2018

УДК 004.9:628.33

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ПЕРЕРАБОТКИ ТЕХНОГЕННЫХ МИНЕРАЛИЗОВАННЫХ ВОД МЕТОДОМ НАПОРНОЙ ФЛОТАЦИИ

Н. Л. Медяник, И. Ю. Шевелин, С. Н. Какушкин

Магнитогорский государственный технический университет им. Г. И. Носова, E-mail: chem@magtu.ru, просп. Ленина, 38, 455000, г. Магнитогорск, Россия

Представлена математическая модель процесса переработки техногенных минерализованных вод горных предприятий с использованием метода напорной флотации. Модель позволяет получать информацию о концентрации субстратов металлов в каждом из состояний, входящих в описываемый процесс, в произвольный момент времени. На основе этой модели проведены численные эксперименты, которые показали надежность и точность ее работы.

Численное моделирование, техногенные минерализованные воды, многостадийная напорная флотация, субстраты металлов, реагент-комплексообразователь, флотационные системы "субстрат металла – агент – пузырек"

DOI: 10.15372/FTPRPI20180213

В настоящее время переработка техногенных минерализованных вод горно-обогатительных комбинатов (ГОКов) с целью выделения и концентрирования ценных металлов в новый товарный продукт является актуальной и в ряде случаев мало разработанной проблемой. Одно из первых полных описаний процесса флотационного извлечения ионных форм металлов приводится в работе [1]. Практическое применение флотационной переработки продуктивных растворов показывает, что один из важнейших параметров оптимального технологического режима — время флотации, которое можно определять как теоретически, так и экспериментально. В [2] разработана математическая модель процесса ионной флотации, однако в ней образование флотокомплекса не рассматривается по отдельным стадиям процесса. В [3–6] представлены некоторые многостадийные модели флотационной очистки сточных вод промышленных предприятий, в том числе и с использованием вибровоздействий в оборотных системах водопользования.

В основе математической модели, описывающей кинетику флотационного процесса, лежит система дифференциальных уравнений, аналогичная системе, отображающей кинетику сложной обратимой химической реакции первого порядка. Количество стадий флотационного процесса напрямую влияет на количество уравнений системы дифференциальных уравнений. В результате система, описывающая существующий процесс, может быть решена лишь численно. В ряде случаев многостадийный процесс удается разделить на несколько более простых процессов, отображаемых системой, состоящей из трех или четырех дифференциальных уравнений, решение которых может быть найдено аналитически.

№ 2

В данной работе исследуется математическая модель переработки техногенных минерализованных вод горных предприятий с помощью метода напорной флотации и приводятся результаты ее численного решения.

Процесс переработки техногенных вод горных предприятий с использованием метода напорной флотации (рис. 1) заключается в образовании флотационных систем "субстрат металлаагент-пузырек", всплывание этих систем и удаление пенного слоя с поверхности перерабатываемой воды. Первая стадия A — начальный процесс, субстраты металлов Cu, Zn, Fe, Ni, Pb, Cd (аквакатионы и аквагидроксокатионы) — продукты гидрогенезиса техногенных рудничных вод ГОКов, которые по количеству ценных компонентов, характеру среды и химическим свойствам можно отнести к технологическим растворам [7]. Для нейтрализации субстратов металлов и поддержания необходимого значения рН осаждения вводится доступный реагент-осадитель, как правило известковое молоко Ca(OH)₂, при взаимодействии с которым субстраты металлов образуют коллоидные гидролитические осадки. Расход реагента-осадителя регулируется в зависимости от концентрации и вида субстратов металлов рудничных вод, поступающих на технологическую переработку. Далее за счет введения в процесс В реагента-комплексообразователя (агента) происходит электрофильно-нуклеофильное взаимодействие субстратов металлов и активного агента с образованием малорастворимых флотосистем "субстрат Ме-агент", которые за счет последующей самосборки способны [8] образовывать супрамолекулярные комплексы [9] и более прочные ассоциаты / полиассоциаты [8, 9]. Наличие в составе реагента ГлиПЭТ [10, 11] гидроксильных, сложноэфирных, карбоксильных групп обусловливает его пенообразующие свойства и способствует начальному переходу флотационных систем "субстрат Ме-агент" из стадии *В* в "пенку" стадии *D*. На этапе *C* происходит активное насыщение воздушными пузырьками минерального раствора.

