Химия в интересах устойчивого развития 30 (2022) 465-473

УДК 662.749.39, 661.715.3, 661.715.7 DOI: 10.15372/Khur2022403 EDN: DXWOBH

Исследование переноса водорода от каменноугольного и нефтяных пеков с использованием в качестве акцептора водорода α-метилстирола

Е. И. АНДРЕЙКОВ^{1,2}, А. П. КРАСИКОВА^{1,2}, М. Г. ПЕРВОВА¹, А. С. КАБАК^{1,2}

¹Институт органического синтеза им. И. Я. Постовского УрО РАН, Екатеринбург (Россия)

E-mail: cc@ios.uran.ru

²АО "Восточный научно-исследовательский углехимический институт", Екатеринбург (Россия)

Аннотация

Исследована реакция переноса водорода от каменноугольного и нефтяных пеков к α -метилстиролу с образованием кумола в стеклянных ампулах в температурном интервале 200–360 °С, при длительности реакции 15–60 мин и при пропускании α -метилстирола через слой каменноугольного пека. Показано, что одновременно происходит образование нехроматографируемых продуктов конденсации α -метилстирола с полициклическими ароматическими соединениями пеков. Определены зависимости конверсии α -метилстирола, селективности по кумолу и продуктам конденсации от температуры и времени реакции, соотношения пек/ α -метилстирол. Установлено количество перенесенного водорода от пеков к α -метилстиролу, проведено сравнение полученных результатов с литературными данными по переносу водорода от пеков при использовании в качестве акцептора водорода антрацена.

Ключевые слова: α-метилстирол, каменноугольный пек, нефтяные пеки, перенос водорода, продукты конденсации

введение

Каменноугольные и нефтяные пеки представляют интерес в качестве сырья для получения различных углеродных материалов, таких как анодные массы алюминиевых электролизеров, углеграфитовые электроды, углеродные волокна, конструкционные углеграфитовые материалы [1–4]. Для получения углеродных материалов пеки подвергаются термообработке при повышенных температурах, при этом в них протекают реакции поликонденсации и полимеризации с постепенным формированием углеродной структуры и выделением низкомолекулярных продуктов и газов, в том числе водорода [5].

Важную роль в этих процессах играют термические реакции переноса водорода от соединений пеков. Отмечается, что начальные реакции карбонизации ароматических соединений (на примере антрацена в интервале температур 465-525 °C) начинаются с переноса водорода и конденсации свободных радикалов в соединения с большой молекулярной массой [6]. Поэтому исследование реакций переноса водорода с участием каменноугольных и нефтяных пеков имеет значение для понимания процессов их карбонизации [7, 8].

В работах [9–12] установлен перенос водорода от каменноугольного и нефтяных пеков к радикальным и ненасыщенным продуктам термической деструкции полимеров при совместной термической обработке пеков с полимерами. Перенос водорода происходит при температурах, определяемых термической устойчивостью полимеров, которые значительно ниже температур, необходимых для карбонизации пеков. Это предотвращает реакции рекомбинации радикальных продуктов деструкции полимеров с образованием углеродистого остатка, с одновременным протеканием дегидрогенизационной конденсации соединений пеков. Процессы пиролиза полимеров в среде пеков могут быть использованы как для процессов утилизации отходов пластиков [11–15], так и для получения пеков с повышенной температурой размягчения [13].

Водорододонорные свойства каменноугольных и нефтяных пеков изучались с применением в качестве акцептора водорода антрацена [7, 8, 16-22] путем количественного определения продуктов его гидрирования, дигидро- и тетрагидроантрацена. Однако процесс гидрирования обратим и возможна обратная реакция, поэтому перенос водорода может осуществляться не полностью [23]. Также при использовании реакции с антраценом затрудняется отделение антрацена и продуктов его гидрирования от ароматических соединений пеков.

