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INTRODUCTION

The concept of extreme value distribution mod-
elling originated from the probability theory and 
statistics. It is also known as Fisher-Tippett distri-
bution (Willemse and Kaas, 2007). It is a family 
of continuous probability distributions (Gorgoso-
Varela et al., 2015). The generalized extreme value 
(GEV) distribution integrates Gumbel (type I), Fré-
chet (type II), and Weibull (type III) distributions 
into a family of models. GEV has been applied to 
forecast extreme events, such as earthquakes, floods, 
and other natural disasters. For example, Feng et al. 

(2007) applied GEV distribution to model annual 
extreme precipitation in China. Mitková and Hal-
mová (2014) used Gumbel distribution to model the 
joint distribution of flood peak discharges, volume 
and duration for the Danube River in Bratislava. 
Burke et al. (2010) used Gumbel distribution to de-
scribe droughts and projected change for the UK.

Gorgoso-Varela and Rojo-Alboreca (2014) sug-
gested that the extreme value distributions could be 
applied to forestry study to describe the maximum 
and minimum diameters of trees. For example, the 
distributions commonly used for size class mod-
elling (e. g. Weibull, beta, Johnson SB, and Burr) 
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are characterized by location, scale, and shape pa-
rameters. Location is usually related to minimum 
diameter and minimum height (Zhang et al., 2003; 
Parresol, 2003; Cao, 2004). How accurately these 
distributions are fitted depends on predetermined 
values of the location parameter. Researchers have 
used different algorithms to select values of the 
location parameter of the distributions commonly 
used in forestry studies (Zhang et al., 2003; Par-
resol, 2003; Scolforo et al., 2003; Gorgoso et al., 
2012). Wang and Rennolls (2005, 2007) applied a 
straightforward maximum likelihood estimation 
method for this parameter; however, convergence 
was not achieved for some plots. This is a major 
drawback of the use of the maximum likelihood 
estimation method.

The concept of extreme distribution modelling 
was introduced to forestry by Gorgoso-Varela and 
Rojo-Alboreca (2014), when they used Gumbel and 
Weibull functions to model extreme diameter distri-
bution values for forest stands. They concluded that 
the information on the distributions of minimum di-
ameters could be helpful when choosing the most 
suitable values of the location parameter. Gorgoso-
Varela et al. (2015) evaluated the performance of 
Gumbel, Fréchet, and Weibull distributions. They 
found Gumbel and Weibull distributions to be use-
ful for modelling the minimum and maximum tree 
heights. These distributions appeared to be an im-
portant tool of distribution modelling in forestry. 

Therefore, the main purpose of this study was to ex-
amine the effectiveness of the use of extreme value 
distributions for assigning an optimum constant of 
a distribution with boundary parameters for model-
ling tree diameter and height data.

METHODOLOGY

Data. The data for this study were collected 
in an Eucalyptus camaldulensis Dehn plantation 
growing in the Afaka Forest Reserve, Kaduna State, 
Nigeria. The plantation is located 10.58°–10.60° N 
and 7.35°–7.37° E, at an elevation of about 600 m 
above sea level, and occupies an area of 2700 ha 
(Ogana et al., 2018) (Fig. 1). It is an experimen-
tal plantation site, which was established to reduce 
deterioration and desertification of the Northern 
Guinea savannah of Nigeria. The data were obtained 
on 90 sample plots of 625 m2 each and covered 
five tree age series of 7, 26, 27, 28, and 29 years. 
Among the stand variables computed from the 
inventory data were: stand density, quadratic mean 
tree diameter, mean tree height, dominant stand 
height, and basal area per ha. The statistics are sum-
marized in Table 1.