Рис. 1. Схема многостадийной модели напорной флотации: 1 — субстраты металлов — аквакатионы и гидроксоаквакатионы; 2 — реагент-осадитель (процесс A); 3 — гидролитические осадки; 4 — молекулы реагента-собирателя / агента (процесс B); 5 — система "субстрат Me – агент"; 6 — пузырек воздуха (процесс C); 7 — ассоциаты / полиассоциаты флотационной системы "субстрат – агент – пузырек" (процесс D); 8 — металлсодержащий (Cu, Zn, Fe, Ni, Pb, Cd) продукт — флотошлам (процесс E)

При переходе в состояние D происходит массивное насыщение воздушными пузырьками минерального раствора, которые захватывают гидрофобные осадки (ассоциаты / полиассоциаты), дисперсные и взвешенные частицы, содержащиеся в технологическом растворе, и вместе с ними всплывают в верхнюю часть напорного флотатора, образуя на этапе E металлсодержащий

продукт (флотошлам). В дальнейшем этот продукт подвергается фильтрации, обезвоживанию и направляется в сборную емкость для последующей реутилизации, а удаленная вода при необходимости может быть возвращена во флотатор на повторную переработку (доочистку). Очищенную воду рекомендуется использовать в оборотном водоснабжении ГОКов.

Следует отметить, что все процессы обратимы. Модель позволяет учитывать разрушение гидролитических осадков, малорастворимых флотосистем "субстрат Me-arent" с возможной коалесценцией пузырьков воздуха (переход из состояния B и C в состояние A), процесс выпадения ассоциата / полиассоциата из пены в водовоздушную смесь (переход из состояния D в состояние B и C) или обратно из пенного слоя флотошлама в исходное состояние (переход из состояния E в состояние A).

Далее представляется математическая модель переработки техногенных минерализованных вод методом многостадийной напорной флотации. Рассматриваемый процесс описывается системой дифференциальных уравнений:

$$\begin{cases} \frac{dF_{A}}{dt} = -(k_{AB} + k_{AC} + k_{AE})F_{A} + k_{BA}F_{B} + k_{CA}F_{C} + k_{EA}F_{E}, \\ \frac{dF_{B}}{dt} = -(k_{BA} + k_{BD})F_{B} + k_{AB}F_{A} + k_{DB}F_{D}, \\ \frac{dF_{C}}{dt} = -(k_{CA} + k_{CD})F_{C} + k_{AC}F_{A} + k_{DC}F_{D}, \\ \frac{dF_{D}}{dt} = -(k_{DB} + k_{DC} + k_{DE})F_{D} + k_{BD}F_{B} + k_{CD}F_{C}, \\ \frac{dF_{E}}{dt} = -k_{EA}F_{E} + k_{DE}F_{D} + k_{AE}F_{A}. \end{cases}$$
(1)

Здесь F_A , F_B , F_C , F_D и F_E — концентрация частиц в состояниях A, B, C, D и E соответственно. Будем считать концентрации функциями времени $t \in R_+$, при этом сумма концентраций частиц со временем остается постоянной, т. е.

$$F_{A}(t) + F_{B}(t) + F_{C}(t) + F_{D}(t) + F_{E}(t) = F_{0}, \quad F_{0} \in \mathbb{R}_{+} \quad \forall t \in \mathbb{R}_{+}.$$
 (2)

Допустим, что концентрация частиц в исходном состоянии A в начальный момент времени t = 0 известна:

$$F_A(0) = F_0, \tag{3}$$

а в остальных состояниях концентрация при t = 0 нулевая:

$$F_B(0) = 0, \quad F_C(0) = 0, \quad F_D(0) = 0, \quad F_E(0) = 0.$$
 (4)

Так как все величины положительные, то они принадлежат множеству действительных положительных чисел R_+ .