В работе [24] в качестве акцептора в исследовании реакций переноса водорода от нефтяных асфальтенов использован α -метилстирол. Показано, что реакция переноса водорода от асфальтенов к α -метилстиролу приводит к образованию кумола без обратной реакции, кумол и исходный α -метилстирол легко извлекаются из реакционной смеси растворителями, кроме того, α -метилстирол обладает предельной температурой полимеризации 61 °C [25] и не полимеризуется при температурах эксперимента. Ранее α -метилстирол применялся в качестве акцептора водорода при изучении реакций некатализируемого переноса водорода от индивидуальных органических соединений [26].

Цель настоящей работы – исследование реакций переноса водорода от каменноугольного и нефтяных пеков к *а*-метилстиролу и определение количества перенесенного водорода. Применение α-метилстирола в качестве акцептора в реакциях переноса водорода от пеков ранее не изучалось.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы

В работе использовались α-метилстирол и дифенил квалификации "х. ч." и пеки, полученные из каменноугольной смолы (КП), тяжелой смолы пиролиза этиленовых производств (НП1) и тяжелого газойля каталитического крекинга (НП2). Пеки были получены как остаток дистилляции исходного сырья. Дистилляцию проводили с одношариковым дефлегматором. Скорость отбора дистиллятных фракций составляла 2 капли/с. Также осуществляли контроль температуры в жидкой фазе и температуры паров дистиллята. Конечное значение температуры в парах составляло 320 °C, в жидкой фазе - 400-420 °C. Остаток дистилляции выдерживался при конечной температуре в течение 2 ч. Остаток дистилляции, полученный из тяжелого газойля каталитического крекинга, был подвергнут процессу окисления путем барботажа воздуха при 350 °C. Технические характеристики и результаты элементного анализа пеков представлены в табл. 1.

Методика исследования

Опыты в ампулах. Эксперимент проводили с использованием методики, предложенной в работе [27]. Навеску α-метилстирола массой 0.025-0.035 г и пека в соотношении к α-метилстиролу 16 : 1; 8 : 1; 3.5 : 1; 1.5 : 1 загружали в стеклянные ампулы объемом 3 мл, ампулы продували азотом.

Ампулы запаивали и ставили в муфельную печь, разогретую до заданной температуры, где

ТАБЛИЦА 1

Характеристики пеков

Образец	Показатели по ГОСТ 10200-2017			Элементный состав, %						
	T _p , °C	α, %	$\alpha_1, \%$	V ^r , %	С	Η	Ν	S	О, по разности	С/Н атомное
КП	88	36.5	18.9	47.9	91.4	4.7	1.7	0.3	1.9	1.62
$H\Pi 1$	118	28.4	3.5	52.0	91.9	6.5	0.1	0.1	1.4	1.18
$H\Pi 2$	80	24.6	0	61.5	91.7	6.1	0.4	0.3	1.5	1.25

Примечание. Здесь и в табл. 4: показатели по ГОСТ 10200-2017 "Пек каменноугольный электродный. Технические условия": $T_{\rm p}$ – температура размягчения по методу "Кольцо и стержень"; α – массовая доля не растворимых в толуоле веществ; α_1 – массовая доля не растворимых в хинолине веществ; $V^{\rm r}$ – выход летучих веществ при 850 °C.

выдерживали определенное количество времени. По истечению заданного времени, ампулы извлекали из муфельной печи и охлаждали при комнатной температуре. После охлаждения до комнатной температуры ампулы вскрывали и вместе с содержимым помещали в конические колбы на 100 мл, в которых находилось 5-20 мл дихлорметана. На следующий день ампулы извлекали из раствора, к содержимому колб приливали 20-60 мл изопропилового спирта и затем перемешивали с использованием магнитных мешалок в течение 30-60 мин, после чего раствор фильтровали через фильтр "Красная лента". К фильтрату добавляли раствор внутреннего стандарта, дифенила, в смеси изопропилового спирта и метиленхлорида, соотношение масс дифенила и загруженной в ампулу навески α-метилстирола равно 1 : 2. После этого полученный фильтрат анализировали методом газожидкостной хроматографии (ГХ). Концентрации полученных в результате реакции продуктов и внутреннего стандарта (дифенила) в растворах для хроматографического определения составляли 0.05-0.20 мг/мл.

