ox_1 . Таким образом, число независимых статических неизвестных задачи уменьшится на единицу. В силу первого соотношения в (2.2) уравнения равновесия при отсутствии массовых сил примут вид

$$-\sigma_{22,1} + \sigma_{12,2} = 0, \qquad \sigma_{12,1} + \sigma_{22,2} = 0. \tag{2.3}$$

Условия (2.3) являются условиями Коши — Римана аналитичности функции

$$f(z,t) = \sigma_{22} + i\sigma_{12} \tag{2.4}$$

комплексной переменной $z = x_1 + ix_2$. Теперь все статические величины могут быть выражены через функцию напряжений (2.4). Поскольку независимых из них всего две, приведем эти выражения лишь для Σ и φ :

$$\Sigma = 3|f(z,t)|/2, \qquad \cos 2\varphi - i\sin 2\varphi = f(z,t)/|f(z,t)|.$$

Кинематические величины задачи найдем, используя зависимости (1.1)–(1.5):

$$e_{ij}^{e} = \frac{1}{3} U_{1}'(\sigma) \delta_{ij} + U_{2}'(\Sigma) \left(\frac{\partial \Sigma}{\partial \sigma_{1}} l_{i} l_{j} + \frac{\partial \Sigma}{\partial \sigma_{2}} m_{i} m_{j} \right),$$

$$\dot{e}_{ij}^{v} = V'(\Sigma) \left(\frac{\partial \Sigma}{\partial \sigma_{1}} l_{i} l_{j} + \frac{\partial \Sigma}{\partial \sigma_{2}} m_{i} m_{j} \right),$$
(2.5)

где l_i, m_i — направляющие косинусы тензора напряжений. В угловых точках поверхности $\Sigma = \text{const}$, к которым относится и точка действительного напряженного состояния задачи, производные $\partial \Sigma / \partial \sigma_i$ не определены. Для них принимается следующее обобщенное выражение:

$$\frac{\partial \Sigma}{\partial \sigma_i} = \alpha \, \frac{\partial \Sigma^{(1)}}{\partial \sigma_i} + (1 - \alpha) \, \frac{\partial \Sigma^{(2)}}{\partial \sigma_i}, \qquad 0 \leqslant \alpha \leqslant 1, \tag{2.6}$$

где $\Sigma^{(1)} = \text{const}, \Sigma^{(2)} = \text{const}$ — поверхности, образующие ребро; α — новая неизвестная функция, отвечающая за направление развития вязкого течения. Заметим, что такое определение производной в сингулярной точке поверхности течения $\Sigma = \text{const}$ принято и в теории пластичности [2].

Добавляя к (2.5) соотношения (2.6), (1.4), а также уравнения, связывающие полные деформации с перемещениями, т. е.

$$e_{ij} = (u_{i,j} + u_{j,i})/2,$$

и определяя перемещения как функции комплексных переменных $z = x_1 + ix_2$, $\bar{z} = x_1 - ix_2$ и времени t, после исключения неизвестной α получим

$$u_1 - iu_2 = -\frac{3}{4} \int_{z_0}^{z} \left(\int_{0}^{t} V'(\Sigma) \frac{f(z,t)}{|f(z,t)|} dt + U'_2(\Sigma) \frac{f(z,t)}{|f(z,t)|} \right) dz + \psi(\bar{z},t).$$
(2.7)

Функция $\psi(\bar{z}, t)$ может быть найдена из граничных условий. Для определения α вследствие уравнений (1.4), (2.5), (2.6) будем иметь

$$\frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} = e_{11}^v + e_{22}^v + \frac{2}{3} U_1'(\sigma) + U_2'(\Sigma) \left(\alpha - \frac{1}{2}\right),$$

$$\dot{e}_{11}^v + \dot{e}_{22}^v = V'(\Sigma)(\alpha - 1/2).$$
(2.8)

Помимо (2.8) функция α должна удовлетворять неравенству $0 \leq \alpha \leq 1$, гарантирующему принадлежность напряжений выбранному ребру. При нарушении этого неравенства напряжения будут соответствовать грани кусочно-линейной поверхности $\Sigma = \text{const}$, а значит, вместо (2.7) должны быть использованы иные зависимости, также являющиеся следствием (2.5).

