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Для описания нелинейного деформирования изотропных материалов при неизотермиче-
ских условиях нагружения предлагается использовать соотношения эндохронной теории
термопластичности. Приведен вариант определяющих соотношений в интегральной и
дифференциальной форме для общего случая нагружения. На основе результатов экспе-
риментов на одноосное растяжение (кручение) определены аналитические зависимости
для ряда материальных параметров модели. Для анализа определяющих соотношений
предложен численный алгоритм, основанный на методе Эйлера с внутренним итераци-
онным процессом, реализуемым методом Зейделя. Приведен пример численного расче-
та одноосного растяжения стержня при сложном термосиловом нагружении. Показано,
что результаты расчета удовлетворительно согласуются с результатами, полученными
с использованием теории течения с изотропным упрочнением.

Ключевые слова: эндохронная теория пластичности, термопластичность, неизотер-
мическое нагружение, сложное нагружение, диаграмма деформирования

Введение. Математическое моделирование процессов нелинейного деформирования
изотропных материалов при неизотермическом нагружении основано на теории течения с

комбинированным упрочнением [1–4]. Согласно этим теориям тензор скорости полной де-
формации есть суперпозиция упругой, температурной и пластической составляющих. Из-
менение пластической составляющей тензора деформации определяется на основе ассоци-
ированного с поверхностью нагружения закона течения. Основная сложность построения
теорий течения заключается в адекватном и достоверном определении уравнений законов

изменения формы поверхности нагружения при пластическом деформировании [5, 6].
В данной работе предложен вариант эндохронной теории пластичности для изотроп-

ных материалов при неизотермических условиях нагружения, а также вычислительный
алгоритм исследования определяющих соотношений. В этой теории, в отличие от теорий
течения, не используется понятие поверхности нагружения и, следовательно, не выделяют-
ся упругая и пластическая составляющие деформации [7–9]. Особенностью данной теории
является использование внутреннего времени z для учета процессов необратимого дефор-
мирования. Преимуществом эндохронной теории термопластичности является относитель-
ная простота определяющих соотношений и возможность описывать такие особенности
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пластического поведения, как линейное и нелинейное упрочнение, неупругая разгрузка,
гистерезис и др. [10].

1. Определяющие соотношения. Определяющие соотношения эндохронной теории
термопластичности для изотропного материала, устанавливающие интегральную зависи-
мость между напряжениями, деформацией и изменением температуры θ = T − T0, имеют
вид

sij =

z∫
0

ρ(z − z′)
deij
dz′

dz′, σ0 =

z∫
0

ψ(z − z′)
dε0
dz′

dz′ −
z∫

0

ϕ(z − z′)
dθ

dz′
dz′, (1)

где sij — компоненты девиатора напряжений; eij — компоненты девиатора деформации;
σ0 — среднее напряжение; dε0 — средняя деформация; ρ(z), ψ(z), ϕ(z) — ядра интеграль-
ных выражений, зависящие от температуры T ; z — внутреннее время, определяемое фор-
мулой

dz =
dξ

f(ξ)
, f(ξ) > 1, f(0) = 1,

f(ξ) — функция упрочнения, зависящая от температуры T ; dξ — приращение меры внут-
реннего времени, вычисляемое по формуле [11, 12]

dξ2 = (2/3) deij deij +m2 dθ2,

m — материальный параметр модели, описывающий необратимое деформирование при
изменении температуры.

Ограничения, накладываемые на ядра интегральных выражений, имеют следующий
вид [12]:

ρ(z) > 0,
dρ(z)

dz
6 0, ψ(z) > 0,

dψ(z)

dz
6 0,

dϕ(z)

dz
6 0. (2)

Продифференцируем соотношение (1) по внутреннему времени z:

dsij
dz

= ρ(0)
deij
dz

+

z∫
0

d

dz
(ρ(z − z′))

deij
dz′

dz′,

dσ0

dz
= ψ(0)

dε0
dz
− ϕ(0)

dθ

dz
+

z∫
0

d

dz
ψ(z − z′)

dε0
dz′

dz′ −
z∫

0

d

dz
ϕ(z − z′)

dθ

dz′
dz′.

