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Рассмотрена динамика газового пузырька с минеральной частицей в слабовязкой жидкости. 
Модель взаимодействия газового пузырька и минеральной частицы представлена сопряжен-
ной системой дифференциально-алгебраических уравнений. Описание динамики возмуще-
ний системы проводится на основе лагранжева формализма. Модель учитывает колебания 
поверхности пузырька и прикрепленной к ней твердой цилиндрической частицы в бесконеч-
ном объеме идеальной несжимаемой жидкости. Капиллярная сила, удерживающая частицу 
на пузырьке, обусловлена формой поверхности мениска, которая определяет контактный 
угол. Разложение в ряд по многочленам Лежандра используется для представления малых 
осесимметричных колебаний системы “частица – пузырек”. Потенциальная и кинетическая 
энергии комплекса выражаются через коэффициенты этого ряда. Результирующее безвихре-
вое поле скорости позволяет учесть эффект вязкости, принимая в расчет локальные скорости 
диссипации энергии. 
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Флотация — физико-химический процесс, используемый для извлечения частиц полезных 
минералов из рудной пульпы на основе различия их естественной или индуцированной гидро-
фобности. Поведение газового пузырька, к которому прикреплена твердая гидрофобная частица, 
представляет практический интерес для обогащения полезных ископаемых методами флотации. 
Стабильность комплекса “пузырек – частица” значительно зависит от состояния минеральной 
поверхности и сил отрыва. Выбор соответствующих сил отрыва позволяет влиять на сохранность 
минеральной нагрузки на пузырьке, представленной полезным компонентом, и сброс менее гид-
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рофобных частиц породы. Колебания формы пузырька и осцилляции частицы вызваны периоди-
ческим обменом между поверхностной, потенциальной и кинетической энергиями. Для малых 
деформаций поверхности осцилляции флотокомплекса достаточно хорошо согласуются с теори-
ей потенциального течения. Минеральные частицы оказывают эффект на поверхностные колеба-
ния пузырька после закрепления на его поверхности. Осцилляции минеральной частицы и изме-
нение сил отрыва могут быть использованы с целью повышения содержания полезных минералов 
в концентрате выбором соответствующего режима колебаний пузырька и отрыва частиц породы. 

Собственные моды осесимметричных колебаний газового пузырька в невязкой жидкости 
получены Рэлеем [1]. Пузырек с прикрепленной твердой частицей ведет себя иначе, чем сво-
бодный пузырек или пузырек, который находится в контакте с твердой неподвижной подлож-
кой [2]. В этом случае, в отличие от поведения свободного пузырька, могут появляться допол-
нительные режимы колебаний. На практике важны наименьшие ненулевые частотные режимы, 
так как они обычно наиболее ожидаемы. 

Настоящая работа посвящена изучению динамики минеральной частицы, закрепленной 
на поверхности пузырька в вязкой жидкости. Пузырек, совершающий поверхностные колеба-
ния, совместно с тяжелой минеральной частицей рассматриваются как единая механическая 
система с геометрической связью (частица расположена на поверхности пузырька в заданном 
положении). Несмотря на то что используется модель идеальной невязкой жидкости, учет вяз-
кости возможен путем принятия в расчет диссипации. Количество исследований, направлен-
ных на моделирование процесса флотации, огромно. Приведем несколько ссылок на работы, 
близкие к тематике предлагаемой статьи. 

Движение почти сферического пузырька, погруженного в несжимаемую вязкую жидкость 
с использованием лагранжевой процедуры c применением функции диссипации энергии, рас-
смотрено в [3]. Проблема осесимметричной деформации газового пузырька, совершающего ко-
лебательное и поступательное движение в несжимаемой идеальной жидкости, рассматривалась 
в [4]. Применен подход с использованием лагранжевой энергии в сочетании с анализом возму-
щений. Получена система нелинейных уравнений эволюции до третьего порядка при малом 
взаимодействии гармоник. 

Подробный обзор подходов для учета вязкого демпфирования формы пузырька послужил 
центральной темой работы [5]. Рассматривались колебания объема, перемещение и деформа-
ция формы пузырька. Функция диссипации Рэлея использовалась для учета вязких демпфиру-
ющих эффектов (при отсутствии завихренности). 