Extreme distribution modeling. Prior to mod-
elling, the minimum and maximum diameters and 
heights were extracted from each plot to form the 
distributions of the extreme values. Then we fitted 
a theoretical extreme distribution, Gumbel distribu-
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Fig. 1. Study site of 29 years old eucalyptus Eucalyptus camaldulensis Dehn plantation (sample plot 1) in the Afaka 
Forest Reserve, Kaduna State, Nigeria.
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tion, with the method of moments and mode, to eu-
calyptus extreme diameter and height values. The 
values of the scale parameter of Gumbel distribu-
tion were used as the constants for the boundary pa-
rameters of Johnson’s SB, logit-logistic, Kumaras-
wamy, Burr XII, and Dagum distributions. Gumbel, 
Weibull, and Fréchet distributions formed the sub-
family of GEV distribution. These distributions are 
sensitive to extreme values. Information about their 
parameters, especially the scale parameters, could 
help choose the location and scale parameters of the 
distributions. This was the rationale for adopting 
this approach in the study. GEV distribution details 
presented at earlier publications of Gorgoso-Varela 
and Rojo-Alboreca (2014) and Gorgoso-Varela et 
al. (2015). Gumbel cumulative distribution func-
tion (CDF), as formulated by Gumbel (1954), is 
expressed as:

 
: ( ; , ) exp exp

   −µ
µ β = − −   β    

xCDF f x , (1)

where: –∞ < x ∞, μ is the mode value (location 
parameter) and β is the scale parameter. The method 
of moments and mode was used to fit Gumbel 
distribution.

Table 2 shows the fit accuracy (FA) of the mini-
mum and maximum tree diameters and heights of 
Gumbel distribution.

As is clear from the statistics, the method of mo-
ments was more suitable than that of mode concern-
ing fitting the minimum and maximum tree diame-
ters and heights. With the former method, FA values 
were relatively small as compared with FA resulted 
from the mode method. Therefore, the method of 
moment was chosen.

Boundary constraint. The distributions were 
classified as those with both lower and upper bound-
ary parameters (SB, LL and Kum distributions) and 
those with only the lower boundary parameter 
(Burr XII and Dagum distributions). The following 
boundary constraints were used and assessed for 
performances:

1. Location parameter = Hmin /Dmin – 0.5 and 
range parameter = Hmax/Dmax + 0.1

2. Location parameter = Hmin /Dmin – GV1 and 
range parameter = Hmax/Dmax + 0.1

3. Location parameter = Hmin /Dmin – GV1 and 
range parameter = Dmax + GV2, for SB, LL and Kum 
distributions.

Application of extreme value distribution for assigning optimum fractions to distributions with boundary parameters...

Table 1. Statistics of stand variables

Stand variable
Statistics

Mean Maximum Minimum Standard deviation

Tree diameter, cm 10.28 47.43 2.0 6.19
Tree height, m 12.31 39.60 2.10 6.14
Quadratic mean 11.83 23.95 5.89 3.79
Dominant stand height, m 21.01 30.60 9.00 5.38
Stand density, trees/ha–1 753.24 1328 448.0 202.84
Basal area, m2 ∙ ha–1 8.53 27.39 1.73 4.92

Note: Here and in Table 3 and 4 number of sample plots – 90.

Table 2. The FA test for fitting Gumbel functions to extreme tree diameter and height values

Method Parameter K-S W 2 EI MSE

Moments Dmin 0.1386 0.0974 0.2998 0.0373
Dmax 0.0964 2.2070 1.4849 0.0003
Hmin 0.0654 0.0299 0.1264 0.0320
Hmax 0.1024 2.3881 1.5445 0.0006

Mode Dmin 0.4095 0.0996 0.3034 0.0372
Dmax 0.1069 1.9627 1.4002 0.0003
Hmin 0.2651 0.3537 0.5829 0.0153
Hmax 0.3084 28.607 5.3483 0.0006

Note: Here and in Table 3 and 4 K-S – Kolmogorov-Smirnov distribution; W 2 – Cramér-von Mises distribution; EI – Reynolds’ error 
index; MSE – mean square error; Dmin, Hmin, Dmax, and Hmax – minimum and maximum tree diameter and height.
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The lower boundaries for Burr XII and Dagum 
distributions were constrained by:

1. Location parameter = Hmin /Dmin – 0.5
2. Location parameter = Hmin /Dmin – GV1,

where GV1 = 1.34 and GV2 = 6.79 were the valu-
es of Gumbel scale parameters obtained from 
modelling the minimum and maximum tree diameter 
distribution. The same constraints were applied to 
tree height distributions, whereas GV1 = 1.15 and 
GV2 = 5.39 for the height distribution.

