УДК 621.791.13

О ВЛИЯНИИ МЕХАНИЧЕСКИХ СВОЙСТВ МАТЕРИАЛОВ НА ВОЛНООБРАЗОВАНИЕ ПРИ СВАРКЕ ВЗРЫВОМ

Б. С. Злобин¹, В. В. Киселёв¹, А. А. Штерцер²

Эксперименты по сварке взрывом малопластичных сталей через тонкие пластичные прослойки показали, что, кроме геометрических характеристик соударения (толщина и угол соударения пластин, скорость точки контакта), на размеры возникающих в зоне соединения волн существенное влияние оказывают также механические свойства свариваемых материалов (твердость, плотность, скорость звука). Обнаружено, что в одних и тех же условиях соударения могут возникать волны различных размеров, но при этом их длина укладывается в определенный диапазон значений. На базе полученных экспериментальных данных и с привлечением модели Ландау, описывающей нестабильность стационарного течения вязкой жидкости, построены соотношения для оценки верхней и нижней границ длины волны с учетом как геометрических параметров соударения, так и механических свойств соударяющихся металлических пластин.

Ключевые слова: сварка взрывом, параметры соударения, волнообразование, модель Ландау, число Рейнольдса, число Струхаля.

DOI 10.15372/FGV20190410

ВВЕДЕНИЕ

Настоящая работа является продолжением исследований, первые результаты которых изложены в 11, где показано существование двух типов волн — мелких и крупных, возникающих в одних и тех же условиях соударения металлических пластин. Изучением феномена волнообразования исследователи активно занимаются начиная с 1950–60-х годов, когда появились первые публикации по сварке взрывом [2, 3], и по настоящее время [4, 5]. Подробный обзор публикаций до 2013 г. представлен в [6]. В [1, 7] отмечалось, что, несмотря на множество опубликованных работ, пока нет удовлетворительной теории, которая позволила бы аналитически или численно рассчитывать размер волн с учетом прочностных и физических свойств материалов соударяющихся пластин и показывала бы хорошее согласие с экспериментальными данными. При необходимости исследователи и инженеры пользуются формулами из [8], в которых длина волны $\lambda = (16 \div 26)\delta_1 \sin^2(\gamma/2)$, а амплитуда a = $(0.14 \div 0.30)\lambda$. Здесь δ_1 — толщина метаемой пластины (толщина неподвижной пластины δ_2 много больше, чем метаемой, и считается бесконечной), γ — угол соударения пластин. Как видно, в этих формулах присутствуют только «геометрические» параметры соударения, они дают удовлетворительное согласие с экспериментами для пластичных металлов, но в случае высокопрочных малопластичных материалов имеется расхождение расчетов с экспериментами.

В настоящей работе ставилось целью получение удобных для использования на практике соотношений для расчета размеров волн с учетом и геометрических параметров соударения, и механических свойств материалов соударяющихся пластин.

1. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ВОЛНООБРАЗОВАНИЯ

Сначала обратим внимание на опубликованные экспериментальные данные. Надо сказать, что трудно найти работы, в которых наряду с информацией о размерах волн полностью указывались бы все параметры соударения и механические свойства свариваемых материалов. Очень часто авторы ограничиваются фотографиями зоны соединения и названиями материалов, не указывая скорости детонации используемого заряда взрывчатого веще-

¹Конструкторско-технологический филиал Института гидродинамики им. М. А. Лаврентьева СО РАН 630090 Новосибирск, asterzer@mail.ru

²Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

[©] Злобин Б. С., Киселёв В. В., Штерцер А. А., 2019.

 ${\rm Taf}_{\tt Лица} \ 1$ Параметры соударения, свойства соударяющихся пластин и длина волн