В [6] отмечалось, что для исследования стабильности осциллирующей формы пузырька, 
согласующейся с экспериментальным наблюдением, учет как вязкого демпфирования, так 
и нелинейного взаимодействия форм является критическим. Используется функция диссипа-
ции Рэлея, которая позволяет корректно учитывать вклад вязкости в отсутствии завихренности. 

В [7] построен лагранжиан для несферического газового пузырька, погруженного в несжима-
емую, слегка вязкую жидкость. Уравнения Эйлера – Лагранжа использованы для получения свя-
занной модели пузырька, состоящей из уравнения Рэлея – Плессета, дополненного членами вто-
рого порядка. Энергетический баланс для невязкой несжимаемой жидкости, содержащей погру-
женный газовый пузырек, выражен как сумма кинетических и потенциальных энергий. Вязкая 
диссипация энергии учитывалась через функцию диссипации в уравнении Эйлера – Лагранжа. 

В [8] построена математическая модель нелинейной динамики газового пузырька в жидко-
сти. Решалась задача его пространственного перемещения и отклонения формы от сфериче-
ской. Движение жидкости считалось потенциальным. При этом вязкость жидкости учитыва-
лась через динамическое граничное условие на поверхности пузырька. 
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В настоящей работе флотационный комплекс — пузырек с частицей на поверхности — 
рассматривается как единая механическая система в рамках лагранжевой механики. Действие 
гравитации игнорируется ввиду малости ее воздействия на систему. Эффекты тепло- и массо-
переноса не учитываются. Изучаются только осесимметричные деформации. Условие адгезии 
частицы к поверхности пузырька реализуется через множители Лагранжа. Влияние размера ча-
стицы и ее плотности демонстрируется в результате численного интегрирования результирую-
щей динамической системы дифференциально-алгебраических уравнений. 

ФОРМУЛИРОВКА ЗАДАЧИ 

Рассмотрим поведение газового пузырька с закрепленной на его поверхности частицей 
в неограниченном объеме слабовязкой несжимаемой жидкости. Для транспортировки частицы 
пузырьком из жидкости в пену необходимо, чтобы сила присоединения между объектами вза-
имодействия была достаточной для того, чтобы выдерживать гидродинамические и гравитаци-
онные эффекты. Течение описывается в сферической системе координат ( , , )r ϕ ψ , где r  — ра-
диус, ϕ  — полярный угол, ψ  — азимутальный угол. Предполагается, что течение осесиммет-
ричное, следовательно все величины не зависят от азимутальной координаты ψ . 

Уравнение поверхности газового пузырька в сферической системе координат с началом 
в центре пузырька задано уравнением ( , )r R tη μ= + . Здесь R  — радиус невозмущенного пу-
зырька, cos( )μ ϕ= , полярный угол ϕ  отсчитывается от верхней части вертикальной оси z, 

( , )tη μ  — малое, осесимметричное возмущение поверхности, которое представлено рядом 

по ортогональным полиномам Лежандра ( )jP μ : 
1

( , ) ( ) ( ).
N

j j
j

t b t Pη μ μ
=

=  

Функции времени ( ), 1, ...,jb t j N= , — обобщенные координаты поверхности. На поверх-
ности пузырька при 0 0( )μ μ ϕ= , 0 180ϕ = °  находится цилиндрическая частица массой pm , 
плотностью pρ , радиусом 0r  и высотой .h  Частица удерживается на поверхности пузырька ка-
пиллярной силой, приложенной вдоль линии трехфазного контакта и действующей в направле-
нии образующей поверхность мениска. Частица осциллирует в радиальном направлении, оста-
ваясь на поверхности. На рис. 1 представлена геометрия задачи в окрестности прикрепления 
частицы минерала к границе “газ – жидкость”, соответствующая пузырьку бесконечно большо-
го радиуса. 