(3)

Конкретизируем вид ядер интегральных выражений. С учетом неравенств (2) и усло-
вия упругого деформирования при z → 0 для пластически несжимаемого изотропного
материала примем соотношения

ρ(z) = 2µ e−az, ψ(z) = K, ϕ(z) = Kα(T ), (4)

где a = a(T ) — материальный параметр модели; α(T ) — температурный коэффициент

линейного расширения; µ = µ(T ), K = K(T )— модуль сдвига и модуль объемного сжатия

соответственно:

µ =
E

2(1 + ν)
, K =

E

1− 2ν
,

E = E(T ), ν = const — модуль упругости и коэффициент Пуассона.
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Опишем более подробно процесс дифференцирования интегрального ядра первого

уравнения в (3):

d

dz
ρ(z − z′) =

∂

∂z
ρ(z − z′)

∣∣
θ
+

∂

∂θ
ρ(z − z′)

∣∣
z

dθ

dz
=

= −2µ
(
a−

( 1

µ

dµ

dθ
− (z − z′)

da

dθ

)dθ
dz

)
e−a(z−z′) . (5)

Здесь нижние индексы θ и z указывают на то, что величины θ и z принимают постоянное
значение при дифференцировании выражений.

Подставляя выражения (4), (5) в соотношения (3), получаем

dsij
dz

= 2µ
deij
dz

−
z∫

0

2µ
(
a−

( 1

µ

dµ

dθ
− (z − z′)

da

dθ

) dθ
dz

)
e−a(z−z′) deij

dz′
dz′,

dσ0

dz
= K

dε0
dz
−Kα(T ) dθ

dz
+
dK

dθ
(ε0 − α(T )θ)

dθ

dz
.

(6)

С учетом соотношений (1) преобразуем (6) к виду

dsij = 2µ deij − asij dz +
(sij
µ

∂µ

∂θ
+ (hij − zsij)

∂a

∂θ

)
dθ,

dσ0 = K(dε0 − α(T ) dθ) +
σ0

K

dK

dθ
dθ,

где hij — компоненты тензора второго ранга:

hij =

z∫
0

2µz′ e−a(z−z′) deij
dz′

dz′. (7)

Используя известные уравнения, связывающие девиаторные и шаровые части тензоров
напряжений и деформации: dσij = dsij + δij dσ0, dεij = deij + δij dε0, получаем определяю-
щее соотношение эндохронной теории пластичности при неизотермическом нагружении в

дифференциальной форме

dσij = 2µ
(
dεij +

3ν

1− 2ν
δij dε0

)
+

(σij

E

dE

dθ
+ (hij − zsij)

∂a

∂θ
− δijKα

(T )
)
dθ − asij dz,

или

dσij = Dijkl dεkl +
(σij

E

dE

dθ
+ (hij − zsij)

∂a

∂θ
− δijKα

(T )
)
dθ − asij dz,

где Dijkl — компоненты тензора упругих жесткостей четвертого ранга.
Обратное соотношение имеет следующий вид:

dεij = Sijkl dσkl −
(
Sijkl

σkl

E

dE

dθ
+ Sijkl(hkl − zskl)

∂a

∂θ
− δijα

(T )
)
dθ + aSijklskl dz. (8)

Здесь Sijkl — компоненты тензора податливости четвертого ранга.
2. Определение компонент тензора hkl. Опишем более подробно процедуру чис-

ленного интегрирования выражения (7) для компонент тензора hij . Для этого разделим
область интегрирования z′ на n частей и будем полагать, что изменение компонент деви-
атора деформации deij/dz

′ = const. Тогда соотношение (7) принимает следующий вид:

hij(zm) = 2µ(Tm)
deij
dz′

∣∣∣
z1

z1∫
0

z′ e−a(Tm)(zm−z′) dz′ + . . .
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. . .+ 2µ(Tm)
deij
dz′

∣∣∣
zm

zm∫
zm−1

z′ e−a(Tm)(zm−z′) dz′ =

=
n∑

i=1

2µ(Tm)
deij
dz′

∣∣∣
zi

zi∫
zi−1

z′ e−a(Tm)(zm−z′) dz′. (9)