№ п/п	Пластина	$ ho_1, \\ \Gamma/\mathrm{cm}^3$	$ ho_2, \\ \Gamma/\mathrm{cm}^3$	ΗV ₁ , ΜΠα	ΗV ₂ , ΜΠα	c_1 , $\kappa_{\rm M}/c$	c_2 , $\kappa m/c$	v_c , $_{ m KM/c}$	γ , град	λ ,	
	метаемая неподвижная										
1	Al, 5.0 мм	Сталь, 15 мм	2.7	7.85	200	990	6.26	6.1	2.10	10.4	0.60
2	Ті, 2.0 мм	Сталь, 15 мм	4.5	7.85	1 310	990	6.9	6.1	1.95	20.0	1.00
3	Ті, 2.0 мм	Аl, 10 мм	4.5	2.7	1 310	200	6.9	6.26	1.95	15.2	1.05
4	Ті, 2.0 мм	Си, 6 мм	4.5	8.9	1 310	600	6.9	4.7	1.95	15.2	0.53
5	Al, 5.0 мм	Сталь, 15 мм	2.7	7.85	200	990	6.26	6.1	2.1	15.2	0.93
6	Ті, 2.0 мм	Сталь, 15 мм	4.5	7.85	1 310	990	6.9	6.1	1.95	18.5	0.80
7	Ті, 2.0 мм	Сталь, 15 мм	4.5	7.85	1 310	990	6.9	6.1	1.95	12.0	0.50
8	Ті, 2.0 мм	Сталь, 15 мм	4.5	7.85	1 310	990	6.9	6.1	1.78	17.8	0.70
9	Рь, 2.0 мм	Сталь, 13 мм	11.4	7.85	82	990	3.6	6.1	1.66	8.2	0.33
10	Сталь, 2 мм	Сталь, 127 мм	7.8	7.8	990	990	6.1	6.1	1.94	12.4	0.36
11	Сталь, 2 мм	Сталь, 127 мм	7.8	7.8	990	990	6.1	6.1	1.57	15.4	0.66
12	Сталь, 2 мм	Сталь, 127 мм	7.8	7.8	990	990	6.1	6.1	1.32	18.4	0.81
13	Сталь, 2 мм	Сталь, 127 мм	7.8	7.8	990	990	6.1	6.1	1.17	20.9	1.3
14	Си, 1 мм	Сталь, 4 мм	8.9	7.8	600	990	4.7	6.1	2.5	12.6	0.48
15	Си, 1 мм	Сталь, 6 мм	8.9	7.8	600	990	4.7	6.1	2.5	12.6	0.38
16	Си, 1 мм	Сталь, 8 мм	8.9	7.8	600	990	4.7	6.1	2.5	12.6	0.33
17	Си, 1 мм	Сталь, 10 мм	8.9	7.8	600	990	4.7	6.1	2.5	12.6	0.30
18	Си, 1 мм	Сталь, 12 мм	8.9	7.8	600	990	4.7	6.1	2.5	12.6	0.30

 Π р и ме чание. Строки 1-9 — данные из [9], строки 10-13 — данные из [10], строки 14-18 — данные из [11].

ства, либо толщины свариваемых пластин, либо угла соударения, либо всех этих параметров вместе, не говоря уже о прочностных свойствах пластин. Однако из некоторых публикаций удалось собрать информацию, на основе которой получены необходимые данные, представленные в табл. 1. Так как механические свойства (плотность, твердость, скорость звука) свариваемых пластин в ряде публикаций не приведены, их значения брали из справочников по указанным маркам материалов. Обозначения в таблице: ρ — плотность, HV — твердость по Виккерсу, c — скорость звука, индексы 1, 2 соответствуют метаемой и неподвижной пластинам, v_c — скорость точки контакта, γ угол соударения пластин, λ — измеренная длина волны в зоне сварки. Для удобства в проведении теоретических расчетов (см. § 2) значения твердости даны в мегапаскалях, общепринятые же значения твердости по Виккерсу

можно получить делением табличных данных на коэффициент 9.8. Там, где угол соударения авторами не указывался, он был рассчитан по формулам из [8] исходя из отношения массы взрывчатого вещества к массе метаемой пластины.

В табл. 2 представлены результаты наших экспериментов. Экспериментам 4–7 соответствуют две строки (обозначения типа 4, 4.1), эксперименту 8 — несколько строк (8–8.7). Это связано с тем, что в данных опытах использовалась описанная в [1] методика метания биметаллической пластины с предварительным локальным удалением плакированного слоя в одном (опыты 4–7) или двух (опыт 8) местах. Сварка проводилась в два этапа. В опытах 4–7 на первом этапе метаемая стальная пластина предварительно плакировались слоем более пластичного металла толщиной 0.3 ÷ 1.0 мм. Далее на участке длиной 20 мм

 ${\rm T}\, {\rm a}\, {\rm f}\, {\rm f}\, {\rm i}\, {\rm u}\, {\rm u}\, {\rm a}\, 2$ Параметры соударения, свойства соударяющихся пластин и длина волн (данные авторов)