Model specification. We evaluated the efficien-
cy of Gumbel fractions on five distribution models 
with boundary parameters. The models considered 
were Burr XII, Burr III, (i. e. Dagum), Kumaras-
wamy, logit-logistic, and Johnson’s SB

 distributions. 
These distributions were characterized by four pa-
rameters, namely location, scale, and two shape pa-
rameters.

Johnson’s SB distribution. The 4-parameter SB 
probability density function (Johnson, 1949) is ex-
pressed as:

2
1 ln
2( )

( )( )2

x
xf x e

x x

  −x
− γ+δ  x+λ−  δ λ

=
x + λ − − xπ

,  (2)

where: ξ < x < ξ + λ, –∞ < ξ < +∞, –∞ < γ < +∞, 
λ > 0, and δ > 0. SB function has location parameter, 
ξ the scale parameter, λ, and the shape parameters, 
γ and δ, (asymmetry and kurtosis, respectively).

Logit-logistic (LL) distribution. The univari-
ate logit-logistic distribution introduced to forestry 
by Wang and Rennolls (2005) and used recently by 
Gorgoso-Varela et al. (2016) was use in this study. 
The probability density function (PDF) and cumu-
lative distribution function (CDF) are given as:
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where: f (x) is probability density function, F (x) 
is cumulative distribution function, x is diameter 
and height, μ = mu and σ = sigma are the shape 
parameters. Other parameters are previously defined 
in the equation 1.

Burr XII distribution. Burr (1942) construct-
ed a 4-parameter Burr XII distribution. This dis-
tribution was introduced to forestry by Wang 
and Rennolls (2005) and was recently used by 
Aigbe and Omokhua (2014). PDF and CDF are 
expressed as:
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where: f (x) is probability density function (PDF); 
F (x) is cumulative distribution function (CDF) k 
and α are two shape parameters (k > 0; α > 0); β is 
scale parameter (β > 0); and γ is the lower bound-
ary parameter, i. e. location parameter (γ ≡ 0 yields 
3-parameter Bur XII distribution). Burr XII distri-
bution has a closed form of CDF.

Dagum (Burr III) distribution. Burr (1942) 
constructed 4-parameter Burr III distribution. This 
distribution was first introduced to forest modelling 
by Lindsay et al. (1996). It is also known as Dagum 
distribution. To distinguish between Burr III and 
XII, Dagum distribution was used as a substitution 
of Burr III distribution in this study. PDF and CDF 
are expressed as:
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All the parameters are predefined. Burr III dis-
tribution has a closed form of CDF.

Kumaraswamy distribution (Kum).Kumaras-
wamy (1980) introduced a 4-parameter distribution 
based on the results of his study on «a generalized 
probability density function for double-bounded 
random processes». It is a continuous probability 
distribution defined in an interval of 0, 1. Kum dis-
tribution had previously not been evaluated for for-
est modelling, as far as we know. The probability 
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density function f (x) and cumulative distribution 
function F (x) are expressed as:

 

2
1 1

11

1 2 1

( )

x x

f x

α −α − α    − x − x
α α −     λ − x λ − x    =

λ − x
, (9)

 

2
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 = − −   λ − x  
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where: x is diameter/height; α1, α2 are shape para-
meters (α1 > 0, α2 > 0); and ξ, λ are boundary para-
meters (ξ < λ). Kum distribution had a closed CDF.

Fitting method. The method of maximum like-
lihood was used to fit SB, LL, Burr XII, Dagum, 
and Kum distributions to tree diameter and height 
data. It involved taking partial derivatives of the log-
likelihood function, regarding each of the distribu-
tion parameters, and setting the expression equal to 
zero and then solve it by a numerical iterative 
algorithm to obtain ML estimates. This was achie-
ved using the «optim function» in R (R Core Team, 
2016).

The distributions were evaluated based on a 
negative log-likelihood criterion (–ΛΛ), since the 
fitting was done using the maximum likelihood es-
timation (MLE). It is a deviance statistic (Wang and 
Rennolls, 2007). Kolmogorov-Smirnov (K-S), Cra-
mér-von Mises (W 2), Reynold’s error index (EI), 
and mean square error (MSE) were also used for the 
model assessment. The smaller the values of the fit 
indices, the better is the model.
 K-S = Supx [F (xi) – F0 (xi)], (11)

where Supx is the supremum value for x:
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F (xi) is the cumulative frequency distribution ob-
served for xi sample (i = 1, 2, …, n), F0 (xi) is the 
probability of a theoretical cumulative frequency 
distribution; Yi is the observed value, and Ŷi is the 
theoretical value predicted by the model.