В каждых условиях проводили не менее двух параллельных опытов.

Опыты в динамических условиях. Эксперимент проводили путем пропускания α-метилстирола в течение 30 мин через металлический реактор с пропеллерной мешалкой, в котором находилось 60 г каменноугольного пека. Высота слоя пека составляла 50 мм. Сконденсированные после реактора жидкие продукты и остаток в реакторе взвешивали. Содержание метилстирола, кумола и этилбензола в жидких продуктах реакции определяли методом ГХ.

Методы исследования

Идентификацию и анализ жидких продуктов реакции переноса водорода от пеков к α-метилстиролу осуществляли с использованием газового хроматографа GC 2010 Plus (Shimadzu, Япония) с пламенно-ионизационным детектором, кварцевой капиллярной колонкой ZB-5 (полиметилсилоксан, 5 мас. % фенильных групп) длиной 30 м, диаметром 0.25 мм, толщиной пленки 0.25 мкм. Начальная температура колонки 40 °C (выдержка 3 мин), далее нагрев до 280 °C со скоростью 10 °C/мин. Температура испарителя 250 °C, детектора – 300 °C. Газ-носитель – азот, деление 1 : 30, расход через колонку 1.0 см³/мин. Определение содержания углерода, водорода и азота проводили с помощью автоматического анализатора CHN PE 2400-II (Perkin Elmer, США).

Основные характеристики пеков определяли по ГОСТ 10200-2017: температуру размягчения (метод "Кольцо и стержень") – по ГОСТ 9950-17; выход летучих веществ – по ГОСТ 9951-73; содержание веществ, не растворимых в толуоле (α -фракция), – по ГОСТ 7847-17; содержание веществ, не растворимых в хинолине (α_1 -фракция), – по ГОСТ 10200-2017.

Расчеты

Расчет массы перенесенного к α -метилстиролу водорода ($m_{\rm H}$, г) проводили по количеству полученного кумола, для образования которого необходим перенос двух атомов водорода, по формуле:

$$m_{_{
m H}} = \frac{m_{_{
m K}}M_{_{
m H}}}{M_{_{
m C}}}$$

где $m_{_{\rm K}}^{}$ – масса кумола по результатам ГХ, г; $M_{_{\rm H}}^{}$ – молекулярная масса водорода; $M_{_{\alpha}}^{}$ – молекулярная масса α -метилстирола.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Опыты в ампулах

Реакция переноса водорода от пеков к α-метилстиролу была исследована в температурном диапазоне 200-360 °C, при длительности термовыдержки при заданной температуре 15-60 мин, при различном соотношении пек/α-метилстирол.

На хроматограммах реакционных смесей с пеками наряду с пиками соединений пеков с относительно небольшой молекулярной массой присутствуют пики непрореагировавшего α-метилстирола и кумола.

Разность между массой исходного α-метилстирола и количествами непрореагировавшего α-метилстирола и кумола отнесена к нехроматографируемым продуктам конденсации α-метилстирола с соединениями пека. Образование продуктов конденсации также показано в опытах в динамическом режиме.

В табл. 2 приведены результаты опытов по термообработке смесей α -метилстирола с каменноугольным и нефтяными пеками при 360 °C, соотношении 8 : 1 и времени термовыдержки 60 мин. При термообработке α -метилстирола без

материальный баланс реакции α-метилстирола с пеками							
Пек	Соотношение	Масса навески	Масса α-метилстирола	Macca	Продукты конденсации		
	пек/α-метилстирол	α-метилстирола, г	после реакции с пеком, г	кумола, г	пека с α-метилстиролом, г		
КП	8:1	0.030 ± 0.001	0.009	0.023	0.007		
$H\Pi 1$	8:1	0.031 ± 0.001	0.002	0.022	0.009		
$H\Pi 2$	8:1	0.030 ± 0.001	0.003	0.014	0.013		

ТАБЛИЦА 2 Материальный баланс реакции а-метилстироля

Рис. 1. Зависимости конверсии α-метилстирола (*a*), селективности по кумолу (б) и селективности по продуктам конденсации (*в*) от температуры проведения реакции при соотношении пек/α-метилстирол 16 : 1 и времени термовыдержки 60 мин.