Nº	Пластина и ее тол	$ ho_1,$ Γ/cm^3	$ ho_2, \\ \Gamma/\mathrm{cm}^3$	ΗV ₁ , ΜΠα	ΗV ₂ , ΜΠα	$c_1,$ $\kappa_{\rm M}/c$	c_2 , $\kappa_{\rm M}/c$	v_c , $\kappa m/c$	γ , град	λ ,	
π/π	метаемая неподвижная										
1	Сталь + Cu, $1.5 + 0.5$ мм — Сталь, 25 мм		8.9	7.8	600	3 340	4.7	6.1	2.20	12.0	0.381
2	Сталь + Cu, $3.0 + 0.5$ мм	Сталь, 25 мм	8.9	7.8	600	3 340	4.7	6.1	2.25	12.0	0.449
3	Сталь $+$ Cu, $4.5 + 0.5$ мм	Сталь, 25 мм	8.9	7.8	600	3 340	4.7	6.1	2.63	12.0	0.538
4	Сталь + Cu, $3.0 + 0.3$ мм	Сталь, 25 мм	8.9	7.8	600	3 200	4.7	6.1	2.50	9.6	0.240
4.1	Сталь, 3.0 мм	Сталь, 25 мм	7.8	7.8	4 600	3 200	6.1	6.1	2.50	10.5	0.56
5	Сталь $+$ Al, $4.0 + 1.0$ мм	Сталь, 20 мм	2.7	7.8	200	1 200	6.26	6.1	2.72	11.2	#
5.1	Сталь, 4.0 мм	Сталь, 20 мм	7.8	7.8	1 200	1 200	6.1	6.1	2.72	12.0	0.64
6	Сталь + Ti, $3.5 + 0.5$ мм	Сталь, 25 мм	4.5	7.8	1 310	3 340	6.9	6.1	2.58	14.0	0.43
6.1	Сталь, 3.5 мм	Сталь, 25 мм	7.8	7.8	3 340	3 340	6.1	6.1	2.58	14.8	0.81
7	Сталь $+$ сталь, $3.5 + 0.5$ мм	Сталь, 25 мм	7.8	7.8	1 310	3 340	6.1	6.1	2.48	12.8	0.46
7.1	Сталь, 3.5 мм	Сталь, 25 мм	7.8	7.8	3 340	3 340	6.1	6.1	2.48	14.2	0.35
8	Си, 0.5 мм	Сталь, 3 мм	8.9	7.8	600	3 822	4.7	6.1	2.16	12.1	0.12
8.1	Сталь $+$ Cu, $3.0 + 0.5$ мм	Сталь, 27.5 мм	8.9	7.8	600	3 273	4.7	6.1	2.81	10.4	0.16
8.2	Сталь + Cu, $3.0 + 0.5$ мм	Сталь, 27.5 мм	8.9	7.8	600	3 273	4.7	6.1	2.81	10.4	0.46
8.3	Сталь $+$ Cu, $3.0 + 0.5$ мм	Сталь, 27.5 мм	8.9	7.8	600	3 273	4.7	6.1	2.81	10.4	0.51
8.4	Сталь + Cu, $3.0 + 0.5$ мм	Сталь, 27.5 мм	8.9	7.8	600	3 273	4.7	6.1	2.81	10.4	0.76
8.5	Сталь $+$ Cu, $3.0 + 0.5$ мм	Сталь, 27.5 мм	8.9	7.8	600	3 273	4.7	6.1	2.81	10.4	0.92
8.6	Сталь, 3.0 мм	Сталь, 27.5 мм	7.8	7.8	3 822	3 273	6.1	6.1	2.81	12.0	0.50
8.7	Сталь, 3.0 мм Сталь, 27.5 мм		7.8	7.8	3 822	3 273	6.1	6.1	2.81	12.0	0.93

Примечание. Знак \sharp в опыте 5 означает, что измерить параметры волны на границе Al — сталь не удалось, так как ее амплитуда не фиксируется. В том же опыте (строка 5.1) на участке прямого соединения сталь — сталь появляются хорошо различимые волны.