RESULTS AND DISCUSSION

The assessment of the overall fitting perfor-
mance of five univariate distributions of interest 
with respect to the boundary constraints are pre-
sented in Table 3 and 4.

The results for the fitted SB diameter distribu-
tions showed that constraint 2 had the smallest 
mean –ΛΛ value (–131.2065), whereas constraint 1 
had the largest value (–129.3). However, con-
straint 1 had the smallest mean K-S value (0.1133). 
Constraint 3 had the smallest MSE value (0.0014). 
These three constraints produced approximately the 
same mean values of W 2 and EI (Table 3).

Similarly, the smallest mean –ΛΛ (–131.6463) 
was recorded in constraint 2 for LL. This value in-
creased in constraint 3. Constraint 1 had the larg-
est –ΛΛ. When K-S was used as the criterion, con-
straint 1 had the smallest mean values (0.0998); 
these values increased in constraint 3. Constraint 2 
had the largest mean K-S value.

The mean values of W 2 and EI for the constraints 
were approximately the same. The fit of Kum distri-
bution was improved by the use of Gumbel values, 
with constraint 2 having the smallest mean –ΛΛ 
value (–136.5602). Constraint 3 had the smallest 
mean K-S, W 2, EI, and MSE values (0.1276, 0.0831, 
0.955, and 0.0016, respectively). As for Burr XII 
distribution, the two constraints had the same –
ΛΛ value (–129.7471). However, constraint 1 had 
smaller mean K-S, W 2, EI, and MSE values (0.1059, 
0.00745, 0.8871, and 0.0014, respectively). The re-
sult for Dagum distribution showed that constraint 1 
had smaller values for all the fit indices, except 
log-likelihood (–ΛΛ). Its mean –ΛΛ, K-S, W 2, EI, 
and MSE values were –129.8797, 0.1013, 0.0638, 
0.8117, and 0.0013, respectively. Constraint 2 had a 
smaller –ΛΛ value (–129.877).

The results for the fitted SB height distribution 
showed that Gumbel values improved the fitting 
performance of the distribution. Constraint 3 had the 
smallest values for most of the fit indices. Its –ΛΛ, 
K-S, W 2, EI, and MSE values were –135.601, 0.098, 
0.0513, 0.7456, and 0.0013, respectively (Table 4).

These values increased proceeding to con-
straint 2 and then to constraint 1. Constraint 3 had 
the smallest mean K-S, W 2, EI, and MSE values 
(0.0843, 0.0402, 0.6718, and 0.0013, respectively) 
for LL marginal distribution. Only in –ΛΛ was con-
straint 2 slightly ranked higher than constraint 3. 
Constraint 3 gave the smallest mean K-S, W 2, EI, 
and MSE (0.1019, 0.0512, 0.7549, and 0.0013, 
respectively) for Kum tree height distribution. 
However, the log-likelihood (–ΛΛ) values of con-

Application of extreme value distribution for assigning optimum fractions to distributions with boundary parameters...
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Table 3. Mean goodness-of-fit test for the fitted diameter distributions

Distribution
Parameter

–ΛΛ K-S W 2 EI MSE
x λ

SB Dmin – 0.5 Dmax + 0.1 –129.3000 0.1133 0.0772 0.9059 0.0015
Dmin – GV1 Dmax + 0.1 –131.2065 0.1199 0.0765 0.9119 0.0015
Dmin – GV1 Dmax + GV2 –130.4812 0.1157 0.0775 0.9082 0.0014

LL Dmin – 0.5 Dmax + 0.1 –129.1161 0.0998 0.0617 0.8405 0.0015
Dmin – GV1 Dmax + 0.1 –131.6463 0.1033 0.0625 0.8491 0.0015
Dmin – GV1 Dmax + GV2 –130.8504 0.1012 0.0657 0.8669 0.0014

