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The search for an optimum value to constrain boundary parameters in distribution models can be (and is) laborious
and time-consuming. The accuracy of a distribution fit depends on the predetermined values of the boundary
parameters. In this study, we applied the extreme value distributions derived from the generalized extreme value
(GEV) in assigning the optimum constant to a distribution with boundary parameters. GEV subfamily (type 1),
Gumbel’s distribution, was used to generate constant values which were used as a fraction of the minimum and
maximum diameter and height data. The effectiveness of these values was established using five distribution models:
logit-logistic (LL), Burr XII, Dagum, Kumaraswamy, and Johnson’s S; distributions. The distributions were fitted
with maximum accuracy to the diameter and height data collected on 90 Eucalyptus camaldulensis Dehn sample
plots. Model assessment was based on negative log-likelihood (-AA), Kolmogorov-Smirnov (K-S), Cramér-von
Mises (W?), Reynold’s error index (£7), and mean square error (MSE). The result showed that the performance of
the distributions was improved, especially for the height distribution, compared to other constant values. Gumbel’s
distribution can be applied whenever (where) a boundary constraint is to be imposed on the location and scale
parameters of the distribution models.
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INTRODUCTION

The concept of extreme value distribution mod-
elling originated from the probability theory and
statistics. It is also known as Fisher-Tippett distri-
bution (Willemse and Kaas, 2007). It is a family
of continuous probability distributions (Gorgoso-
Varela et al., 2015). The generalized extreme value
(GEV) distribution integrates Gumbel (type 1), Fré-
chet (type 1I), and Weibull (type III) distributions
into a family of models. GEV has been applied to
forecast extreme events, such as earthquakes, floods,
and other natural disasters. For example, Feng et al.

© Ogana F. N., Osho J. S. A., Gorgoso-Varela J. J., 2018

(2007) applied GEV distribution to model annual
extreme precipitation in China. Mitkova and Hal-
mova (2014) used Gumbel distribution to model the
joint distribution of flood peak discharges, volume
and duration for the Danube River in Bratislava.
Burke et al. (2010) used Gumbel distribution to de-
scribe droughts and projected change for the UK.
Gorgoso-Varela and Rojo-Alboreca (2014) sug-
gested that the extreme value distributions could be
applied to forestry study to describe the maximum
and minimum diameters of trees. For example, the
distributions commonly used for size class mod-
elling (e. g. Weibull, beta, Johnson S;, and Burr)
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are characterized by location, scale, and shape pa-
rameters. Location is usually related to minimum
diameter and minimum height (Zhang et al., 2003;
Parresol, 2003; Cao, 2004). How accurately these
distributions are fitted depends on predetermined
values of the location parameter. Researchers have
used different algorithms to select values of the
location parameter of the distributions commonly
used in forestry studies (Zhang et al., 2003; Par-
resol, 2003; Scolforo et al., 2003; Gorgoso et al.,
2012). Wang and Rennolls (2005, 2007) applied a
straightforward maximum likelihood estimation
method for this parameter; however, convergence
was not achieved for some plots. This is a major
drawback of the use of the maximum likelihood
estimation method.

The concept of extreme distribution modelling
was introduced to forestry by Gorgoso-Varela and
Rojo-Alboreca (2014), when they used Gumbel and
Weibull functions to model extreme diameter distri-
bution values for forest stands. They concluded that
the information on the distributions of minimum di-
ameters could be helpful when choosing the most
suitable values of the location parameter. Gorgoso-
Varela et al. (2015) evaluated the performance of
Gumbel, Fréchet, and Weibull distributions. They
found Gumbel and Weibull distributions to be use-
ful for modelling the minimum and maximum tree
heights. These distributions appeared to be an im-
portant tool of distribution modelling in forestry.

Therefore, the main purpose of this study was to ex-
amine the effectiveness of the use of extreme value
distributions for assigning an optimum constant of
a distribution with boundary parameters for model-
ling tree diameter and height data.