плакирующий слой удалялся механической обработкой (шлифование), и полученная композиционная пластина металась на подложку из закаленной стали. В опыте 8 сначала медь М1 размером $0.5 \times 140 \times 450$ мм наваривали на сталь 30XГСА размером $3.0 \times 125 \times 403$ мм. При этом на стальную пластину поместили две стальные полоски размером $1.0 \times 24.5 \times 125 \text{ мм}$ для того, чтобы вырубить при сварке часть метаемой медной ленты и таким образом избежать необходимости удалять после сварки часть плакирующего слоя механической обработкой. В результате был получен биметалл, в котором в двух местах в виде поперечных полосок шириной ≈25 мм с расстоянием между ними 80 мм плакирующий медный слой отсутствует, как это показано на рис. 1. Затем

данный биметалл метался на брусок из стали 12X2H4A размером $27.5 \times 23 \times 290$ мм. Таким образом, в одном эксперименте были получены зоны соединения различных материалов и затем на шлифах наблюдались волны различных размеров на разных участках сварки. В табл. 2 толщина метаемой биметаллической пластины указана в виде суммы толщин основного и плакирующего слоев.

На рис. 2–4 показаны фотографии шлифов зоны сварки из опыта 8. Зона состоит из пяти участков, отсчитываемых от начала сварки: три участка соединения стали 30ХГСА со сталью 12Х2Н4А через медную прослойку и два участка соединения этих сталей напрямую в местах, где плакирующий слой отсутствовал. На первом участке медь — сталь вна-

Рис. 1. Вид снизу метаемой пластины из стали $30{\rm XFCA}$, плакированной медью М1 толщиной $0.5~{\rm mm}$

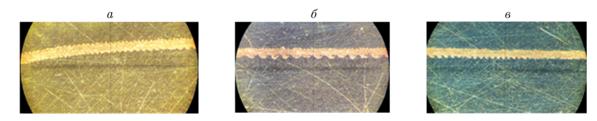


Рис. 2. Первый участок медь — сталь из опыта 8:

a — рост размеров волны на начальном этапе, б — участок установившейся волны, 6 — волна на этапе затухания перед переходом к участку сталь — сталь

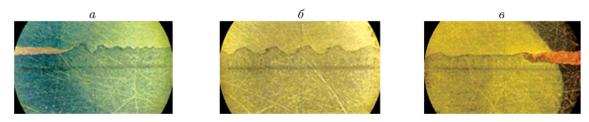
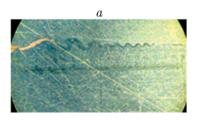
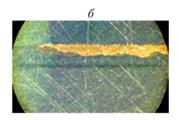


Рис. 3. Первый участок сталь — сталь из опыта 8:

a — резкое образование крупной волны у конца медной прослойки, δ — участок крупной волны, 6 — затухание волны перед переходом ко второму участку медь — сталь


чале возникают мелкие ($\lambda=0.16$ мм) волны (рис. 2,a), которые затем увеличиваются до $\lambda=0.46$ мм (рис. 2,6), потом уменьшаются снова до $\lambda=0.16$ мм и далее становятся неразличимы непосредственно перед переходом на участок сталь — сталь на расстоянии ≈ 3 мм от конца медной прослойки (рис. 2,6). Для волн с $\lambda=0.46$ мм двойная амплитуда равна $2a=0.14\div0.16$ мм. Длина переходного участка от зарождения волн до достижения устойчивого размера ($\lambda=0.46$ мм) составляет несколько миллиметров.


На первом участке сталь — сталь сразу у конца медной прослойки возникает крупная волна, которая быстро затухает (см. рис. 3,a). На некотором расстоянии граница ровная, затем волны снова возникают, длина волны ме-

няется в диапазоне $\lambda=0.50\div0.93$ мм (см. рис. 3.6), а двойная амплитуда достигает величины 2a=0.30 мм. Непосредственно перед следующим участком с медной прослойкой волны исчезают (рис. 3.6).

На втором участке медь — сталь вначале возникают крупные волны размером $\lambda=0.76\div0.92\,$ мм с амплитудой $2a=0.21\div0.28\,$ мм. Затем волны постепенно уменьшаются, достигают устойчивой длины $\lambda=0.51\,$ мм, а амплитуда равна $2a=0.18\div0.21\,$ мм. Перед вторым участком сталь — сталь волны снова уменьшаются до размера $\lambda=0.17\,$ мм, но не исчезают.