3. Решение задач. Прежде чем перейти к решению каждой конкретной краевой задачи, сформулированной в п. 1, сделаем ряд общих выводов. Для нахождения напряжений в пластине функцию f(z,t) удобно разложить в ряд Лорана в окрестности бесконечно удаленной точки:

$$f(z,t) = \sum_{m=-\infty}^{\infty} a_m(t) z^m.$$
(3.1)

Так как в обеих задачах полагается, что на бесконечности пластина не испытывает воздействий, то от разложения (3.1) останется лишь правильная часть

$$f(z,t) = \sum_{k=1}^{\infty} a_k(t) z^{-k}.$$
(3.2)

Система сил, действующих на пластину, полагается самоуравновешенной, в силу чего

$$-F_1 + iF_2 = \int_0^{2\pi} f(r e^{i\theta}, t) e^{i\theta} d\theta = \frac{2\pi a_1}{r} = 0, \qquad (3.3)$$

где F_1 , F_2 — компоненты главного вектора внешних сил. Из (3.3) следует, что $a_1 = 0$.

Граничные условия (1.6), (1.7) определяют компоненты тензора напряжений и вектора перемещений в полярной системе координат. Представим эти компоненты в виде

$$\sigma_{\theta\theta} + i\sigma_{r\theta} = f(z,t) e^{2\theta i}, \qquad \sigma_{rr} = -\sigma_{\theta\theta},$$

$$u_r - iu_{\theta} = (u_1 - iu_2) e^{\theta i}. \qquad (3.4)$$

Решение задачи с краевыми условиями (1.6) начнем с того, что перепишем ее граничные условия, используя (3.4), в виде

Re
$$\{(u_1 - iu_2) e^{i\theta}\}|_{r=r_0} = u(\theta), \qquad \text{Im } f(r_0 e^{i\theta}, t) e^{2\theta i} = 0,$$
 (3.5)

вследствие чего оказывается, что в разложении (3.2) функции напряжений в ряд Лорана все $a_k = 0$, кроме $a_2 = P$, являющегося действительной функцией времени. Таким образом,

$$f(z,t) = P(t)/z^2.$$
 (3.6)

Соотношение (2.7) для перемещений с учетом (3.6) в результате интегрирования примет вид

$$u_1 - iu_2 = \frac{M}{\bar{z}^{n-1}z^n} \int_0^t |P|^{n-1} P \, dt + N \, \frac{P}{z} + \psi(\bar{z}, t),$$

где $M = (3/2)^{n+1}B/(2n); N = 3/(8\mu).$ Раскладывая $\psi(\bar{z}, t)$ в ряд Лорана, получим

$$\psi(\bar{z},t) = \sum_{k=1}^{\infty} b_k(t) \bar{z}^{-k}.$$
(3.7)

Чтобы найти коэффициенты $b_k(t)$ этого разложения, а также неизвестную функцию P(t), воспользуемся первым условием из (3.5). На контуре круглого выреза

$$u(\theta) = b_0 + \operatorname{Re} \sum_{k=1}^{\infty} \frac{b_k}{r_0^k} e^{(k+1)\theta i}.$$
 (3.8)

В качестве b_0 здесь обозначено выражение

$$b_0 = \frac{M}{r_0^{2n-1}} \int_0^t |P|^{n-1} P \, dt + N \, \frac{P}{r_0}.$$
(3.9)

Соотношение (3.8) представляет собой разложение действительной функции в ряд Фурье. Коэффициенты этого разложения можно найти по формулам

$$b_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(\theta) \, d\theta, \qquad b_k = \frac{r_0^k}{\pi} \int_{-\pi}^{\pi} u(\theta) \, \mathrm{e}^{-(k+1)\theta i} \, d\theta, \quad k \ge 1.$$

Используя (3.9), можно найти неизвестную функцию P(t):

$$P(t) = \pm \left\{ \frac{M}{N} \frac{n-1}{r_0^{2n-2}} t + \left| \frac{N}{b_0 r_0} \right|^{n-1} \right\}^{1/(1-n)}.$$
(3.10)

В (3.10) знак "+" соответствует $b_0 > 0$, что имеет место при вдавливании в окружность штампа большего размера, чем исходная окружность, а знак "-" — случаю, когда круглое отверстие в пластине мгновенно натягивается на жесткий стержень меньшего по сравнению с вырезом поперечного сечения, при этом $b_0 < 0$. В обоих случаях абсолютная величина напряжений в пластине убывает, а значит, построенное решение описывает процесс релаксации напряжений.