METHODOLOGY

Data. The data for this study were collected
in an Eucalyptus camaldulensis Dehn plantation
growing in the Afaka Forest Reserve, Kaduna State,
Nigeria. The plantation is located 10.58°-10.60° N
and 7.35°-7.37° E, at an elevation of about 600 m
above sea level, and occupies an area of 2700 ha
(Ogana et al., 2018) (Fig. 1). It is an experimen-
tal plantation site, which was established to reduce
deterioration and desertification of the Northern
Guinea savannah of Nigeria. The data were obtained
on 90 sample plots of 625 m? each and covered
five tree age series of 7, 26, 27, 28, and 29 years.
Among the stand variables computed from the
inventory data were: stand density, quadratic mean
tree diameter, mean tree height, dominant stand
height, and basal area per ha. The statistics are sum-
marized in Table 1.

Extreme distribution modeling. Prior to mod-
elling, the minimum and maximum diameters and
heights were extracted from each plot to form the
distributions of the extreme values. Then we fitted
a theoretical extreme distribution, Gumbel distribu-

Fig. 1. Study site of 29 years old eucalyptus Eucalyptus camaldulensis Dehn plantation (sample plot 1) in the Afaka
Forest Reserve, Kaduna State, Nigeria.
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Table 1. Statistics of stand variables

. Statistics
Stand variable - . .
Mean Maximum Minimum Standard deviation
Tree diameter, cm 10.28 4743 2.0 6.19
Tree height, m 12.31 39.60 2.10 6.14
Quadratic mean 11.83 23.95 5.89 3.79
Dominant stand height, m 21.01 30.60 9.00 5.38
Stand density, trees/ha™! 753.24 1328 448.0 202.84
Basal area, m? - ha™! 8.53 27.39 1.73 4.92
Note: Here and in Table 3 and 4 number of sample plots — 90.
Table 2. The FA test for fitting Gumbel functions to extreme tree diameter and height values
Method Parameter K-S w? EI MSE

Moments D,.. 0.1386 0.0974 0.2998 0.0373

D,.. 0.0964 2.2070 1.4849 0.0003

H_. 0.0654 0.0299 0.1264 0.0320

H_. 0.1024 2.3881 1.5445 0.0006

Mode D... 0.4095 0.0996 0.3034 0.0372

D... 0.1069 1.9627 1.4002 0.0003

H_. 0.2651 0.3537 0.5829 0.0153

H_. 0.3084 28.607 5.3483 0.0006

Note: Here and in Table 3 and 4 K-S — Kolmogorov-Smirnov distribution; #? — Cramér-von Mises distribution; E7— Reynolds’ error

H_.D

min> ©“min>

index; MSE — mean square error; D,

max>

tion, with the method of moments and mode, to eu-
calyptus extreme diameter and height values. The
values of the scale parameter of Gumbel distribu-
tion were used as the constants for the boundary pa-
rameters of Johnson’s S, logit-logistic, Kumaras-
wamy, Burr XII, and Dagum distributions. Gumbel,
Weibull, and Fréchet distributions formed the sub-
family of GEV distribution. These distributions are
sensitive to extreme values. Information about their
parameters, especially the scale parameters, could
help choose the location and scale parameters of the
distributions. This was the rationale for adopting
this approach in the study. GEV distribution details
presented at earlier publications of Gorgoso-Varela
and Rojo-Alboreca (2014) and Gorgoso-Varela et
al. (2015). Gumbel cumulative distribution func-
tion (CDF), as formulated by Gumbel (1954), is
expressed as:

CDF : f(x; 1,B) = exp{—exp(—(%m, (1)

where: —0 < x o, p is the mode value (location
parameter) and B is the scale parameter. The method
of moments and mode was used to fit Gumbel
distribution.
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and A, — minimum and maximum tree diameter and height.

Table 2 shows the fit accuracy (FA) of the mini-
mum and maximum tree diameters and heights of
Gumbel distribution.