Kum Dmin – 0.5 Dmax + 0.1 –133.3320 0.1484 0.1248 1.2137 0.0018
Dmin – GV1 Dmax + 0.1 –136.5602 0.1598 0.1453 1.3237 0.0018
Dmin – GV1 Dmax + GV2 –132.8000 0.1276 0.0831 0.9550 0.0016

Burr XII Dmin – 0.5 –129.7471 0.1059 0.0745 0.8871 0.0014
Dmin – GV1 –129.7471 0.1682 0.1419 1.2840 0.0018

Dagum Dmin – 0.5 –128.8797 0.1013 0.0638 0.8117 0.0013
 Dmin – GV1  –129.8770 0.1548 0.1203 1.1909 0.0017

Note: –ΛΛ – negative log-likelihood; GV1 – Gumbel value 1 = 1.34; GV2 – Gumbel value 2 = 6.79.

Table 4. Mean goodness-of-fit test for the fitted height distributions

Distribution
Parameter

–ΛΛ K-S W 2 EI MSE
x λ

SB Hmin –0.5 Hmax + 0.1 –135.3756 0.1025 0.0558 0.7836 0.0014
Hmin – GV1 Hmax + 0.1 –135.5972 0.0987 0.0499 0.7432 0.0013
Hmin – GV1 Hmax+GV2 –135.6010 0.0980 0.0513 0.7456 0.0013

LL Hmin – 0.5 Hmax + 0.1 –134.6366 0.0893 0.0437 0.7059 0.0014
Hmin – GV1 Hmax + 0.1 –135.9805 0.0894 0.0435 0.7053 0.0014
Hmin – GV1 Hmax + GV2 –135.3591 0.0843 0.0402 0.6718 0.0013

Kum Hmin – 0.5 Hmax + 0.1 –137.4682 0.1281 0.0896 1.0486 0.0015
Hmin – GV1 Hmax + 0.1 –139.1868 0.1350 0.1002 1.1129 0.0015
Hmin – GV1 Hmax + GV2 –136.3794 0.1019 0.0512 0.7549 0.0013

Burr XII Hmin – 0.5 –135.3452 0.0927 0.0495 0.7153 0.0013
Hmin – GV1 –135.5400 0.0886 0.0451 0.6851 0.0013

Dagum Hmin – 0.5 –134.6450 0.0876 0.0401 0.6351 0.0012
 Hmin – GV1  –135.5258 0.0853 0.0426 0.6569 0.0012

Note: GV1 – Gumbel value 1 = 1.15; GV2 – Gumbel value 2 = 5.39.

F. N. Ogana, J. S. A. Osho, J. J. Gorgoso-Varela
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straint 2 and constraint 1 were smaller than those 
of constraint 3. For Burr XII distribution with just 
two constraints, the results showed that constraint 2 
(Hmin – GV1) had smaller values for the fit statis-
tics. Its –ΛΛ, K-S, W 2, EI, and MSE were –135.54, 
0.0886, 0.0451, 0.6851, and 0.0013, respectively. 
The results for Dagum distribution showed that 
constraint 2 had smaller values for –ΛΛ and K-S, 
(135.5258 and 0.0853, respectively), which were 
the two most important fit statistics. Constraint 1 had 
smaller mean W 2 and EI values (0.0401 and 0.6351, 

respectively). Both constraints had the same MSE 
value of 0.0012. Generally, the results of Gumbel 
fractions were comparable to the optimum fraction 
(Dmin /Hmin – 0.5), and in some cases the fractions 
performed even better.

The graphs of the diameter and height distribu-
tions resulting from the use of the three boundary 
constraints are presented in Fig. 2–5.

The graphs showed the number of trees in each 
diameter and height class per ha. The shape of the 
observed diameter and height distributions were 

Fig. 2. Observed diameter distributions, Johnson SB 
fitted using the three boundary constraints for plot 1 
with a stand age of 29 years.

Fig. 3. Observed height distributions, Johnson SB fitted 
using the three boundary constraints for plot 1 with a 
stand age of 29 years.

Fig. 4. Observed diameter distributions, Kum fitted using 
the three boundary constraints for plot 1 with a stand age 
of 29 years.

Fig. 5. Observed height distributions, Kum fitted using 
the three boundary constraints for plot 1 with a stand age 
of 29 years.