Опишем константы переходов из одной стадии в другую, определяющие процесс протекания флотации, входящие в систему (1). Константы k_{AB} и k_{AC} (с⁻¹) характеризуют вероятность образования флотационных систем "субстрат металла – агент – пузырек" в течение времени взаимодействия между минеральной / взвешенной частицей и пузырьком газа (в большинстве случаев воздуха). Их можно представить в виде $k_{AB} = P_{AB}/t_0$, $k_{AC} = P_{AC}/t_0$, где P_{AB} и P_{AC} — вероят-

ность образования флотационных систем "субстрат металла – агент – пузырек" в течение некоторого времени t_0 [3]. Общепринято, что при флотационном осветлении тонкодисперсных суспензий или очистке сточных вод обогатительного производства константа k_{AB} (аналогично и константа k_{AC}) определяется из соотношения $k_{AB} = 1.5qE/(k_0\overline{D})$, где q — скорость барботирования, м/с; E — эффективность захвата минеральных / взвешенных частиц всплывающим пузырьком газа при флотации, характеризующая вероятность контактирования пузырька с частицей (безразмерная величина); \overline{D} — среднеэффективный диаметр пузырьков во флотационной ячейке, м; k_0 — фактор полидисперсности пузырьков (безразмерная величина). Примеры расчетов константы k_{AB} можно найти в работах [4–6]. Следует отметить, что на практике чаще всего значение константы k_{AB} принимается равным 10⁻³ [3].

Вероятность разрушения образовавшихся флотосистем "субстрат Ме-агент" характеризуется константами k_{BA} и k_{CA} . Константу k_{BA} (аналогично и константу k_{CA}) приближенно можно вычислить по формуле $k_{BA} = B_A C_A G_A M^2 / \overline{C}$, где B_A — безразмерный коэффициент пропорциональности; C_A — концентрация субстрата металла, мг/дм³; G_A — градиент скорости в зоне аэрации, представляющий отношение разности скоростей к разности расстояния между рассматриваемыми точками, c^{-1} ; M — отношение диаметра минеральной частицы (субстрата металла) к диаметру пузырька; \overline{C} — концентрация пузырьков в подпенном слое, м⁻¹.

Перемещение флотосистемы "субстрат металла–агент–пузырек" из минерального раствора в пенный слой определяется константой k_{BD} (также константой k_{CD}): $k_{BD} = v_D / h$, где v_D — скорость подъема флотосистемы, м/с; h — расстояние от зоны аэрации до пенного слоя (глубина / высота напорного флотатора, м).

Константа k_{DB} (k_{DC}), характеризующая извлечение флотосистем из пенного слоя при условии его мгновенного удаления, находится по приближенной формуле $k_{DB} = B_D C_D G_D \overline{d}^3$, где B_D — коэффициент пропорциональности (безразмерная величина); C_D — концентрация пузырьков в пене; G_D — градиент скорости в подпенном слое, c^{-1} ; \overline{d} — средний диаметр пузырька в пене, мкм.

Следуя работе [7], константу k_{DE} , определяющую выделение и концентрирование ассоциата / полиассоциата (частиц гидрофобного осадка), получим по формуле $k_{DE} = v_0 / h$. Здесь v_0 — скорость выделения и концентрирования частиц твердой фазы из состояния *D*. Например, для частиц железа диаметром 10 мкм и плотностью 7800 кг/м³

$$v_0 = (10^{-5})^2 \cdot 9.81(1000 - 7800)/(18 \cdot 10^{-3}) = 0.00037 \text{ m/c}.$$

Константа k_{EA} (м/с), характеризующая выпадение флотошлама из пенного слоя в зону аэрации, рассчитывается по правилу $k_{EA} = v_E / h$, где v_E — скорость механического разрушения частиц дисперсной фазы, выпадающих из "пенки".