 
Рис. 1. Цилиндрическая частица массой pm , плотностью pρ , радиусом 0r  и высотой h  прикреп-

лена к пузырьку бесконечно большого радиуса: 0rθ  — угол трехфазного контакта мениска 
с поверхностью частицы; F — капиллярная сила; ( )z θ  — уравнение мениска 
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Примем следующие допущения [9]: 
— размеры минеральной частицы пропорциональны капиллярной постоянной: 0 / (1),r a o=  

/ (1)h a o= , / ( )fa gσ ρ= ; 
— радиус пузырька на порядок больше радиуса минеральной частицы 0/ 1R r  . 
Поверхность мениска ( )z x y= , /y r a=  удовлетворяет уравнению Бесселя (как показано 

в [10]): 

 
2

2

1 0d zd z z
y d yd y

+ − = , 

общее решение )()()( 001 yKCyICyz k+=  которого выражается через модифицированные 
функции Бесселя )(),( 00 yKyI  первого и второго типа, обе нулевого порядка, 1, kC C  — посто-
янные интегрирования. Так как ∞→)(0 yI  при y → ∞ , то граничные условия требуют 1 0C = . 
Константа интегрирования kC  определяется наклоном мениска 0rθ  в конечном радиальном по-
ложении 0x r= . Поскольку / tg( )d y d x θ= , это граничное условие дает 1tg / ( )kC K yθ= . Здесь 

1 ( )K y  — первая производная 0 ( )K y  и является модифицированной функцией Бесселя второго 
типа и первого порядка. 

Уравнение формы мениска 
 0 0( ) tg( )z K rθ θ=  (1) 

хорошо согласуется с экспериментами [11], 0 0ln( / 2 )K r a γ= − − , 0.5772γ =  — постоянная Эйле-
ра. Положение частицы задается обобщенной координатой 1( ) ( )Nz t b t+= , 1( ( )NR b t++ . В началь-
ный момент частица находится на поверхности пузырька. В последующие моменты времени 
частица сохраняет контакт с поверхностью и движется только в радиальном направлении: 

 1 1 0 1
1

( , , , , ) ( ) ( ) ( ) 0
N

N N j j N
j

g b b b t b t P b tμ+ +
=

… = − = . (2) 

Уравнение (2) представляет геометрическую (алгебраическую) связь между обобщенными 
координатами ( ), 0, 1, ..., 1jb t j N= + , механической системы, состоящей из пузырька с части-
цей. Уравнения динамики флотационного комплекса “пузырек – частица” выводятся на основе 
лагранжевого формализма с учетом диссипации энергии, обусловленной вязкостью. 

Потенциальная энергия системы состоит из двух компонентов. Первый компонент связан 
с поверхностным натяжением. Следуя [2], потенциальная энергия, обусловленная силой упру-
гости поверхности пузырька, выражается уравнением 

2
2

2

22 ( )
2 1

N

f j
j

j jU b t
j

πσ
=

+ −=
+ . 

Второй компонент обусловлен капиллярной силой. Действие капиллярной силы аналогично 
пружине: при удалении частицы от равновесного положения она стремится возвратить ча-
стицу в исходное положение. На частицу действует капиллярная сила 0 02 sin rF rπσ θ= , 
направленная к поверхности невозмущенного пузырька [9]. Потенциальная энергия частицы 
зависит от краевого угла 0rθ  (см. уравнение (1)): 
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2

2 2 0
0 0 0 0 0 0 0 0 0 2

0

tg ( )( ) 2 sin( ) 2 sin( )tg( ) 2
1 tg ( )

r
p r r r r

r

U F z r z r K r K
θθ πσ θ πσ θ θ πσ

θ
= = = =

+
. (3) 

Сила гравитации не учитывается. 
Кинетическая энергия флотокомплекса определяется энергией жидкости и минеральной 

частицы: 
— следуя [2], кинетическая энергия жидкости снаружи пузырька задана уравнением 

 3 2

1

12 ( )
( 1)(2 1)

N

f f j
j

T R b t
j j

π ρ
=

=
+ +  , 

“точка” над символами — производная по времени; 
— кинетическая энергия осциллирующей частицы получается дифференцированием (1) 

по времени (“штрих” — производная по времени): 

 
2 2

0 2 2
0 0

( ) [(tg ) ]
2 2

p p r
p

m z m
T K r

θ′ ′
= = . 

Обозначив 0 0tg( )ry r θ= , получим 

 
2 2 2
0

0 0 2 2
0

( )
, 2

2
p

p p

m K y yT U K r
r y

πσ= =
+


. 

Как показано в [12], когда вязкость жидкости сравнительно мала, движение слабо отлича-
ется от потенциального течения идеальной жидкости и формула для оценки диссипация энер-
гии в единицу времени может быть существенно упрощена в случае волновых движений мало-
вязкой жидкости. В жидкости на сферическую поверхность действует сила трения, которая 
может быть учтена через скорость вязкой диссипации энергии: 

 ( )
2

f

s

uuD d s
n

μ ∂=
∂ . 