Application of extreme value distribution for assigning optimum fractions to distributions with boundary parameters...
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mainly right-skewed asymmetrical, i. e. stretched-
tailed to the right rather than symmetrical, except 
in few plots.

Only the graph of the most common and much 
used Johnson’s SB and newly introduced Kum dis-
tributions are presented here using a representative 
sample plot (plot 1 with the trees 29 years old). 
The trees on this plot had an average diameter and 
height of 18.9 cm and 13.2 m, respectively, with the 
stand density being 544 trees/ha. As is clear from 
the graph, Gumbel scale values improved the per-
formance of the distribution compared to the usual 
constant (i. e. Dmin – 0.5). This was also obvious for 
the fitted Johnson SB height distribution (Fig. 3) and 
the fitted Kum diameter and height distributions 
(Fig. 4 and 5).

In this study, a new approach was applied for se-
lecting the optimum values for the lower boundary, 
i. e. location parameters, and of upper boundary pa-
rameters of Johnson’s SB, logit-logistic (LL), Kum, 
Bur XII, and Dagum distributions. These fractions 
were generated from Gumbel scale parameter fitted 
to the extremes values of tree diameter and height 
of eucalyptus stands. The rationale for this approach 
was to find optimum values for the location and 
scale parameters that is stand specific, rather than 
using arbitrarily selected fractions. Only the scale 
parameter of Gumbel function was used. The values 
were 1.34 and 1.15 for minimum diameter and min-
imum height, respectively; 6.79 and 5.39 for maxi-
mum diameter and maximum height, respectively. 
These fractions were compared with the best frac-
tions reported in quantitative forestry (e. g. min, 0.1, 
0.5 etc.). We also tried to use fractions of Weibull 
scale parameter, but their performance was poor; as 
such, it was not documented in this study.

All the fractions used in this study performed 
generally well. Moreover, the performances of SB, 
LL, Kum, Burr XII and Dagum distributions were 
slightly improved, especially for the height distri-
butions, when Gumbel scale value was used. No 
convergence was achieved when the location and 
scale parameters were set to minimum and maxi-
mum diameter and height. The absence of con-
vergence allowed us to conclude that distribution 
accuracy depended on the predetermined values 
of the location parameter and, to some extent, of 
the scale parameter. This effect varied with distri-
bution, estimation method, and tree species. For 
example, the performance of the distributions im-
proved as the magnitude of the fractions increased 
(min < 0.1 < 0.5 < Gumbel scale) from using the 
fit indices applied in this study. However, when 
the magnitude of a fraction was further increased 

by using Weibull scale with a large value as against 
Gumbel, the performance of the diameter and 
height distributions was poor (though it was not do-
cumented). A similar trend was observed by Zhang 
et al. (2003), who compared different estimation 
methods to fit Weibull and SB distributions to mixed 
spruce-fir stands. The location parameter was as-
sumed to equal (Dmin – 0.5) and different values 
(0.5, 1.0, 1.5 and 2.0) were tried. Their results 
showed that Reynolds’ error index increased with in-
creasing constants for SB and Weibull distributions. 
The constraint (Dmin – 0.5) used in our study also 
performed well based on negative log-likelihood, 
Kolmogorov-Smirnov, Cramér-von Mises, mean 
square error, and Reynolds’ error index. However, 
Dmin –Gumbel scale performed better, especially for 
tree height distributions.

Furthermore, this Gumbel fraction provided an 
alternative way of fitting height distributions with 
SB Knoebel and Burkhart (KB) method. For ex-
ample, normal KB fractions (location = Dmin – 1.3; 
scale = Dmax – location + 3.8) were derived for the 
diameter distribution by Knoebel and Burkhart 
(1991). These constants (1.3 and 3.8) are known to 
be functions of plot size, stand structure, and even 
tree species. With the direct use of the fraction for 
characterizing height distribution, the results ob-
tained were not better than with Gumbel fractions. 
Zhou and McTague (1996) applied a complex al-
gorithm to extrapolate height fractions equivalent 
to diameter fractions, so that consistency with KB 
method could be maintained. The authors fitted a 
simple linear regression to tree height-diameter 
pairs for each plot. They predicted height for at 
D = Dmin and at D = Dmin – 1.3, subtracted the dif-
ference in height from these two predictions, and 
replaced Dmin and 1.3 by Hmin and the difference to 
obtain the location parameter for the height dis-
tribution. They also predicted height at D = Dmax 
and at D = Dmax + 3.8; subtracted the difference in 
height from these predictions, and replaced Dmax 
and 3.8 by Hmax and the difference to obtain the 
scale parameter for the height distribution. Although 
this seems to be a good approach, it is tedious and 
unnecessary.