Один из способов определения вероятности перехода частиц твердой фазы из жидкости сразу в пену k_{AE} приведен в [3]:

$$k_{AE} = \psi \frac{\partial}{\partial x} \left(\frac{1}{2\sqrt{\pi\psi t}} \right) \left[\exp\left(-\frac{(x-h)^2}{4\psi t}\right) - \exp\left(-\frac{(x+h)^2}{4\psi t}\right) \right],$$

где *t* — время, c; *x* — текущее расстояние от границы пенного слоя, м; ψ — коэффициент диффузии частиц твердой фазы в жидкости, м²/с. Для расчета концентрации субстрата металла в каждом из описываемых состояний в момент времени $t \in [0,T]$ система дифференциальных уравнений (1) с начальными условиями (3), (4) решалась методом Рунге-Кутты четвертого порядка. Для проверки корректности разработанной модели результаты вычислительного эксперимента сравнивались с опытными значениями, полученными в [10]. Рассматривался следующий процесс: в камеру лабораторного напорного флотатора (высотой 153 мм) с модельным минерализованным раствором pH 2-3 подавалось известковое молоко до получения pH среды 10-11, затем вводился реагент ГлиПЭТ, далее минеральный раствор обильно насыщался пузырьками воздуха. Время флотации составляло 5 мин. Константы переходов из одного состояния в другое, характеризующие процесс многостадийной напорной флотации, описываемый системой (1), определялись экспериментально в ходе лабораторного тестирования.

Константа перехода из состояния A в состояние B берется усредненной [3]. Предполагается, что пузырек воздуха имеет несколько больший диаметр, чем диаметры субстратов металлов и реагентов-комплексообразователей, в данном случае молекул ГлиПЭТ, поэтому константа перехода из состояния A в состояние C бралась на порядок меньше, чем константа k_{AB} . Вероятность механического разрушения образовавшихся флотационных систем "субстрат металла– агент–пузырек" и гидрофобных ассоциатов / полиассоциатов из "пенки" в водовоздушную смесь считалась достаточно малой величиной (порядка 10^{-7}).

Правильность выбора количества узловых точек N, использованных в методе Рунге–Кутты, контролировалась путем подстановки интерполяционных полиномов, составленных по найденным значениям, в систему (1) и вычисления нормы невязки каждого из уравнений этой системы. В вычислительном эксперименте использовалась интерполяция методом Лагранжа по Nнайденным узловым точкам. Искомые функции определены в пространстве $L_2[0,T]$, поэтому невязку для интерполяционного полинома $\widetilde{F}_A(t)$, характеризующего концентрацию частиц в состоянии A в каждый момент времени $t \in [0, T]$, рассчитывали по правилу

$$\left\|\frac{d\widetilde{F}_{A}}{dt} + (k_{AB} + k_{AC} + k_{AE})\widetilde{F}_{A} - k_{BA}\widetilde{F}_{B} - k_{CA}\widetilde{F}_{C} - k_{EA}\widetilde{F}_{E}\right\|_{L_{2}[0,T]}^{2} =$$
$$= \int_{0}^{T} \left\{\frac{d\widetilde{F}_{A}}{dt} + (k_{AB} + k_{AC} + k_{AE})\widetilde{F}_{A} - k_{BA}\widetilde{F}_{B} - k_{CA}\widetilde{F}_{C} - k_{EA}\widetilde{F}_{E}\right\}^{2} dt.$$

Аналогично получена невязка для функций $\widetilde{F}_{A}(t)$, $\widetilde{F}_{B}(t)$, $\widetilde{F}_{C}(t)$, $\widetilde{F}_{D}(t)$ и $\widetilde{F}_{E}(t)$.

Для контроля правильности реализации нахождения численного решения задачи (1), (3), (4) проверялось выполнение условия (2) в каждый момент времени, в котором вычислялись концентрации субстрата металла во всех состояниях. При проведении эксперимента учитывалось большое количество верных значащих цифр (в разработанной программе мантисса бралась равной 70), что позволяло существенно сократить машинную погрешность.

В табл. 1 и 2 приведены результаты вычислительного эксперимента при расходе реагента ГлиПЭТ 0.5 г/дм³. Концентрация металлов в модельных растворах соответствовала усредненным химическим показателям концентрации металлов в минерализованных техногенных водах горно-обогатительных комбинатов медно-колчеданных месторождений Южного Урала, мг/дм³: Cu — 250, Zn — 170, Fe — 220, Ni — 2, Pb — 0.5, Cd — 0.6.