пека при 360 °С и времени реакции 60 мин конверсия α -метилстирола не превышала 3 % и методом ГХ был найден продукт димеризации α -метилстирола состава С₁₈H₂₀. Продукты димеризации α -метилстирола были обнаружены ранее в результате его термической реакции с нефтяными асфальтенами при 250 °С и термовыдержке 120 мин [24]. Однако в нашей работе в результате реакции α -метилстирола с пеками продуктов димеризации α -метилстирола обнаружено не было.

Данные по материальному балансу показывают, что в результате реакции α-метилстирол помимо конверсии в кумол за счет переноса водорода от пеков превращается в нехроматографируемые продукты конденсации с соединениями пеков. Были построены зависимости конверсии α-метилстирола, селективностей по кумолу и продуктам конденсации от температуры реакции, времени термовыдержки и соотношения пек/α-метилстирол.

Зависимости исследуемых параметров от температуры реакции представлены на рис. 1.

Наиболее высокие значения конверсии α -метилстирола наблюдаются для пека из смолы пиролиза при всех исследуемых температурах. Образование кумола в опытах с этим пеком происходит уже при 200 °C, когда для остальных пеков конверсия α -метилстирола в кумол при этой температуре не обнаружена. Селективность по кумолу растет с увеличением температуры и достигает значений около 40 % для нефтяных пеков при 300 °C. При 360 °C селективность по кумолу для нефтяных пеков снижается, а для каменноугольного пека селективность по кумолу равномерно растет, достигая 60 % при 360 °C. Селективность по продуктам конденсации изменяется антибатно селективности по кумолу.

Зависимости изучаемых параметров от времени термовыдержки представлены на рис. 2.

Наибольшее влияние время термовыдержки оказывает на реакцию α-метилстирола с каменноугольным пеком. В этом случае конвер-

Рис. 2. Зависимости конверсии α -метилстирола (*a*), селективности по кумолу (б) и селективности по продуктам конденсации (*a*) от времени термовыдержки при соотношении пек/ α -метилстирол = 16 : 1 и температуре 360 °C.

Рис. 3. Зависимости конверсии α -метилстирола (*a*), селективности по кумолу (б) и селективности по продуктам конденсации (*s*) от соотношения пек/ α -метилстирол при температуре 360 °C и времени термовыдержки 60 мин.

сия α -метилстирола возрастает от 53 до 87 % при увеличении времени реакции с 15 до 60 мин. Для нефтяных пеков конверсия α -метилстирола составляет 85 % (для НП2) и 90 % (для НП1) уже при 15 мин. Значения селективности по кумолу для нефтяных пеков сильно меняются при увеличении времени выдержки с 15 до 30 мин и незначительно – в интервале 30– 60 мин. Для каменноугольного пека значения селективности изменяются плавно и незначительно с увеличением времени термовыдержки с 15 до 60 мин. Взаимодействие α-метилстирола с каменноугольным пеком в динамическом режиме

T, ℃	Масса пека, г,	Подано	Получено, г		Конверсия	Селективность, %	
	до/после	α -метилстирола, г	α-Метилстирол	Кумол	α -метилстирола, $\%$	Кумол	Продукты
	реакции						конденсации
320	60.1/61.0	15.0	11.9	1.6	21	52	48
360	60.6/58.6	7.3	5.8	0.8	20	53	47

ТАБЛИЦА 4

Характеристики каменноугольного пека после пропускания α-метилстирола в динамическом режиме

Образец пека	Показатели по ГОСТ 10200-2017						
	$T_{\rm p}$, °C	α, %	$\alpha_1, \%$	V ^r , %			
Исходный пек	73	23.9	7.4	58.5			
После реакции при 320 °C	88	31.6	8.7	54.9			
После реакции при 360 °C	87	30.0	8.7	55.6			

Примечание. Обозн. см. табл. 1.