где fμ  — вязкость внешней жидкой фазы; u  — вектор скорости; n  — вектор нормали к по-
верхности. 

Используя представление скорости в терминах ряда по полиномам Лежандра, находим 

 2

1

28
1

N

f j
j

jD R b
j

π μ
=

+=
+  . 

Отметим, что / 2D  обычно обозначает диссипацию Рэлея. Это выражение справедливо только 
для осцилляций с малой амплитудой и небольшой вязкостью. 

УРАВНЕНИЯ ЛАГРАНЖА 

Лагранжиан системы “минеральная частица – пузырек” f pL L L= +  зависит от обобщенных 
координат ( )jb t  и их скоростей: 

 
2

3 2 2

1 2

1 22 ( ) 2 ( )
( 1)(2 1) 2 1

N N

f f f f j j
j j

j jL T U R b t b t
j j j

π ρ πσ
= =

  + −= − = − + + + 
  , (4) 
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2 2
0 2

0 0 0 02 2
0

2 ( )
2

p
p p p p j

m K yL T U y K r m b P yK
r y

πσ μ = − = − −  +
  . (5) 

Здесь T , U  — кинетическая и потенциальная энергии; нижние индексы соответствуют жид-
кости f  и минеральной частице p . Последний член в (5) появляется вследствие неразрывной 
связи частицы с движущейся поверхностью пузырька, т. е. частица связана с подвижной систе-
мой координат с началом на поверхности пузырька, которая является неинерциальной. Исполь-
зуя (4) и (5), запишем уравнение Лагранжа 

 1 , 1, , 1
2j j jj j

T T U Dd g j N
dt b b bb b

λ
 ∂ ∂ ∂ ∂ ∂− + = − + = +   ∂ ∂ ∂∂ ∂ 

  , 

где f pT T T= + ; f pU U U= + ; D  — функция диссипации; g  — ограничение (2); λ  — множи-
тель Лагранжа. 

В результате получаем систему из 1N +  нелинейных обыкновенных дифференциальных 
уравнений второго порядка и одного алгебраического уравнения, включающую 1N +  обоб-
щенные координаты ( ), ( )jb t y t  и множитель Лагранжа λ : 
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 (6) 

Запишем систему уравнений (6) в безразмерном виде (значения со “*’’ безразмерные): 

 * * * *
3

1, , ,
4f

b yt t b y
R R RR

σ λλ
π σρ

= = = = ,   fOh
L

μ
ρσ

=  — число Онезорге 

(отношение сил поверхностного натяжения к инерционным сила, иначе отношение масштаба 
времени вязких сил к масштабу времени инерционных сил). 

Уравнения (6) в безразмерных переменных имеют вид: 
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Решение системы зависит от четырех безразмерных величин: 0K ; /p flm m  — отношения 
массы частицы к массе жидкости в объеме пузырька; 0 /r R  — отношения радиуса частицы 
к радиусу пузырька; Oh  — отношения сил поверхностного натяжения к инерционным силам. 
С помощью (2) можно получить уравнение для множителя Лагранжа ( )tλ в терминах обоб-
щенных координат ( ), ( )jb t y t : 
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Имеем систему обыкновенных дифференциальных уравнений второго порядка в терминах 
( ), 1, ,jb t j N= …  и ( )y t : 

 

2
0

3
2 2

2 20 0 0
2 2

0 0

2 ( 1)(2 1) ( )( 1)(2 1) ( ) ( 1)( 1) , 1, , ,

3 1 3 1 1( ) / / .
2 2 2

j j j j

fl fl

p p

b Oh j j b t j j P j j j b j N

m m r r ry t y y y y
K m K m R R R

λ μ

λ

= − + + + + + − + + − =

       = − + − +              

  


 (7) 

В начальный момент времени заданы значения неизвестных функций (0), (0)j jb b . Началь-
ные значения (0), (0)y y  находятся из условия геометрической связи (2): 
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
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 (8) 

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 

Детали метода численного решения и результаты расчетов без учета вязкости приведены в [13]. 
Начальное возбуждение второй и третьей мод. Результаты численного решения уравне-