As is clear from the statistics, the method of mo-
ments was more suitable than that of mode concern-
ing fitting the minimum and maximum tree diame-
ters and heights. With the former method, FA values
were relatively small as compared with FA resulted
from the mode method. Therefore, the method of
moment was chosen.

Boundary constraint. The distributions were
classified as those with both lower and upper bound-
ary parameters (S;, LL and Kum distributions) and
those with only the lower boundary parameter
(Burr XII and Dagum distributions). The following
boundary constraints were used and assessed for
performances:

1. Location parameter = H,

range parameter=H__ /D_+ 0.1

2. Location parameter =
range parameter = H__ /D

/D, — 0.5 and

/D, — GVI and
+0.1

max

3. Location parameter = H_, /D_. — GV1 and
range parameter = D+ GV2, for S;, LL and Kum
distributions.
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The lower boundaries for Burr XII and Dagum
distributions were constrained by:

1. Location parameter = H . /D . —0.5
2. Location parameter = H_, /D_. —GV1,

where GV1 = 1.34 and GV2 = 6.79 were the valu-
es of Gumbel scale parameters obtained from
modelling the minimum and maximum tree diameter
distribution. The same constraints were applied to
tree height distributions, whereas GV1 = 1.15 and
GV2 =5.39 for the height distribution.

Model specification. We evaluated the efficien-
cy of Gumbel fractions on five distribution models
with boundary parameters. The models considered
were Burr XII, Burr III, (i. e. Dagum), Kumaras-
wamy, logit-logistic, and Johnson’s S; distributions.
These distributions were characterized by four pa-
rameters, namely location, scale, and two shape pa-
rameters.

Johnson’s S, distribution. The 4-parameter S,
probability density function (Johnson, 1949) is ex-
pressed as:

1 x-g

0 A 0 2{”81{@”%
V2m (E+A—x)(x-§)

where: £ <x <&+ A, —0 <& < 400, —0 <y < oo,
A >0, and 6 > 0. S, function has location parameter,
& the scale parameter, A, and the shape parameters,
v and 9, (asymmetry and kurtosis, respectively).
Logit-logistic (LL) distribution. The univari-
ate logit-logistic distribution introduced to forestry
by Wang and Rennolls (2005) and used recently by
Gorgoso-Varela et al. (2016) was use in this study.
The probability density function (PDF) and cumu-
lative distribution function (CDF)) are given as:

fx)= H . (2)

A 1
A
X /o 1 —(1/5) H (3)
e(u/c){ x_g J +eu/c( X—E_, j +2
E+Ah—x E+A—x
1
F(x)= @
1+ewc(X—§j
E+A—x

where: f (x) is probability density function, F' (x)
is cumulative distribution function, x is diameter
and height, p = mu and ¢ = sigma are the shape
parameters. Other parameters are previously defined
in the equation 1.
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Burr XII distribution. Burr (1942) construct-
ed a 4-parameter Burr XII distribution. This dis-
tribution was introduced to forestry by Wang
and Rennolls (2005) and was recently used by
Aigbe and Omokhua (2014). PDF and CDF are

expressed as:
ak(x_yJa_l
p
1 x—vj
(57)
F(x)=|1 x_yj“ _, 6
(x) (+[ 5 } (6)

where: f(x) is probability density function (PDF);
F (x) is cumulative distribution function (CDF) k
and o are two shape parameters (k> 0; o > 0); B is
scale parameter (f > 0); and vy is the lower bound-
ary parameter, i. e. location parameter (y = 0 yields
3-parameter Bur XII distribution). Burr XII distri-
bution has a closed form of CDF.