Зависимости изучаемых параметров от соотношения пек/ α -метилстирол представлены на рис. 3.

Исследования показали, что конверсия α-метилстирола растет при увеличении соотношения пек/α-метилстирол для всех пеков. Наибольшая селективность по кумолу и наименьшая селективность по продуктам конденсации наблюдается при соотношении 8 : 1 для каждого пека. При соотношениях 1.5 : 1 и 3.5 : 1 наиболее высокая селективность по кумолу наблюдается для НП1, при соотношении 16 : 1 селек-

Рис. 4. Схема реакций переноса водорода от пека к α -метилстиролу с образованием кумола и конденсацией соединений пеков. Ar₁-H и Ar₂-H – полициклические ароматические углеводороды пеков, изображение связи Ar-H не конкретизирует тип водорода.

тивность по кумолу для всех пеков значительно снижается. Наиболее высокая селективность по продуктам конденсации выявлена при соотношении 16 : 1 для всех пеков.

Реакция в динамическом режиме

При пропускании α-метилстирола через слой каменноугольного пека реакция проходит на границе газовой (пары α-метилстирола) и жидкой (расплав пека) фаз. Возможность протекания реакции переноса водорода от соединений пека к α-метилстиролу в объеме пека зависит от ее скорости. При высокой скорости реакции она будет протекать преимущественно на границе раздела фаз, при более низкой – как на границе, так и в объеме фаз. В жидких продуктах реакции, сконденсированных после реактора, определены непрореагировавший α-метилстирол, кумол, летучие соединения каменноугольного пека. Так же как и в экспериментах в ампулах, количество продуктов конденсации α-метилстирола рассчитано по разности между пропущенным через пек а-метилстиролом и количествами α-метилстирола и кумола, определенными в дистиллятных продуктах. Результаты опытов в динамическом режиме представлены в табл. 3. Характеристики каменноугольного пека после пропускания через него α-метилстирола при различных температурах приведены в табл. 4.

Рост температуры размягчения пеков, содержания не растворимых в толуоле соединений, наряду со снижением выхода летучих веществ, в опытах при 320 и 360 °C свидетельствует о протекании в каменноугольном пеке реакций конденсации соединений пека, инициируемых переносом водорода к α-метилстиролу (рис. 4).

Определение количества перенесенного водорода

Зависимости перенесенного водорода пека к α -метилстиролу от соотношения пек/ α -метилстирол при проведении эксперимента в ампу-

Рис. 5. Зависимость количества перенесенного водорода от соотношения пек/ α -метилстирол.

лах при температуре реакции 360 °C и времени термовыдержки 60 мин представлены на рис. 5.

Количество перенесенного водорода от пеков растет с увеличением соотношения α-метилстирола к пеку. При соотношении пек/α-метилстирол, равного 1.5 : 1, количество перенесенного водорода для КП, НП1 и НП2 составляет 2.1, 4.9 и 2.7 мг/г пека соответственно. Каменноугольные и нефтяные пеки различны по своей структуре [28–30]. В работе [19] авторы предполагают, что перенос водорода происходит преимущественно от гидроароматических соединений пека, что может объяснить более высокое количество перенесенного водорода от нефтяных пеков, чем от каменноугольного пека.

В работах [7, 18, 22] авторы сообщают, что водорододонорная способность нефтяных пеков выше, чем каменноугольных. Это соответствует полученным нами экспериментальным данным. Полученные значения переноса водорода от ка-

Рис. 6. Реакция образования продуктов конденсации α -метилстирола с соединениями пека. Ar₁-H – полициклические ароматические углеводороды пеков.