ний (7), (8) для случая флотокомплекса “пузырек – частица” в идеальной невязкой жидкости 
представлены на рис. 2 для следующих величин: размеры частицы 4

0 1 10r −= ⋅  м, 42 10h −= ⋅  м, 
радиус пузырька 48.2 10R −= ⋅  м, плотность частицы 3= 4.5 10pρ ⋅  кг/м3 и воды 3=1 10fρ ⋅  кг/м3, 
масса частицы 2.83·10–8 кг, отношение радиусов 1

0 /   1.22 10r R −= ⋅ , поверхностное натяжение 
27.2 10σ −= ⋅  Н/м, 32.68 10a −= ⋅ , 0 3.41K = , вязкость отсутствует 0Oh = . 

Рассмотрены два случая задания начальных условий. В первом начальное возмущение за-
дано для скорости второй моды 5

2 (0) 5 10b −= ⋅  м/с (левая колонка), во втором — для скорости 

третьей моды 5
3 (0) 5 10b −= ⋅  м/с (правая колонка). Остальные начальные данные нулевые. 
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На рис. 2 приведены осцилляции мод 2, 3, 4 и минеральной частицы (последняя строка). 
Расчеты показали, что начальные возмущения амплитуд второй гармоники возбуждают ампли-
туды колебаний других гармоник, большие по сравнению с амплитудами колебаний, возбуж-
даемых аналогичным начальным возмущением третьей гармоники. Частоты поверхностных 
осцилляций формы пузырька с частицей, вызванные возмущением второй гармоники, почти 
в 2 раза меньше частот осцилляций, обусловленных возмущением третьей гармоники. Ампли-
туды колебаний минеральной частицы практически одинаковы, а частота колебаний частицы, 
генерируемая начальным возмущением третьей моды, почти в 2 раза выше аналогичной, вы-
званной возмущением второй моды. Учет изменения скорости осцилляций второй моды наибо-
лее важен при учете развития осцилляций флотокомплекса и их эволюции. 

 
Рис. 2. Осцилляции мод 2, 3, 4 и изменения амплитуды A колебаний минеральной частицы  
(4-я строка), вызванные начальным возмущением скорости второй гармоники 2 (0) 0.5b =  м/с (а) 
и третьей гармоники 3 (0) 0.5b =  м/с (б) 
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Эффект вязкости на динамику флотокомплекса. В большинстве случаев демпфирование 
волн малой амплитуды на свободной поверхности слабовязкой жидкости, такой как вода, может 
быть оценено с достаточной точностью в приближении безвихревого течения [14, 15]. И хотя 
рассматривается безвихревой поток, результирующее безвихревое поле скорости по-прежнему 
позволяет учесть локальные скорости диссипации энергии. 

Рассмотрим случай возбуждения начальной скорости второй гармоники для флотокомплек-
са, определяемого следующими параметрами: 4

0 =1 10r −⋅  м; 41.5 10h −= ⋅  м; 8
part  2.12 10m −= ⋅  кг; 

45.2 10R −= ⋅  м; 3
part  4.5 10ρ = ⋅  кг/м3; 31 10fρ = ⋅  кг/м3; 27.2 10σ −= ⋅  Н/м; 32.68 10a −= ⋅ ; 0  3.41K = . 

Задавались начальные условия: (0) (0) 0j jb b= = , кроме 2 (0) 0.5b =  м/с. 

На рис. 3 приведены зависимости от времени положения минеральной частицы и краевого 
контактного угла для нескольких чисел Онезорге (Oh). 

 
Рис. 3. Зависимость амплитуды A осцилляций частицы и краевого угла θ  при возбуждении 
начальной скорости второй моды b2(0) = 1⋅10–4 (а) и b2(0) = 5⋅10–5 (б) от времени при различ-
ной вязкости (числа Онезорге) 
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Изменение числа Oh  прямо пропорционально изменению вязкости жидкости и обратно 
пропорционально квадратному корню плотности жидкости при фиксированных прочих пара-
метрах. Затухание амплитуды колебаний газового пузырька с прикрепленной минеральной 
частицей вызвано вязкой диссипацией, связанной с необратимым характером процесса пере-
носа импульса и локализовано вблизи границы раздела “газ – жидкость”. Зависимость лога-
рифмического декремента затухания от числа Онезорге демонстрирует более быстрое 
уменьшение амплитуды колебаний со временем при возрастании вязкости. Зависимость ло-
гарифмического декремента затухания колебаний определялась приблизительно по пикам 
осцилляций 1 / ln[ ( ) / ( ( ))]n y t y t nTδ = +  и представляет отношения последовательных ампли-
туд колеблющейся частицы. Колебательное поведение системы характеризуется коэффици-
ентом демпфирования ς , связанным с логарифмическим декрементом затухания соотноше-