Dagum (Burr III) distribution. Burr (1942)
constructed 4-parameter Burr III distribution. This
distribution was first introduced to forest modelling
by Lindsay et al. (1996). It is also known as Dagum
distribution. To distinguish between Burr III and
XII, Dagum distribution was used as a substitution
of Burr III distribution in this study. PDF and CDF

are expressed as.
ak(x—’yjak_l
B
. x—vJ
(5
F(x)=|1 x_yj‘“ _. 8
(x) { +( 5 j )

All the parameters are predefined. Burr III dis-
tribution has a closed form of CDF.

Kumaraswamy distribution (Kum).Kumaras-
wamy (1980) introduced a 4-parameter distribution
based on the results of his study on «a generalized
probability density function for double-bounded
random processes». It is a continuous probability
distribution defined in an interval of 0, 1. Kum dis-
tribution had previously not been evaluated for for-
est modelling, as far as we know. The probability

f(x)=

)

fx)= (7
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density function f (x) and cumulative distribution
function F (x) are expressed as:

IR
F(x)=1 [1 {K—J ] , (10)

where: x is diameter/height; a,, o, are shape para-
meters (a, > 0, a, > 0); and &, A are boundary para-
meters (& <A). Kum distribution had a closed CDF.

Fitting method. The method of maximum like-
lihood was used to fit S;, LL, Burr XII, Dagum,
and Kum distributions to tree diameter and height
data. It involved taking partial derivatives of the log-
likelihood function, regarding each of the distribu-
tion parameters, and setting the expression equal to
zero and then solve it by a numerical iterative
algorithm to obtain ML estimates. This was achie-
ved using the «optim function» in R (R Core Team,
2016).

The distributions were evaluated based on a
negative log-likelihood criterion (—AA), since the
fitting was done using the maximum likelihood es-
timation (MLE). It is a deviance statistic (Wang and
Rennolls, 2007). Kolmogorov-Smirnov (K-S), Cra-
mér-von Mises (W?), Reynold’s error index (EI),
and mean square error (MSE) were also used for the
model assessment. The smaller the values of the fit
indices, the better is the model.

K-S=Supx [F (x)—F, ()], (11)
where Supx is the supremum value for x:
a [ -0.5))° 1

W = F)- U } +—, (12
z”{ () n 12n (12)
E[=)" [F( )—ﬂ}, (13)

n

" (Y, -Y)
MSEZZ[Z](—tt)- (14)

n

F' (x;) is the cumulative frequency distribution ob-
served for x; sample (i = 1, 2, ..., n), F, (x)) is the
probability of a theoretical cumulative frequency
distribution; Y is the observed value, and Y, is the
theoretical value predicted by the model.
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RESULTS AND DISCUSSION

The assessment of the overall fitting perfor-
mance of five univariate distributions of interest
with respect to the boundary constraints are pre-
sented in Table 3 and 4.

The results for the fitted S, diameter distribu-
tions showed that constraint 2 had the smallest
mean —AA value (—131.2065), whereas constraint 1
had the largest value (—129.3). However, con-
straint 1 had the smallest mean K-S value (0.1133).
Constraint 3 had the smallest MSE value (0.0014).
These three constraints produced approximately the
same mean values of 2 and EI (Table 3).

Similarly, the smallest mean —AA (—131.6463)
was recorded in constraint 2 for LL. This value in-
creased in constraint 3. Constraint 1 had the larg-
est —AA. When K-S was used as the criterion, con-
straint 1 had the smallest mean values (0.0998);
these values increased in constraint 3. Constraint 2
had the largest mean K-S value.

The mean values of W? and EI for the constraints
were approximately the same. The fit of Kum distri-
bution was improved by the use of Gumbel values,
with constraint 2 having the smallest mean —AA
value (-136.5602). Constraint 3 had the smallest
mean K-S, W2, EI, and MSE values (0.1276, 0.0831,
0.955, and 0.0016, respectively). As for Burr XII
distribution, the two constraints had the same —
AA value (—129.7471). However, constraint 1 had
smaller mean K-S, W2, EI, and MSE values (0.1059,
0.00745, 0.8871, and 0.0014, respectively). The re-
sult for Dagum distribution showed that constraint 1
had smaller values for all the fit indices, except
log-likelihood (-AA). Its mean —AA, K-S, W2, EI,
and MSE values were —129.8797, 0.1013, 0.0638,
0.8117, and 0.0013, respectively. Constraint 2 had a
smaller —AA value (—129.877).