менноугольного и нефтяных пеков находятся в диапазонах значений переноса водорода от каменноугольного и нефтяных пеков к антрацену, полученных в других работах при значительно большем времени реакции. В работах [7, 22] реакции переноса водорода исследовались в широком диапазоне времени термовыдержки. Авторами было установлено, что при увеличении времени термовыдержки до 8-14 ч, растет количество перенесенного водорода от пеков к антрацену до 2.7 [22] и 4.0 [7] мг/г пека для каменноугольного пека и до 3.7 мг/г для нефтяного пека [22]. В нашей работе, при использовании в качестве акцептора водорода α-метилстирола, высокие значения количества перенесенного водорода достигаются уже при времени термовыдержки 1 ч. При сравнении конкретных значений переноса водорода следует учитывать влияние на водорододонорные свойства пеков их характеристик. Так, было показано, что перенос водорода от каменноугольного пека к нитробензолу с образованием анилина значительно меньше для пека с повышенной температурой размягчения [27].

Литературные и полученные нами экспериментальные данные по переносу водорода от

ТАБЛИЦА 5

Литературные и экспериментальные данные по переносу водорода от пеков к акцепторам водорода

Максимальное количеств перене	есенного Н ₂ , мг/г пека	Условия проведения реакции	Литература	
от каменноугольного пека от нефтяного пека				
0.6	2.0	400 °C; без термовыдержки; акцептор – антрацен	[18]	
0.3	_	400 °С; термовыдержка – 20 мин; акцептор – антрацен	[16]	
0.6	0.4	400 °C; без термовыдержки; акцептор – антрацен	[23]	
от 1.2 до 4; при термовыдержке 1 ч - 2.0	-	360 °C; термовыдержка – 0–8 ч; акцептор – антрацен	[7]	
от 0.6 до 2.7; при термовыдержке 1 ч – 1.0	3.7	400 °С; термовыдержка – 0–14 ч; акцептор – антрацен	[22]	
2.1	НП1 — 4.9; НП2 — 2.7	360 °C; термовыдержка – 1 ч; акцептор – α-метилстирол	Наши данные	

пеков к акцепторам водорода представлены в табл. 5.

При изучении реакции α -метилстирола с нефтяными асфальтенами, которая проводилась при 100-250 °C в течение 20-240 мин под давлением 4 МПа, также было показано, что, наряду с переносом водорода к α -метилстиролу с образованием кумола, образуются нехроматографируемые продукты конденсации α -метилстирола и асфальтенов [24]. Селективность по кумолу варьировалась от 30 до 66 %, количество перенесенного водорода от асфальтенов к α -метилстиролу составило 0.5-3.8 мг/г асфальтенов в зависимости от времени термовыдержки.

Как следует из приведенных данных, параллельное протекание реакций конденсации α -метилстирола с соединениями пека не приводит к снижению водорододонорной способности пеков, определяемой по реакции образования кумола, что, по-видимому, объясняется участием в этих реакциях разных соединений, входящих в состав пеков. Отметим, что реакции конденсации интенсивно идут при гораздо более низких температурах, чем реакции переноса водорода. Возможно, эти соединения образуются путем присоединения соединений пека к двойной связи α -метилстирола (рис. 6).

Таким образом, α-метилстирол может быть использован в качестве модельного вещества для определения водорододонорных свойств каменноугольных и нефтяных пеков. Кроме того, перспективно его применение и для исследования реакций пеков с непредельными соединениями, модифицирующими пеки, с образованием продуктов конденсации.

ЗАКЛЮЧЕНИЕ

Показано, что реакция гидрирования α-метилстирола с получением кумола может быть использована для количественного исследования водорододонорных свойств пеков разного происхождения. Наряду с переносом водорода от пеков к α-метилстиролу с образованием кумола, образуются нехроматографируемые продукты конденсации α-метилстирола с соединениями пеков. Перенос водорода от пеков инициирует реакции конденсации соединений пеков. Сочетание этих процессов также позволяет применять термообработку пеков с α-метилстиролом для модификации пеков.

Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ (проект № АААА-А19-119012290113-8) с использованием оборудования Центра коллективного пользования "Спектроскопия и анализ органических соединений" (ЦКП "САОС").

СПИСОК ЛИТЕРАТУРЫ

- 1 Фиалков А. С. Углерод, межслоевые соединения и композиты на его основе. М.: Аспект Пресс, 1997. 718 с.
- 2 Granda M., Blanco C., Alvarez P., Patrick J. W., Menéndez R. Chemicals from coal coking // Chem. Rev. 2014. Vol. 114. P. 1608–1636.
- 3 Yang J. Y., Kim B. S., Park S. J., Rhee K. Y., Seo M. K. Preparation and characterization of mesophase formation of pyrolysis fuel oil-derived binder pitches for carbon composites // Compos. B. Eng. 2019. Vol. 165. P. 467-472.
- 4 Daulbayev C., Kaidar B., Sultanov F., Bakbolat B., Smagulova G., Mansurov Z. The recent progress in pitch derived carbon fibers applications. A review // South African Journal of Chemical Engineering. 2021. Vol. 38. P. 9-20.
- 5 Lewis I. C. Chemistry of pitch carbonization // Fuel. 1987. Vol. 66. P. 1527-1531.
- 6 Scaroni A. W., Jenkins R. G., Walker Jr. P. L. Carbonization of anthracene in a batch reactor // Carbon. 1991. Vol. 29, No. 7. P. 969–980.
- 7 Machnikowski J., Kaczmarska H., Leszczynska A., Rutkowski P., Díez M. A., Alvarez R., García R. Hydrogen-transfer ability of extrographic fractions of coal-tar pitch // Fuel Process. Technol. 2001. Vol. 69, No. 2. P. 107–126.
- 8 Lin C., Sang J., Chen S., Wang J., Wang Z., Liu H., Chen K., Guo A. Thermal treatment of FCC slurry oil under hydrogen: Correlation of hydrogen transfer ability with carbonization performance of the fractions // Fuel. 2018. Vol. 233. P. 805-815.
- 9 Андрейков Е. И., Амосова И. С., Диковинкина Ю. А., Красникова О. В., Первова М. Г. Пиролиз полистирола в каменноутольном и пиролизном пеке // Журнал прикладной химии. 2012. Т. 85, № 1. С. 93-102.
- 10 Андрейков Е. И., Амосова И. С., Диковинкина Ю. А., Первова М. Г. Пиролиз полиолефинов в высококипящих растворителях // Химия твердого топлива. 2013. № 4. С. 19–28.
- 11 Андрейков Е. И., Сафаров Л. Ф., Первова М. Г., Мехаев А. В. Пиролиз поликарбоната в среде каменноугольного пека // Химия твердого топлива. 2016. № 1. С. 13-21.
- 12 Кабак А. С., Андрейков Е. И. Сравнение каменноугольного и нефтяных пеков в реакциях термического сольволиза термореактивных полимеров // Химия уст. разв. 2020. Т. 28, № 6. С. 557–564.
- 13 Кабак А. С., Андрейков Е. И., Первова М. Г., Койтов С. А., Селезнев А. М. Утилизация термореактивных полимеров на основе эпоксидной смолы путем термического сольволиза в среде каменноугольного пека с получением химического сырья // Химия уст. разв. 2018. Т. 26, № 2. С. 135-140.
- 14 Андрейков Е. И., Кабак А. С., Бейлина Н. Ю., Мишкин С. И. Исследование рециклинга углеродных волокон путем термического сольволиза полимерных композиционных материалов с применением каменноугольного пека // Химия уст. разв. 2018. Т. 26, № 6. С. 571–576.
- 15 Кабак А. С., Андрейков Е. И., Сафаров Л. Ф. Получение высокотемпературных пеков с использованием реакций переноса водорода от каменноугольного пека к реакционноспособным органическим соединениям // Изв. высших учебных заведений. Серия: Химия и хим. технология. 2017. Т. 60, № 9. С. 5–10.