Чтобы определить границы применимости построенного решения, найдем функцию α как решение системы (2.8):

$$\alpha(R,\gamma,\theta) = \frac{1}{2} \mp \frac{3}{2} \frac{\gamma-1}{\gamma} \frac{n-1}{n} (1-R^{\gamma}) - \frac{3}{2} R^{\gamma} \operatorname{Re} \sum_{k=1}^{\infty} \frac{k b_k}{|b_0|} \left(\frac{\gamma-1}{n}\right)^{(k-1)/(2n-2)} \frac{\mathrm{e}^{(k+1)\theta i}}{r_0^k}.$$
 (3.11)

Здесь $R = NP/(r_0b_0)$; $\gamma = n(r_0/r)^{2n-2} + 1$. В (3.11) знак "-" соответствует случаю $b_0 > 0$, знак "+" — $b_0 < 0$.

Ограничимся в дальнейшем анализом решения, в котором b_0 , b_1 — действительные числа, остальные $b_k = 0$. В этом случае отверстие принимает форму эллипса с полуосями

$$a = r_0 + b_0 + b_1/r_0,$$
 $b = r_0 + b_0 - b_1/r_0.$

Неравенство $0 \leq \alpha \leq 1$, гарантирующее корректность построенного решения, будет выполнено во всей пластине, если

$$\frac{\gamma - 1}{\gamma} \frac{n - 1}{n} \left(1 - R^{\gamma} \right) + \frac{b_1}{r_0 |b_0|} R^{\gamma} \leqslant \frac{1}{3}, \tag{3.12}$$

как это следует из (3.11). Отметим, что $0 < R \leq 1, 1 < \gamma \leq n + 1$. При R = 1, т. е. в начальный момент времени, неравенство (3.12) будет справедливо, если $3b_1 \leq r_0|b_0|$, что означает, что полуоси вдавливаемого эллипса должны удовлетворять неравенству

$$\left|\frac{a-b}{a+b-2r_0}\right| \leqslant \frac{1}{3}.$$

Выражение, стоящее в левой части (3.12), достигает экстремального значения при $\gamma = n + 1$, т. е. на границе отверстия, а потому неравенство (3.12) будет выполнено во всей пластине при $R^* \leq R \leq 1$, где

$$R^* = \left\{\frac{2}{3} \frac{(2-n)r_0|b_0|}{b_1(n+1) - r_0|b_0|(n-1)}\right\}^{1/(n+1)}.$$
(3.13)

Это означает, что поведение пластины будет описываться построенным решением вплоть до некоторого момента времени t^* , который без труда может быть найден из соотношений (3.10), (3.13). При $t > t^*$ напряженное состояние не может соответствовать выбранному ребру во всей области.

Приступая к решению задачи с краевыми условиями (1.7), перепишем ее граничные условия в виде

Im
$$\{(u_1 - iu_2) e^{i\theta}\}|_{r=r_0} = -v(\theta),$$
 Re $\{f(r_0 e^{i\theta}, t) e^{2\theta i}\} = -P.$ (3.14)

Раскладывая функцию f(z,t) в ряд Лорана (3.2), в силу (3.14) получим

$$f(z,t) = \{-P + i\tau(t)\}r_0^2/z^2.$$

При этом уравнение для перемещений (2.7) примет вид

$$u_1 - iu_2 = M \frac{r_0^{2n}}{z^n \bar{z}^{n-1}} \int_0^t (P^2 + \tau^2)^{(n-1)/2} (-P + i\tau) dt + N \frac{r_0^2}{z} (-P + i\tau) + \psi(\bar{z}, t).$$

Принимая для $\psi(\bar{z},t)$ разложение (3.7), найдем

$$b_{0} = Mr_{0} \int_{0}^{t} (P^{2} + \tau^{2})^{(n-1)/2} \tau \, dt + Nr_{0} \tau = -\frac{1}{2\pi} \int_{-\pi}^{\pi} v(\theta) \, d\theta,$$

$$b_{k} = -\frac{r_{0}^{k}}{\pi} \int_{-\pi}^{\pi} v(\theta) \, e^{(k+1)\theta i} \, d\theta.$$
(3.15)

Рис. 2

Неизвестное касательное напряжение $\tau(t)$ может быть найдено из первого уравнения (3.15). В случае, когда P = 0, т. е. контур отверстия не испытывает сдавливающего воздействия,

$$\tau(t) = \pm \left\{ \left| \frac{b_0}{Nr_0} \right|^{1-n} + \frac{M}{N} (n-1)t \right\}^{1/(1-n)},$$

знак "+" соответствует $v(\theta) < 0$, знак "-" — $v(\theta) > 0$.