The results for the fitted S, height distribution
showed that Gumbel values improved the fitting
performance of the distribution. Constraint 3 had the
smallest values for most of the fit indices. Its —AA,
K-S, W2, EI, and MSE values were —135.601, 0.098,
0.0513, 0.7456, and 0.0013, respectively (Table 4).

These values increased proceeding to con-
straint 2 and then to constraint 1. Constraint 3 had
the smallest mean K-S, W?, EI, and MSE values
(0.0843, 0.0402, 0.6718, and 0.0013, respectively)
for LL marginal distribution. Only in —AA was con-
straint 2 slightly ranked higher than constraint 3.
Constraint 3 gave the smallest mean K-S, W?, EI,
and MSE (0.1019, 0.0512, 0.7549, and 0.0013,
respectively) for Kum tree height distribution.
However, the log-likelihood (—AA) values of con-
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Table 3. Mean goodness-of-fit test for the fitted diameter distributions

o Parameter
Distribution : . —AA K-S w? EI MSE
S D_.—0.5 D, .T0.1 —129.3000 0.1133 0.0772 0.9059 0.0015
D_ . —GVlI D, . +0.1 —131.2065 0.1199 0.0765 0.9119 0.0015
D, .—GVlI D, . tGV2 —130.4812 0.1157 0.0775 0.9082 0.0014
LL D, .—0.5 D, . T0.1 —129.1161 0.0998 0.0617 0.8405 0.0015
D, .—GVl D, . T0.1 —131.6463 0.1033 0.0625 0.8491 0.0015
D_ . —GVlI D, .+GV2 —130.8504 0.1012 0.0657 0.8669 0.0014
Kum D, .—0.5 D, . +0.1 —133.3320 0.1484 0.1248 1.2137 0.0018
D, .—GVI D, . T0.1 —136.5602 0.1598 0.1453 1.3237 0.0018
D, .—GVl D, .1+ GV2 —132.8000 0.1276 0.0831 0.9550 0.0016
Burr XII D .—0.5 —129.7471 0.1059 0.0745 0.8871 0.0014
D, ,.—GVlI —129.7471 0.1682 0.1419 1.2840 0.0018
Dagum D, .—05 —128.8797 0.1013 0.0638 0.8117 0.0013
D_. -GVl —129.8770 0.1548 0.1203 1.1909 0.0017
Note: —AA — negative log-likelihood; GV1 — Gumbel value 1 = 1.34; GV2 — Gumbel value 2 = 6.79.
Table 4. Mean goodness-of-fit test for the fitted height distributions
. Parameter
Distribution : - —AA K-S /& EI MSE
S H_, 0.5 H_+0.1 —135.3756 0.1025 0.0558 0.7836 0.0014
H -GVl H_+0.1 —135.5972 0.0987 0.0499 0.7432 0.0013
H ., —GVl H  +GV2 —-135.6010 0.0980 0.0513 0.7456 0.0013
LL H_ -0.5 H_ +0.1 —134.6366 0.0893 0.0437 0.7059 0.0014
H_ -GVl H_+0.1 —135.9805 0.0894 0.0435 0.7053 0.0014
H -GVl H_ +GV2 —135.3591 0.0843 0.0402 0.6718 0.0013
Kum H_,-05 H,  +0.1 —137.4682 0.1281 0.0896 1.0486 0.0015
H_ -GVl H, +0.1 —139.1868 0.1350 0.1002 1.1129 0.0015
H_ -GVl H_ +GV2 —136.3794 0.1019 0.0512 0.7549 0.0013
Burr XII H_.—05 —135.3452 0.0927 0.0495 0.7153 0.0013
H .-GVl —135.5400 0.0886 0.0451 0.6851 0.0013
Dagum H_ —-05 —134.6450 0.0876 0.0401 0.6351 0.0012
H -GVl —135.5258 0.0853 0.0426 0.6569 0.0012