Номер опыта	\widetilde{N}	\widetilde{M}	$\left \widetilde{N}-\widetilde{M}\right $	$\left \widetilde{N}-\widetilde{M}\right /\widetilde{M}$ · 100 %
1	109.8977845	109.8977846	0.0000006625	0.00000006
2	89.6870901	89.6870902	0.0000005659	0.00000006
3	0.8959439	0.8959439	0.0000000056	0.00000006
4	0.0038121	0.0038121	0.0000000019	0.00000511
5	0.0003673	0.0003673	0.0000000004	0.00001198

ТАБЛИЦА 1. Значения \tilde{N} и \tilde{M} при N = 24, t = 300 с, расход реагента ГлиПЭТ 0.5 г/дм³

Примечание. \tilde{N}, \tilde{M} — квадраты нормы левой и правой части уравнений системы (1) соответственно

ТАБЛИЦА 2. Значения концентраций субстратов металлов при N = 24, t = 300 с, расход реагента ГлиПЭТ 0.5 г/дм 3

t c	$\widetilde{F}_A(t)$	$\widetilde{F}_{B}(t)$	$\widetilde{F}_{C}(t)$	$\widetilde{F}_D(t)$	$\widetilde{F}_{E}(t)$	S	
ι, υ	мг/дм ³						
0	643.1	0	0	0	0	643.1	
12.5	634.31789	7.98161	0.79814	0.00233	0.00002	643.1	
25	625.65573	15.84996	1.58493	0.00919	0.00019	643.10001	
37.5	617.11186	23.60663	2.36051	0.02037	0.00062	643.09999	
50	608.68468	31.25313	3.12504	0.03569	0.00146	643.1	
62.5	600.37259	38.79096	3.87867	0.05495	0.00282	643.09999	
75	592.17402	46.22162	4.62155	0.07798	0.00482	643.1	
87.5	584.08742	53.54657	5.35382	0.10461	0.00757	643.1	
100	576.11126	60.76726	6.07564	0.13465	0.01118	643.1	
112.5	568.24403	67.88511	6.78715	0.16796	0.01574	643.10001	
125	560.48424	74.90153	7.48848	0.20438	0.02136	643.1	
137.5	552.83043	81.81791	8.17977	0.24375	0.02813	643.1	
150	545.28115	88.63561	8.86117	0.28593	0.03613	643.09999	
162.5	537.83497	95.35598	9.53281	0.33078	0.04544	643.1	
175	530.49049	101.98037	10.19482	0.37817	0.05615	643.1	
187.5	523.24631	108.51007	10.84733	0.42795	0.06833	643.1	
200	516.10106	114.94639	11.49048	0.48002	0.08205	643.1	
212.5	509.05339	121.29061	12.12439	0.53424	0.09737	643.10001	
225	502.10198	127.54397	12.74918	0.59049	0.11437	643.09999	
237.5	495.24551	133.70773	13.36499	0.64867	0.13309	643.09999	
250	488.48267	139.78312	13.97193	0.70867	0.15360	643.09999	
262.5	481.81219	145.77133	14.57014	0.77038	0.17595	643.1	
275	475.23282	151.67357	15.15971	0.83369	0.20019	643.1	
287.5	468.74329	157.49101	15.74079	0.89853	0.22637	643.1	
300	462.3424	163.22481	16.31347	0.96477	0.25453	643.09999	

Таким образом, концентрация субстрата металла в начальный момент времени $F_0 = 643.1 \text{ мг/дм}^3$. В табл. 2 приведены значения концентраций $\tilde{F}_A(t)$, $\tilde{F}_B(t)$, $\tilde{F}_C(t)$, $\tilde{F}_D(t)$ и $\tilde{F}_E(t)$ в состояниях A, B, C, D и E соответственно в моменты времени t; $S = \tilde{F}_A(t) + \tilde{F}_B(t) + \tilde{F}_C(t) + \tilde{F}_D(t) + \tilde{F}_E(t)$. 126 На рис. 2 показаны зависимости концентраций субстрата металла в состояниях *A*, *B*, *C*, *D* и *E* от времени. Кривая на каждом рисунке — интерполяционный полином *N*-й степени, построенный по значениям табл. 2.