На втором участке сталь — сталь картина такая же, как и на первом. Размер волн нестабилен, за окончанием медной прослой-

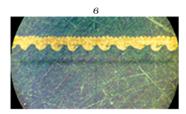


Рис. 4. Второй участок сталь — сталь (a) и третий участок медь — сталь из опыта 8 с развитием вначале крупных волн длиной $\lambda=0.76\div0.92$ мм (б) и далее волн установившегося размера $\lambda=0.46$ мм (6)

ки он составляет $\lambda=0.70$ мм, и далее волны спадают (рис. 4,a). На третьем участке медь — сталь вначале возникают крупные волны — $\lambda=0.76\div0.92$ мм и $2a=0.24\div0.28$ мм (рис. 4,6). Постепенно они уменьшаются, достигая устойчивых размеров — $\lambda=0.46$ мм и $2a=0.15\div0.20$ мм (рис. 4,6).

Все длины волн, измеренные на разных участках зоны сварки композита, полученного в опыте 8, приведены в табл. 2.

2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Представленные в табл. 1 и 2 экспериментальные данные дают возможность получить соотношения для прогнозирования размеров волн, генерируемых в зоне сварного шва. Для этого используем подход, опробованный в [1, 4] и основанный на модели Ландау [12], описывающей неустойчивость стационарного течения вязкой жидкости. В нашем случае, перейдя в систему координат точки контакта соударяющихся пластин, получаем, что скорость стационарного потока равна скорости точки контакта v_c , которая при сварке с параллельным расположением пластин равна скорости детонации заряда взрывчатого вещества. Следуя изложенным в [1] рассуждениям, будем считать, что металл ведет себя в окрестности точки контакта как вязкая несжимаемая жидкость. Тогда согласно [12] появление волн есть следствие неустойчивости течения в зоне соединения и оно (течение) описывается двумя безразмерными параметрами — числом Рейнольдса $R = \rho u l / \eta$ и числом Струхаля $S = u \tau / l$, здесь ρ и η — соответственно плотность и вязкость среды, l — характерный линейный размер, u — характерная скорость, τ — характерное время рассматриваемой задачи. Если возмущения в виде волн в жидкости возникают самопроизвольно, а не под влиянием внешней периодической силы, то, как показано в [12], S

будет некоей функцией R, т. е. S=S(R). Логично в качестве τ взять период связанных с волнами колебаний T, а в качестве u — скорость точки контакта v_c . Тогда для числа Струхаля получим выражение $S=v_c\cdot T/l$. Поскольку возмущения, возникающие в стационарном потоке, переносятся этим потоком, имеет место соотношение $v_cT=\lambda$. И далее получаем важное соотношение

$$\lambda = l \cdot S(R). \tag{1}$$

Что касается характерного размера l, то в [1] в качестве этого параметра фигурировала толщина кумулятивной струи $\delta_j = \delta_1 \sin^2(\gamma/2)$, возникающей при соударении метаемой пластины толщиной δ_1 с неподвижной пластиной толщиной δ_2 при условии $\delta_2 \gg \delta_1$. Чтобы не накладывать ограничения на соотношение толщин δ_1 и δ_2 , в отличие от [1] выберем теперь в качестве l размер зоны высокого давления в окрестности точки контакта:

$$l = \frac{2}{\pi} \sqrt{1 - \frac{v_c^2}{c^2}} \frac{2\delta_1 \delta_2}{\delta_1 + \delta_2} \sin^2\left(\frac{\gamma}{2}\right). \tag{2}$$

Эта формула теоретически получена в [13] для пластин из одинакового материала. Для разных материалов мы будем брать среднее значение скорости звука $c=(c_1+c_2)/2$, аналогично тому, как это принято для числа Рейнольдса R, где в качестве плотности и твердости берутся средние значения этих величин:

$$R = \frac{(\rho_1 + \rho_2)v_c^2}{2(HV_1 + HV_2)}.$$
 (3)

Хотя число, вычисляемое по формуле (3), правильнее называть числом Эйлера, в литературе по сварке взрывом принято называть его числом Рейнольдса [8], пояснения по этому поводу даны, в частности, в [1]. Если каким-либо

 ${
m Taf\pi u \, \mu a} \, \, 3$ Числа Рейнольдса и Струхаля и размер зоны высокого давления, вычисленные с использованием данных табл. 1, 2