Note: GV1 — Gumbel value 1 = 1.15; GV2 — Gumbel value 2 = 5.39.
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Fig. 2. Observed diameter distributions, Johnson S,
fitted using the three boundary constraints for plot 1
with a stand age of 29 years.
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Fig. 4. Observed diameter distributions, Kum fitted using
the three boundary constraints for plot 1 with a stand age
of 29 years.

straint 2 and constraint 1 were smaller than those
of constraint 3. For Burr XII distribution with just
two constraints, the results showed that constraint 2
(H_,, — GVI1) had smaller values for the fit statis-
tics. Its —AA, K-S, W2, EI, and MSE were —135.54,
0.0886, 0.0451, 0.6851, and 0.0013, respectively.
The results for Dagum distribution showed that
constraint 2 had smaller values for —AA and K-S,
(135.5258 and 0.0853, respectively), which were
the two most important fit statistics. Constraint 1 had
smaller mean 72 and EI values (0.0401 and 0.6351,
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Fig. 3. Observed height distributions, Johnson S, fitted
using the three boundary constraints for plot 1 with a
stand age of 29 years.
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Fig. 5. Observed height distributions, Kum fitted using
the three boundary constraints for plot 1 with a stand age
of 29 years.

respectively). Both constraints had the same MSE
value of 0.0012. Generally, the results of Gumbel
fractions were comparable to the optimum fraction
(D, /H .. — 0.5), and in some cases the fractions
performed even better.

The graphs of the diameter and height distribu-
tions resulting from the use of the three boundary
constraints are presented in Fig. 2-5.

The graphs showed the number of trees in each
diameter and height class per ha. The shape of the
observed diameter and height distributions were
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mainly right-skewed asymmetrical, i. e. stretched-
tailed to the right rather than symmetrical, except
in few plots.

Only the graph of the most common and much
used Johnson’s S; and newly introduced Kum dis-
tributions are presented here using a representative
sample plot (plot 1 with the trees 29 years old).
The trees on this plot had an average diameter and
height of 18.9 cm and 13.2 m, respectively, with the
stand density being 544 trees/ha. As is clear from
the graph, Gumbel scale values improved the per-
formance of the distribution compared to the usual
constant (i. e. D, — 0.5). This was also obvious for
the fitted Johnson S; height distribution (Fig. 3) and
the fitted Kum diameter and height distributions
(Fig. 4 and 95).

In this study, a new approach was applied for se-
lecting the optimum values for the lower boundary,
1. e. location parameters, and of upper boundary pa-
rameters of Johnson’s S, logit-logistic (LL), Kum,
Bur XII, and Dagum distributions. These fractions
were generated from Gumbel scale parameter fitted
to the extremes values of tree diameter and height
of eucalyptus stands. The rationale for this approach
was to find optimum values for the location and
scale parameters that is stand specific, rather than
using arbitrarily selected fractions. Only the scale
parameter of Gumbel function was used. The values
were 1.34 and 1.15 for minimum diameter and min-
imum height, respectively; 6.79 and 5.39 for maxi-
mum diameter and maximum height, respectively.
These fractions were compared with the best frac-
tions reported in quantitative forestry (e. g. min, 0.1,
0.5 etc.). We also tried to use fractions of Weibull
scale parameter, but their performance was poor; as
such, it was not documented in this study.