Рис. 2. Концентрации субстрата металла в состояниях А, В, С, D, Е при расходе реагента ГлиПЭТ 0.5 г/дм³

Опытным путем после проведения лабораторного тестирования переработки продуктивных растворов методом напорной флотации получены следующие значения концентрации субстратов тяжелых и цветных металлов в удаленной воде, мг/дм³: Cu — 0.005, Zn — 0.02, Fe — 0.17, Ni — 0.04, Pb — 0.01, Cd — 0.01, в сумме — 0.255 мг/дм³.

В табл. 3 и 4 приведены результаты экспериментов при расходе реагента ГлиПЭТ 0.75 г/дм³ с теми же концентрациями тяжелых и цветных металлов, что и в предыдущем опыте. В табл. 3 представлены значения квадрата нормы левой \tilde{N} и правой \tilde{M} частей уравнений системы (1) и разницы между ними, при подстановке в нее полученных интерполяционных полиномов.

Номер опыта	\widetilde{N}	\widetilde{M}	$\left \widetilde{N} - \widetilde{M} \right $	$\left \widetilde{N} - \widetilde{M} \right / \widetilde{M} \cdot 100 \%$
1	109.8977802	109.8977807	0.00000047693	0.00000043306
2	90.0329054	90.0329055	0.0000005563	0.0000006178
3	0.8996632	0.8996632	0.0000000056	0.0000006226
4	0.0018433	0.0018433	0.0000000009	0.00000507714
5	0.0001774	0.0001774	0.0000000002	0.00001190879

ТАБЛИЦА 3. Значения \tilde{N} и \tilde{M} при N = 24, t = 300 с, расход реагента ГлиПЭТ 0.75 г/дм³

На рис. 3 построены зависимости концентрации субстратов металлов в состояниях *A*, *B*, *C*, *D*, *E* от времени. Кривая на каждом рисунке — интерполяционный полином *N*-й степени, построенный по значениям табл. 4.

Экспериментально после проведения лабораторного тестирования переработки минеральных растворов методом напорной флотации при расходе реагента ГлиПЭТ 0.75 г/дм³ в удаленной воде концентрации субстратов тяжелых и цветных металлов составили, мг/дм³: Cu — 0.003, Zn — 0.01, Fe — 0.15, Ni — 0.01, Pb — 0.004, Cd — 0. Суммарно остаточное содержание субстратов металлов в очищенной воде 0.177 мг/дм³.

t c	$\widetilde{F}_A(t)$	$\widetilde{F}_{B}(t)$	$\widetilde{F}_{C}(t)$	$\widetilde{F}_{D}(t)$	$\widetilde{F}_{E}\left(t ight)$	S	
ι, υ	мг/дм ³						
0	643.1	0	0	0	0	643.1	
12.5	634.31789	7.98225	0.79821	0.00161	0.00002	643.0999	
25	625.65573	15.85255	1.58521	0.00638	0.00013	643.1001	
37.5	617.11186	23.61242	2.36113	0.01415	0.00043	643.1	
50	608.68468	31.26338	3.12614	0.02478	0.00101	643.1	
62.5	600.37259	38.80689	3.88038	0.03816	0.00196	643.0999	
75	592.17402	46.24446	4.62401	0.05416	0.00335	643.0999	
87.5	584.08742	53.57751	5.35715	0.07265	0.00526	643.0999	
100	576.11126	60.80747	6.07997	0.09353	0.00776	643.0999	
112.5	568.24403	67.93576	6.7926	0.11667	0.01093	643.1	
125	560.48424	74.96376	7.49518	0.14197	0.01484	643.1001	
137.5	552.83043	81.89285	8.18784	0.16933	0.01954	643.1	
150	545.28115	88.72437	8.87073	0.19865	0.02509	643.1	
162.5	537.83497	95.45966	9.54397	0.22982	0.03157	643.0998	
175	530.49049	102.10004	10.2077	0.26276	0.03901	643.0999	
187.5	523.24631	108.64679	10.86205	0.29737	0.04747	643.09998	
200	516.10106	115.10122	11.50714	0.33357	0.05700	643.09999	
212.5	509.05339	121.46457	12.14311	0.37127	0.06765	643.09999	
225	502.10198	127.73809	12.77007	0.41039	0.07946	643.09998	
237.5	495.24551	133.923	13.38816	0.45085	0.09248	643.09999	
250	488.48267	140.02052	13.99749	0.49258	0.10673	643.09997	
262.5	481.81219	146.03185	14.59817	0.53551	0.12227	643.09997	
275	475.23282	151.95816	15.19034	0.57956	0.13912	643.09998	
287.5	468.74329	157.80061	15.77411	0.62467	0.15732	643.1	
300	462.34241	163.56035	16.34958	0.67077	0.17689	643.10001	