Li et al. (2002) used KB method with predeter-
mined values for the location and scale parameters 
of SB to fit the marginal diameter and height distri-
butions of a Douglas fir stand. The minimum tree 
height was used for the location parameter and a 
range of heights for the scale parameter. They re-
ported poor performance with SB as compared to 
the generalized beta distribution. However, Wang 
(2005) used predetermined constants (1.3 and 5.1) 
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still in the sense of KB method to obtain a better 
result for SB and LL diameter distributions. The ra-
tionale for adopting these constants was not clear 
from the paper. The author observed that these con-
straints improved the cumulative distribution func-
tion-based least square method (CDF-based LS) 
more than the maximum likelihood method. Never-
theless, both methods produced satisfactory results 
in his study. No study has been done on the use of a 
boundary constraint for Burr XII, Dagum and Kum 
distributions.

Application of boundary constrains to the loca-
tion and sometimes to scale parameters of distribu-
tion functions is a common practice in quantitative 
forestry, because the accuracy of the results of using 
distribution functions in size class modelling de-
pends on predetermined values of these parameters. 
In the absence of a boundary constrain for the lo-
cation parameter, the estimate could sometimes be 
biologically unreasonable, especially when MLE is 
used for fitting the models, for example, where an 
estimate for the location parameter is given as a ne-
gative value. This is not possible concerning diame-
ter and/or height distributions. The location parame-
ter marks the beginning of the diameter distribution, 
which is the minimum tree diameter observed. The 
location parameter could be zero, especially when 
tree height is 1.3 meters. Trees 1.3 m high are rarely 
measured, unless it is a young forest stand.

CONCLUSION

To sum up, we assessed the effectiveness of 
Gumbel scale as an optimum constant for improv-
ing the fitting performances of SB, LL, Burr XII, 
Dagum and Kum distributions. The results were 
quite satisfactory. The use of Gumbel scale value 
improved the performance of some of the distribu-
tions, especially of the height distribution. The im-
plication is that, it will reduce the time required for 
testing different constant values during the model 
fitting process.
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Поиск оптимальных значений для определения граничных параметров в моделях распределения часто бы-
вает время- и трудоемким. Точность распределения зависит от заданных значений граничных параметров. 
В этом исследовании мы применили распределения экстремальных значений, полученные из обобщенного 
экстремального значения (ОЭЗ) при определении оптимальной константы для распределения с граничны-
ми параметрами. Для определения постоянных значений использовалось подсемейство ОЭЗ (тип 1) распре-
деление Гумбеля, которое включало данные минимальных и максимальных диаметров и высот деревьев. 
Эффективность значений оценивалась пятью моделями распределений: логистической, Бурра XII, Дагума, 
Кумарасвами и Джонсона СВ. Функции распределения были подобраны по принципу максимального подобия 
по данным обмеров диаметров и высот деревьев, полученных на 90 пробных площадях, заложенных в насаж-
дениях (плантациях) эвкалипта камальдульского Eucalyptus camaldulensis Dehn. Оценка моделей проводилась 
с использованием отрицательной логарифмической вероятности (-ΛΛ), критериев Колмогорова-Смирнова 
(K-S), Крамера фон Мизеса (W 2), индекса ошибок Рейнольдса (EI) и средней квадратичной ошибки (MSE). 
Результат исследований показал, что производительность распределений была улучшена, особенно для рас-
пределения по высоте, по сравнению с другими постоянными значениями. Распределение Гумбеля может 
применяться всякий раз, когда устанавливается ограничение на параметры местоположения и масштаба мо-
делей распределения.

Ключевые слова: обобщенное экстремальное значение, Гумбель, Кумарасвами, логистическое распределе-
ние, Бурр XII, Дагум, Джонсон СВ.
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