All the fractions used in this study performed
generally well. Moreover, the performances of S;,
LL, Kum, Burr XII and Dagum distributions were
slightly improved, especially for the height distri-
butions, when Gumbel scale value was used. No
convergence was achieved when the location and
scale parameters were set to minimum and maxi-
mum diameter and height. The absence of con-
vergence allowed us to conclude that distribution
accuracy depended on the predetermined values
of the location parameter and, to some extent, of
the scale parameter. This effect varied with distri-
bution, estimation method, and tree species. For
example, the performance of the distributions im-
proved as the magnitude of the fractions increased
(min < 0.1 < 0.5 < Gumbel scale) from using the
fit indices applied in this study. However, when
the magnitude of a fraction was further increased

46

by using Weibull scale with a large value as against
Gumbel, the performance of the diameter and
height distributions was poor (though it was not do-
cumented). A similar trend was observed by Zhang
et al. (2003), who compared different estimation
methods to fit Weibull and S;, distributions to mixed
spruce-fir stands. The location parameter was as-
sumed to equal (D, — 0.5) and different values
(0.5, 1.0, 1.5 and 2.0) were tried. Their results
showed that Reynolds’ error index increased with in-
creasing constants for S, and Weibull distributions.
The constraint (D, — 0.5) used in our study also
performed well based on negative log-likelihood,
Kolmogorov-Smirnov, Cramér-von Mises, mean
square error, and Reynolds’ error index. However,
D, —Gumbel scale performed better, especially for
tree height distributions.

Furthermore, this Gumbel fraction provided an
alternative way of fitting height distributions with
S; Knoebel and Burkhart (KB) method. For ex-
ample, normal KB fractions (location = D_, — 1.3;
scale = D___— location + 3.8) were derived for the
diameter distribution by Knoebel and Burkhart
(1991). These constants (1.3 and 3.8) are known to
be functions of plot size, stand structure, and even
tree species. With the direct use of the fraction for
characterizing height distribution, the results ob-
tained were not better than with Gumbel fractions.
Zhou and McTague (1996) applied a complex al-
gorithm to extrapolate height fractions equivalent
to diameter fractions, so that consistency with KB
method could be maintained. The authors fitted a
simple linear regression to tree height-diameter
pairs for each plot. They predicted height for at
D=D,_ and at D= D_. — 1.3, subtracted the dif-
ference in height from these two predictions, and
replaced D, and 1.3 by /, and the difference to
obtain the location parameter for the height dis-
tribution. They also predicted height at D = D__
and at D = D_,_+ 3.8; subtracted the difference in
height from these predictions, and replaced D
and 3.8 by H_, and the difference to obtain the
scale parameter for the height distribution. Although
this seems to be a good approach, it is tedious and
unnecessary.

Li et al. (2002) used KB method with predeter-
mined values for the location and scale parameters
of S; to fit the marginal diameter and height distri-
butions of a Douglas fir stand. The minimum tree
height was used for the location parameter and a
range of heights for the scale parameter. They re-
ported poor performance with S, as compared to
the generalized beta distribution. However, Wang
(2005) used predetermined constants (1.3 and 5.1)

max
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still in the sense of KB method to obtain a better
result for S, and LL diameter distributions. The ra-
tionale for adopting these constants was not clear
from the paper. The author observed that these con-
straints improved the cumulative distribution func-
tion-based least square method (CDF-based LS)
more than the maximum likelihood method. Never-
theless, both methods produced satisfactory results
in his study. No study has been done on the use of a
boundary constraint for Burr XII, Dagum and Kum
distributions.

Application of boundary constrains to the loca-
tion and sometimes to scale parameters of distribu-
tion functions is a common practice in quantitative
forestry, because the accuracy of the results of using
distribution functions in size class modelling de-
pends on predetermined values of these parameters.
In the absence of a boundary constrain for the lo-
cation parameter, the estimate could sometimes be
biologically unreasonable, especially when MLE is
used for fitting the models, for example, where an
estimate for the location parameter is given as a ne-
gative value. This is not possible concerning diame-
ter and/or height distributions. The location parame-
ter marks the beginning of the diameter distribution,
which is the minimum tree diameter observed. The
location parameter could be zero, especially when
tree height is 1.3 meters. Trees 1.3 m high are rarely
measured, unless it is a young forest stand.