нием 2 2/ 4ς δ π δ= + . Логарифмический декремент затухания характеризует число перио-
дов, в течение которых происходит затухание колебаний. 

На рис. 4 показано изменение во времени контактного угла 0rθ  и осцилляции второй 
гармоники для двух значений, определяющих начальную форму пузырька, обусловленную 
заданием ненулевой второй моды в начальный момент 2(0)b . Остальные моды в начальный 
момент задавались нулевыми. Амплитуды осцилляций краевого угла, соответствующих 
большему начальному возмущению 4

2(0) 1 10b −= ⋅ , приблизительно в 2 раза превышают ам-
плитуды, обусловленные более слабым 5

2(0) 5 10b −= ⋅  отклонением формы пузырька от сфе-
рической в начальный момент. Осцилляции второй гармоники, которая является доминиру-
ющей, также имеют большую амплитуду в случае более сильного начального возмущения 
поверхности пузырька. Приближенные значения логарифмического декремента затухания 
и коэффициента демпфирования, найденные по рис. 3, 4, составляли 0.0874δ = , 0.0250ς =  
для случая а; 0.0744δ = , 0.0210ς =  для случая б соответственно. 

 
Рис. 4. Зависимости во времени контактного угла и амплитуды второй моды от ее начального 
возмущения: а — b2(0) = 5⋅10–5, Oh = 0.005; б — b2(0) = 1⋅10–4, Oh = 0.005 
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Результаты на рис. 4 представлены для следующих параметров: 4
0 1 10r −= ⋅  м; 41.5 10h −= ⋅  м; 

8
part  2.12 10 кг;m −= ⋅  45.2 10 м;R −= ⋅  3 3

part  4.5 10 кг/м ;ρ = ⋅  35 10 ;Oh −= ⋅  3 31 10 кг/м ;fρ = ⋅  0  3.41;K =  
27.2 10 Н/мσ −= ⋅ ; 32.68 10a −= ⋅ . Начальные условия 5

2 (0) 5 10b −= ⋅  на рис. 4а и 4
2 (0) 1 10b −= ⋅  — 

на рис. 4б; остальные начальные данные нулевые: (0) 0.0jb = , (0) 0.0jb = . 

ВЫВОДЫ 

Рассмотрены осесимметричные колебания газового пузырька с прикрепленной минераль-
ной частицей в невязкой несжимаемой жидкости. Для учета вязких демпфирующих эффектов 
при отсутствии завихренности использовалась функция диссипации Рэлея. Предполагая, что 
деформация формы пузырька и осцилляции частицы малы и представляя деформацию формы 
пузырька рядом по многочленам Лежандра, получена система связанных алгебраическо-
дифференциальных уравнений. Лагранжиан системы использовался для построения системы 
соответствующих уравнений Лагранжа, которые решались численно. 

Изучено влияние первоначальных возмущений второй или третьей мод на возбуждение ре-
жимов колебаний других мод. Установлено, что на развитие осцилляций флотокомплекса наибо-
лее сильное влияние оказывают изменения скорости колебаний второй моды. Возбуждение не-
скольких мод поверхностных колебаний пузырька приводит к нелинейным колебаниям частицы 
и появлению “биений” с увеличенными амплитудами наступающего контактного угла. 

Рассмотрен эффект учета вязкости жидкости на затухание осесимметричных колебаний 
комплекса “частица – пузырек”. Зависимость логарифмического декремента затухания от чис-
ла Онезорге демонстрирует более быстрое уменьшение амплитуды колебаний со временем 
при возрастании вязкости. Во время колебаний комплекса “частица – пузырек” контактный 
угол изменяется в широких пределах, что подразумевает устойчивое закрепление периметра 
трехфазного контакта исключительно на ребрах частицы. 
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