При $P \neq 0$ решение уравнения (3.15) представимо в виде

$$T = \ln \frac{\rho_0}{\rho} + \frac{n-1}{4} \sum_{k=0}^{\infty} \frac{\Gamma^2(k+1)}{\Gamma(1)} \frac{\Gamma^2(2)}{\Gamma(k+2)} \frac{\Gamma^2((n+1)/2+k)}{\Gamma((n+1)/2)} \frac{(-1)^k}{k!} (\rho^{2k+2} - \rho_0^{2k+1}), \quad (3.16)$$
где $\Gamma(k) = \int_0^\infty e^{-x} x^{k-1} dx$ — гамма-функция. В (3.16) введены безразмерные величины

$$T = P^{n-1}tM/N, \qquad \rho = \tau(t)/P, \qquad \rho_0 = b_0/(Nr_0P).$$

Кривые релаксации касательного напряжения на границе выреза приведены на рис. 2, где кривые 1, 2, 3, 4 соответствуют значениям n = 1, 3, 6 и 8.

Наконец, направление нормали к поверхности течения $\Sigma={\rm const}$ определяется величиной

$$\alpha(\rho,\xi,\theta) = \frac{1}{2} + \frac{3}{2} \frac{n-1}{n} \frac{1}{\sqrt{1+\rho^2}} \left(1 - \left(\frac{\rho}{\rho_0}\right)^{n\xi^{2n-2}} \right) - \frac{3}{2} \frac{\rho_0}{b_0} \frac{1}{\sqrt{1+\rho^2}} \left(\frac{\rho}{\rho_0}\right)^{n\xi^{2n-2}} \operatorname{Re} \sum_{k=1}^{\infty} \frac{k\xi^{k-1}b_k}{r_0^k} e^{(k+1)\theta i}, \quad (3.17)$$

где $\xi = r_0/r$. В начальный момент времени t = 0

$$\alpha = \frac{1}{2} - \frac{3}{2} \frac{\rho_0}{\sqrt{1 + \rho_0^2}} \operatorname{Re} \sum_{k=1}^{\infty} \frac{k\xi^{k-1}b_k}{b_0 r_0^k} e^{(k+1)\theta i}.$$

Поскольку $0\leqslant\alpha\leqslant1,$ для того чтобы напряжения в пластине соответствовали выбранному ребру, необходимо выполнение неравенства

$$\frac{\rho_0}{\sqrt{1+\rho_0^2}} \sum_{k=1}^{\infty} \frac{k}{r_0^k} \frac{|b_k|}{|b_0|} \leqslant \frac{1}{3},\tag{3.18}$$

определяющего в силу (3.15), какими должны быть задаваемые на границе перемещения $v(\theta)$. При t > 0 и $0 < \xi \leq 1$ должно оставаться справедливым ограничение

$$\frac{n-1}{n} \left(1 - \left(\frac{\rho}{\rho_0}\right)^{n\xi^{2n-2}} \right) + \frac{\rho_0}{\sqrt{1+\rho_0^2}} \left(\frac{\rho}{\rho_0}\right)^{n\xi^{2n-2}} \sum_{k=1}^{\infty} \frac{k\xi^{k-1}}{r_0^k} \frac{|b_k|}{|b_0|} \leqslant \frac{1}{3},\tag{3.19}$$

следующее из (3.17). Правая часть (3.19) возрастает с увеличением ξ и уменьшением ρ . Своего наибольшего значения она достигнет на границе отверстия, где $\xi = 1$. При этом существует значение ρ^* , обращающее (3.18) в равенство. При $\rho^* \leq \rho \leq \rho_0$ или, что то же самое, при $0 \leq t \leq t^*$ неравенство $0 \leq \alpha \leq 1$ выполнено во всей пластине. При $t > t^*$ поведение пластины перестает описываться приведенными соотношениями.

ЛИТЕРАТУРА

- 1. **Ивлев Д. Д.** К построению теории упругости // Докл. АН СССР. 1961. Т. 138, № 6. С. 1321–1324.
- 2. Быковцев Г. И., Ивлев Д. Д. Теория пластичности. Владивосток: Дальнаука, 1998.
- Быковцев Г. И., Ярушина В. М. Об особенностях модели неустановившейся ползучести, основанной на использовании кусочно-линейных потенциалов // Проблемы механики сплошных сред и элементов конструкций: Сб. науч. тр. (к 60-летию со дня рожд. проф. Г. И. Быковцева). Владивосток: Дальнаука, 1998. С. 9–26.
- 4. Буренин А. А., Ярушина В. М. Плоское напряженное состояние в условиях нелинейной неустановившейся ползучести // Дальневост. мат. журн. 2002. Т. 3, № 1. С. 64–78.

Поступила в редакцию 1/Х 2004 г.