CONCLUSION

To sum up, we assessed the effectiveness of
Gumbel scale as an optimum constant for improv-
ing the fitting performances of S;, LL, Burr XII,
Dagum and Kum distributions. The results were
quite satisfactory. The use of Gumbel scale value
improved the performance of some of the distribu-
tions, especially of the height distribution. The im-
plication is that, it will reduce the time required for
testing different constant values during the model
fitting process.
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[onck onTHManpHBIX 3HAYEHUH IS OTIPEICICHUS TPAaHMYHBIX ITapaMEeTPOB B MOJEISX pacIpeeTICHUsT YacTo ObI-
BaeT BpeMs- U TPYAOEMKUM. TOUHOCTB pacrpelesICHUs 3aBUCUT OT 33/IaHHBIX 3HAYCHUH T'PAHUYHBIX ITapaMeTpOB.
B sTOoM mccnenoBaHNH MBI IPUMEHIIIA PacTIPEeICHUST SKCTPEMaTbHBIX 3HAYCHNH, TIOydYeHHBIE U3 0000ICHHOTO
aKkcTpemManbHOro 3HaueHust (OD3) mpu onpepeneHny ONTUMAILHON KOHCTAHTHI JIJISl PACTIPEICNICHUS] ¢ TPAaHUIHbBI-
MH TTapameTpami. J[Jist onpesiesieHns MOCTOSTHHBIX 3HAY€HUH MCIIONIb30Balioch noacemericteo 023 (tum 1) pacmpe-
nenenne ['ymOerns, KOTOpoe BKIIIOYATIO JaHHBIE MHHAMAIBHBIX W MAaKCHMAJBHBIX ITHAMETPOB U BBICOT ICPCBHEB.
D¢ddekTnBHOCTD 3HAYCHUI OICHUBAJIACH ITATHIO MOJAEISIMH pacrpeleieHni: joructuaeckor, byppa XII, /laryma,
Kymapacsamu n Jlxxoncona Cy,. @yHKIMHU pactipeaeneHns ObUTH IT0J00paHbl MO MPUHIINITY MAKCHMAIBHOTO ITOJ00MS
IO TaHHBIM OOMEPOB AHAMETPOB U BBICOT IEPEBHEB, TOyUCHHBIX Ha 90 TIPOOHBIX IUTOIIA/ISX, 3aJI0KEHHBIX B HACAXK-
JeHHsIX (TUTAHTAIMSX ) 9BKAIIUTITa KaMallbAyJIbcKoro Eucalyptus camaldulensis Dehn. OnieHka Moene mpoBoaniach
C WCIOJIB30BaHUEM OTPHIIATENILHOU JlorapupmMudeckoir BepostHocTH (-AA), kputepueB Kommoroposa-CmupHOBa
(K-S), Kpamepa don Museca (W?), ungekca ommmbok Peiinonbaca (EI) u cpeneii kBaaparnaHoi ommoku (MSE).
Pesynbrar rccnenoBanuil mokasai, 9TO MPOU3BOMUTEIBHOCTE PAaCIpeeieHHd ObUIa yiTydIeHa, 0COOSHHO TSI pac-
MIPEAEIICHUS 110 BBICOTE, TI0 CPABHEHHUIO C JPYTMMHU IOCTOSHHBIMHU 3Ha4eHHsMHU. Pacnpenenenne ['ymOenss moxet
MIPUMEHATHCS BCIKHHN pa3, KOTA YCTAaHABIMBACTCS OTPAaHUICHUE HA TTAPaMETPhl MECTOIIOIOKEHHSI 1 MacIITada Mo-
JleTIel pacipeiesieHHus.

KiroueBble cioBa: obobwennoe sxcmpemanvroe snavenue, I ymbens, Kymapaceamu, noeucmuueckoe pacnpeoene-
nue, bypp XII, Jlazym, [oconcon Cy.
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