ТАБЛИЦА 4. Значения концентрации субстратов металлов при $N=24,\,t=300$ с, расход реагента ГлиПЭТ 0.75 г/дм 3

Рис. 3. Концентрации субстрата металла в состояниях A, B, C, D, E при расходе реагента ГлиПЭТ 0.75 г/дм³

Из табл. 2 и 4 видно, что результаты, полученные в ходе вычислительного эксперимента, хорошо согласуются с данными, полученными в процессе лабораторного тестирования, что свидетельствует о корректности разработанной математической модели переработки техногенных минерализованных вод методом напорной флотации.

выводы

Разработанная математическая модель напорной флотации позволяет получать информацию о концентрации субстратов металлов в каждом из описываемых состояний в любой момент времени. Константы, характеризующие переход субстратов металлов из одного состояния в другое, могут задаваться в сложной форме (функционально), поэтому решение находилось численно. Кроме того, в модели учтено возможное механическое разрушение образующихся флотосистем "субстрат металла – агент – пузырек".

Пакет программ написан в вычислительной среде Maple, в которой реализовано численное решение исходной краевой задачи, интерполяция полученных значений и проверка модели на адекватность. Последнее осуществлялось подстановкой интерполяционного полинома в каждое из уравнений системы с последующим нахождением нормы невязки левой и правой частей уравнения. Также контролировалось выполнение закона сохранения массы по расчету концентрации субстратов металлов, присутствующих в продуктивном растворе в каждой стадии процесса напорной флотации с течением времени.

Вычислительные эксперименты показали надежность и точность работы представленной математической модели процесса переработки техногенных минерализованных вод горных предприятий с использованием метода напорной флотации.

СПИСОК ЛИТЕРАТУРЫ

- **1.** Себба Ф. Ионная флотация. М.: Металлургия. 1965. 172 с.
- **2.** Гольман А. М. Ионная флотация. М.: Недра. 1982. 143 с.
- 3. Ксенофонтов Б. С. Интенсификация флотационного извлечения ионов металлов из сточных вод // Экология промышленного производства. 2013. № 1 (81). С. 25–28.
- 4. Ксенофонтов Б. С., Иванов М. В, Титов К. В. Интенсификация флотационной очистки сточных вод методом вибрации // Экология промышленного производства. 2012. № 2. С. 30–33.
- 5. Ксенофонтов Б. С., Иванов М. В., Байрамова А. Д. Пути интенсификации флотационного процесса очистки сточных вод с использованием вибрации // Экология пром. пр-ва. 2012. № 1. С. 41–44.
- 6. Ксенофонтов Б. С., Антонова Е. С. Модели флотационных и сопутствующих процессов очистки воды // Безопасность жизнедеятельности. 2014. № 10. С. 42–48.
- 7. Медяник Н. Л., Варламова И. А., Калугина Н. Л. Особенности подбора органических реагентовкомплексообразователей квантово-химическим методом для селективного извлечения катионов тяжелых металлов из растворов // Вестн. МГТУ им Г. И. Носова. — 2013. — № 3 (43). — С. 14–19.
- **8. Курков А. В., Пастухова И. В.** Флотация как предмет супрамолекулярной химии // ФТПРПИ. 2010. № 4. С. 83–90.
- **9. Усманова Н. Ф., Брагин В. И.** Образование супрамолекулярного комплекса при взаимодействии карбоксильного собирателя и реагента группы амидокислот при флотации // Обогащение руд. 2011. № 1. С. 23–25.
- Пат. 2522630 РФ. Способ очистки техногенных вод / Н. Л. Медяник, Х. Я. Гиревая, Ю. А. Бессонова, И. Ю. Шевелин // Опубл. в БИ. — 2014. — № 20. — 10 с.