Проинтегрируем по частям правую часть выражения (9):

hij(zm) =
n∑

i=1

2
µ(Tm)

a(Tm)

deij
dz′

∣∣∣
zi

[
(zi e−a(Tm)(zm−zi)−zi−1 e−a(Tm)(zm−zi−1))−

− 1

a(Tm)
(e−a(Tm)(zm−zi)− e−a(Tm)(zm−zi−1))

]
. (10)

Преобразуем выражение (10) к виду, удобному для численного решения. Для этого рас-
смотрим величину hij в момент времени zm+1 = zm + ∆z:

hij(zm+1) =
n∑

i=1

2
µ

a

deij
dz′

∣∣∣
zi

[
(zi e−a(zm+1−zi)−zi−1 e−a(zm+1−zi−1))−

−1

a
(e−a(zm+1−z′)− e−a(zm+1−zi−1))

]
+ 2

µ

a

deij
dz′

∣∣∣
zm+1

[
zm+1 −

(
zm −

1

a

)
e−a∆z −1

a

]
=

= hij(zm) e−a ∆z +2
µ

a

deij
dz′

∣∣∣
zm+1

[
zm+1 −

(
zm −

1

a

)
e−a ∆z −1

a

]
. (11)

Запишем (11) в следующем виде:

hij(zm) = hij(zm−1) e−a ∆z + 2
µ

a

deij
dz′

∣∣∣
zm

[
zm −

(
zm−1 −

1

a

)
e−a ∆z −1

a

]
. (12)

Выражение (12) позволяет найти компоненты тензора hij в момент времени zm на основе

данных, полученных на предыдущем шаге по времени.
3. Метод определения материальных параметров. Материальные парамет-

ры a(T ) и β(T ) определяются по результатам испытаний на одноосное растяжение (круче-
ние) образца при фиксированной температуре T . При этом зависимости a(T ), β(T ) имеют
следующий вид:

— при растяжении

a(T ) =
3E(T )

2(1 + ν)σ∗(T )

1− ET (T )/E(T )

1− ((1− 2ν)/3)ET (T )/E(T )
,

β(T ) =
ET (T )

σ∗(T )[1− ((1− 2ν)/3)ET (T )/E(T )]
;

— при кручении

a(T ) =
√

3
G(T )−GT (T )

τ∗(T )
, β(T ) =

√
3
GT (T )

τ∗(T )
.

Здесь ET (T ), G(T ), GT (T ) — модуль упрочнения материала на растяжение, модуль сдви-
га и модуль упрочнения материала на кручение; σ∗(T ), τ∗(T ) — значения нормального

и касательного напряжений в точке пересечения асимптоты кривой деформирования на

растяжение и кручение соответственно с осью напряжений.



120 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 3

Материальный параметр m определяется в экспериментах на нагрев образцов при

фиксированном напряжении из условия наилучшего согласования результатов экспери-
ментов и теоретических расчетов.

4. Вычислительный алгоритм. В настоящее время существует большое коли-
чество методов численного интегрирования систем дифференциальных уравнений [13].
В данной работе используется метод Эйлера с внутренним итерационным процессом, осу-
ществляемым методом Зейделя. При интегрировании будем задавать шаги по напряже-

нию ∆σ
(n)
kl и температуре ∆θ(n), где n — номер шага нагружения. В начальном состоянии

все параметры примем равными нулю и будем решать задачу в упругой постановке.
Представим соотношение (8) в разностном виде:

∆ε
(n,p)
ij = Sijkl(T

(n−1)) ∆σ
(n)
kl − Ω(n,p−1) ∆θ(n) + Ψ(n−1) ∆z(n,p−1),

Ω(n,p−1) = Sijkl(T
(n−1))

σ
(n−1)
kl

E(T (n−1))

dE

dθ

∣∣∣
T (n−1)

+

+ Sijkl(T
(n−1))(h

(n,p−1)
kl − z(n−1)s

(n−1)
kl )

∂a

∂θ

∣∣∣
T (n−1)

− δijα
(T ),

Ψ(n−1) = a(T (n−1))Sijkl(T
(n−1))s

(n−1)
kl .