- 16 Yokono T., Uno T., Obara T., Sanada Y. Hydrogen transfer reaction during carbonization of coal and pitch // Transactions ISIJ. 1986. Vol. 26. P. 512–518.
- 17 Yokono T., Marsh H., Yokono M. Hydrogen donor and acceptor abilities of pitch: ¹H n.m.r. study of hydrogen transfer to anthracene // Fuel. 1981. Vol. 60. P. 607–611.
- 18 Díez M. A., Domínguez A., Barriocanal C., Alvarez R., Blanco C. G., Canga C. S. Hydrogen donor and acceptor abilities of pitches from coal and petroleum evaluated by gas chromatography // J. Chromatogr. A. 1999. Vol. 830. P. 155–164.
- 19 Guo A., Wang F., Jiao S., Ibrahim U.-K., Liu H., Chen K., Wang Z. Mesophase pitch production from FCC slurry oil: Optimizing compositions and properties of the carbonization feedstock by slurry-bed hydrotreating coupled with distillation // Fuel. 2020. Vol. 262. P. 1–10.
- 20 Lin C., Wang L., Wu S., Zhou R., Zeng X., Zhang Z., Duan L. Synergistic effect of hydrogen transfer ability on the cocarbonization of different FCC slurry oil fractions // Energy Fuels. 2019. Vol. 33, No. 10. P. 9654–9660.
- 21 Yokono T., Takahashi N., Sanada Y. Hydrogen donor ability (Da) and acceptor ability (Aa) of coal and pitch. 1. Coalification, oxidation, and carbonization paths in the Da-Aa diagram // Energy Fuels. 1987. Vol. 1, No. 4. P. 360-362.
- 22 Madshus S., Foosnaes T., Hyland M., Krane J., Øye H. A. Composition and intermolecular reactivity of binder pitches and the influence on structure of carbonized pitch cokes // TMS Light Metals. 2006. P. 541–546.

- 23 Bermejo J., Canga J. S., Guillén M. D., Gayol O. M., Blanco C. G. Evidence for hydrogen donor-acceptor behaviour of 9,10-dihydroanthracene in thermal reactions with coals and pitches // Fuel Process. Technol. 1990. Vol. 24. P. 157-162.
- 24 Naghizada N., Prado G. H. C., de Klerk A. Uncatalyzed hydrogen transfer during 100–250 °C conversion of asphaltenes // Energy Fuels. 2017. Vol. 31, No. 7. P. 6800–6811.
- 25 McCormick H. W. Ceiling temperature of α-methylstyrene // J. Polymer Sci. 1957. Vol. 25. P. 488–490.
- 26 Ruchardt C., Gerst M., Ebenhoch J. Uncatalyzed transfer hydrogenation and transfer hydrogenolysis: Two novel types of hydrogen-transfer reactions // Angewandte Chemie. 1997. Vol. 36. P. 1406-1430.
- 27 Андрейков Е. И., Диковинкина Ю. А., Первова М. Г., Красникова О. В. Химические реакции каменноугольного пека с модельными органическими соединениями // Химия уст. разв. 2019. Т. 27, № 6. С. 556–560.
- 28 Díaz C., Blanco C. G. NMR: A powerful tool in the characterization of coal tar pitch // Energy Fuels. 2003. Vol. 17. P. 907-913.
- 29 Kulkarni S. U., Esguerra D. F., Thies M. C. Isolating petroleum pitch oligomers via semi-continuous supercritical extraction // Energy Fuels. 2012. Vol. 26. P. 2721-2726.
- 30 Fan X., Fei Y., Chen L., Li W. Distribution and structural analysis of polycyclic aromatic hydrocarbons abundant in coal tar pitch // Energy Fuels. 2017. Vol. 31. P. 4694–4704.