Расчеты по данным табл. 1						Расчеты по данным табл. 2							
№ п/п	R	l, mm	$S = \lambda/l$	$S_{\max}(R)$	$S_{\min}(R)$	№ п/п	R	l, mm	$S = \lambda/l$	$S_{\max}(R)$	$S_{\min}(R)$		
1	19.55	0.0369	16.27	33.36	12.57	1	10.26	0.0235	16.19	26.30	5.79		
2	10.21	0.0646	15.47	26.26	5.75	2	10.73	0.0388	11.56	26.65	6.13		
3	9.07	0.0355	29.61	25.39	4.92	3	14.66	0.0506	10.63	29.64	9.00		
4	13.34	0.0315	16.85	28.64	8.04	4	13.73	0.0230	10.42	28.94	8.33		
5	19.55	0.0786	11.84	33.36	12.57	4.1	6.25	0.0261	21.50	23.25	2.86		
6	10.21	0.0554	14.45	26.26	5.75	5.1	24.04	0.0415	15.42	36.77	15.85		
7	10.21	0.0234	21.35	26.26	5.75	6	8.80	0.0599	7.18	25.19	4.73		
8	8.51	0.0517	13.53	24.96	4.51	6.1	7.77	0.0588	13.79	24.41	3.97		
9	24.68	0.0106	31.13	37.25	16.31	7	10.32	0.0498	9.23	26.34	5.83		
10	14.82	0.0277	12.99	29.76	9.12	7.1	7.18	0.0546	6.41	23.96	3.54		
11	9.71	0.0435	15.18	25.88	5.39	8	8.77	0.0056	21.59	25.16	4.70		
12	6.86	0.0626	12.95	23.72	3.31	8.1	17.02	0.0277	5.77	31.44	10.73		
13	5.39	0.0809	16.06	22.60	2.24	8.2	17.02	0.0277	16.59	31.44	10.73		
14	32.82	0.0109	43.94	43.45	22.26	8.3	17.02	0.0277	18.39	31.44	10.73		
15	32.82	0.0117	32.47	43.45	22.26	8.4	17.02	0.0277	27.41	31.44	10.73		
16	32.82	0.0121	27.19	43.45	22.26	8.5	17.02	0.0277	33.18	31.44	10.73		
17	32.82	0.0124	24.17	43.45	22.26	8.6	8.68	0.0334	14.97	25.10	4.64		
18	32.82	0.0126	23.80	43.45	22.26	8.7	8.68	0.0334	27.84	25.10	4.64		

Примечание. Номера строк соответствуют номерам строк в табл. 1 и 2; строка 5 в табл. 2, где в зоне соединения Al — сталь измерить размер волны не удалось, в данной таблице отсутствует. S — экспериментальные значения числа Струхаля, $S_{\rm max}$ и $S_{\rm min}$ — расчетные.

образом отыскать функцию S(R), то по уравнениям (1)–(3) можно будет рассчитать длину волны в каждом конкретном случае. Теоретически это сделать пока невозможно, но путем анализа приведенных в табл. 1, 2 экспериментальных данных удается разработать подход для прогнозирования размеров волн, как это описано ниже.

Прежде всего, отметим, что в одних и тех же условиях соударения могут генерироваться волны различных размеров. Так, в [1] обнаружено существование мелких и крупных волн и для них построены экспериментальные зависимости числа Струхаля от числа Рейнольдса:

$$S_{\min}(R) = 0.73R - 1.70,$$

 $S_{\max}(R) = 0.76R + 18.5.$ (4)

Дальнейшие исследования показали, что число размеров волн не ограничивается только двумя, возможно существование множества значений длины λ и амплитуды a, которые тем не менее укладываются в определенный диапазон между максимальными и минимальными значениями [7, 14]. В работах [1, 7, 14] в качестве характерного размера задачи взята толщина кумулятивной струи $\delta_j = \delta_1 \sin^2(\gamma/2)$, а по экспериментальному значению длины волны число Струхаля определялось как $S = \lambda/\delta_i$.

Проанализируем экспериментальные данные, полученные как авторами настоящей работы, так и другими исследователями. В табл. 3 приведены результаты расчетов числа Рейнольдса по формуле (3), размера зоны высокого давления по формуле (2), числа Стру-

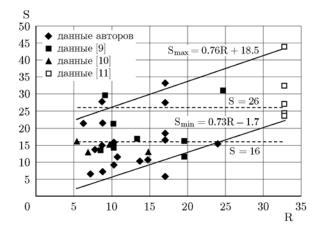


Рис. 5. Область возникающих при сварке взрывом волновых течений на плоскости S-R

халя по формуле (1) и числа Струхаля для крупных и мелких волн по формулам (4) с использованием экспериментальных данных из табл. 1 и 2. На рис. 5 представлена построенная по данным табл. 3 область волновых течений, возникающих в зоне соударения пластин при сварке взрывом. Нанесено 36 точек, соответствующих экспериментальным длинам волн. Сплошные прямые S_{max} и S_{min} построены по формулам (4), штриховые линии S=26 и S=16 соответствуют приведенному выше классическому соотношению $\lambda=(16\div26)\delta_j=(16\div26)\delta_1\sin^2(\gamma/2)$ из [8].