На p-м шаге внутренней итерационной процедуры величины ∆z(n,p) и h
(n,p)
kl определя-

ем методом Зейделя в соответствии с выражением (12). Суть данного метода заключается

в последовательном уточнении компонент приращения девиатора деформации ∆e
(n,p)
ij , вхо-

дящего в выражения для этих величин:

∆z(n,p) =
1

f(ξ(n−1))

√
2

3
(∆e

(n,p)
11 ∆e

(n,p)
11 + . . .+ ∆e

(n,p−1)
23 ∆e

(n,p−1)
23 ) +m2(∆θ(n))2,

h
(n,p)
kl = h

(n−1,p)
kl e−a ∆z(n,p)

+

+ 2
µ(T (n−1))

a(T (n−1))

deij
dz′

∣∣∣
z(n)

[
z(n) −

(
z(n−1) − 1

a(T (n−1))

)
e−a ∆z(n,p)

− 1

a(T (n−1))

]
.

В начальном приближении для p = 1 полагаем∆ε
(n,1)
ij = ∆ε

(n−1,p)
ij , в качестве критерия

остановки внутренней итерационной процедуры принимаем неравенство

|∆ε(n,p)
ij −∆ε

(n,p−1)
ij | 6 0,001|∆ε(n,p)

ij |.

Текущие значения основных величин определяем по формулам

σ
(n)
ij = σ

(n−1)
ij + ∆σ

(n)
ij , T (n) = T (n−1) + ∆θ(n), ε

(n)
ij = ε

(n−1)
ij + ∆ε

(n,p)
ij ,

h
(n)
ij = h

(n−1)
ij + ∆h

(n,p)
ij , z(n) = z(n−1) + ∆z(n,p), ξ(n) = ξ(n−1) + ∆ξ(n).

5. Пример численного расчета. Рассмотрим процесс одноосного растяжения и на-
грева стержня из алюминиевого сплава 2024-T6, характеристики которого приведены в
таблице (T — температура, E — модуль упругости, ET — модуль упрочнения, σT — пре-
дел текучести, α, β — материальные параметры). Для проверки полученных результатов
будем использовать результаты расчета, полученные с использованием теории течения
с изотропным упрочнением. Коэффициент Пуассона ν = 0,33 и материальный параметр
m = 0 не зависят от температуры.
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Характеристики алюминиевого сплава 2024-T6

T , ◦C E, МПа ET , ГПа σT , МПа α β

20 72 540 869 345 53,0 0,56
150 68 688 871 345 50,2 0,56
200 64 779 852 336 47,3 0,55
250 59 089 1036 252 43,0 0,66
300 52 704 1309 177 38,0 0,84
350 46 188 1386 129 33,1 0,89

s, ÌÏà

e

à á

0,03 0,06 0,09 0,12 e

90

180

270

360

450
s, ÌÏà

0 0,03 0,06 0,09 0,12

90

180

270

360

450

0

Зависимости напряжения от деформации для первого (а) и второго (б) случаев
нагружения:
сплошная линия — расчет с использованием эндохронной теории, точки — расчет с

использованием теории пластического течения

В первом случае стержень одновременно растягивается до напряжения 350 МПа и
нагревается до температуры 300 ◦C (см. рисунок). Во втором случае нагрузка прикла-
дывается в четыре этапа: стержень растягивается до напряжения 350 МПа, затем нагре-
вается до температуры 300 ◦C, после чего проводится полная разгрузка с последующим
нагружением до 450 МПа (см. рисунок).

На рисунке видно, что результаты расчета по эндохронной теории термопластично-
сти и результаты расчета, полученные с использованием теории течения с изотропным
упрочнением, удовлетворительно согласуются.

Заключение. В работе предложен вариант эндохронной теории термопластичности
для изотропных материалов при термосиловом нагружении. Получены определяющие со-
отношения для общего случая нагружения. Значения материальных параметров модели
найдены в экспериментах на одноосное растяжение и кручение. Приведен вычислитель-
ный алгоритм исследования определяющих соотношений.

С использованием предложенной модели и вычислительного алгоритма решена задача

о сложном термосиловом нагружении стержня. Показано, что результаты расчета удовле-
творительно согласуются с результатами, полученными с использованием теории течения
с изотропным упрочнением.
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