Видно, что подавляющее большинство экспериментальных точек лежит в области $S_{\min}(R) \leqslant S \leqslant S_{\max}(R)$ либо за пределами этой области, но вблизи прямых $S_{min}(R)$ и $S_{max}(R)$. Фактически только четыре точки «выпадают» из обозначенной области: три находятся выше прямой $S_{max}(R)$ и относятся к строкам 3, 8.5 и 8.7, а одна — ниже прямой $S_{min}(R)$ и относится к строке 8.1 (см. табл. 3). На наш взгляд, точки выше прямой $S_{max}(R)$ соответствуют неустойчивым волновым течениям с крупными волнами, которые возникают сразу после жесткого возбуждения колебаний. В нашем случае жесткое возбуждение связано с наличием ступенек на поверхности метаемой пластины в местах, где удален плакирующий слой. Точка же ниже прямой $S_{\min}(R)$ соответствует неустойчивому волновому течению с мелкими волнами, вызванному слабым начальным возбуждением колебаний, как это обычно бывает при сварке взрывом, если нет никаких источников жесткого возбуждения (ступенек на пластинах, проволочек в зазоре, как это делалось в [4], и т. д.).

Можно предположить, что неустойчивые крупные и мелкие волны со временем переходят в устойчивые волны с постоянной длиной и амплитудой, попадающие на диаграмме S-R в область $S_{min}(R) \leqslant S \leqslant S_{max}(R)$.

Таким образом, используя диаграмму S–R, мы можем указать диапазон «разрешенных» длин волн, возникающих при косом соударении пластин, $\lambda_{\min} \leqslant \lambda \leqslant \lambda_{\max}$, где

$$\lambda_{\min} = \frac{2}{\pi} \times$$

$$\times \sqrt{1 - \frac{v_c^2}{c^2} \frac{\delta_1 \delta_2}{\delta_1 + \delta_2}} \sin^2 \left(\frac{\gamma}{2}\right) (0.73R - 1.70), (5)$$

$$\lambda_{\max} = \frac{2}{\pi} \times$$

$$\times \sqrt{1 - \frac{v_c^2}{c^2}} \frac{\delta_1 \delta_2}{\delta_1 + \delta_2} \sin^2\left(\frac{\gamma}{2}\right) (0.76R + 18.5).$$
 (6)

Здесь в качестве скорости звука используется среднее значение скоростей звука соударяющихся пластин, $c=(c_1+c_2)/2$, а число Рейнольдса R вычисляется по формуле (3). Данные формулы включают в себя не только геометрические параметры соударения $(\delta_1, \delta_2, \gamma)$, но и скорость точки контакта (v_c) и механические свойства материалов соударяющихся пластин $(c_1, c_2, \rho_1, \rho_2, \text{HV}_1, \text{HV}_2)$.

Отметим, что в [9] были предложены формулы для длины волны, учитывающие плотность и скорость звука материалов пластин, но прочность материалов в них отсутствовала.

В настоящей работе мы не коснулись вопроса об амплитуде волн. На основании наших опытов можно утверждать, что соотношение $a/\lambda=0.14\div0.30$ из [8] удовлетворительно описывает диапазон амплитуд, когда плотности и прочности соударяющихся пластин близки, но, когда эти параметры существенно различаются, имеются расхождения с экспериментом. В связи с этим в [7, 14] предложена эмпирическая формула

$$a/\lambda = (0.14 \div 0.30)(\rho_{\min}/\rho_{\max})^{2.6},$$
 (7)

где ρ_{\min} и ρ_{\max} — соответственно меньшая и бо́льшая плотности соударяющихся пластин. Однако для более серьезного обоснования и, возможно, уточнения этой формулы требуются дополнительные исследования.

ЗАКЛЮЧЕНИЕ

На основе анализа экспериментальных данных показано, что в одних и тех же условиях соударения пластин при сварке взрывом могут возникать волны различных размеров; их длина укладывается в диапазон между минимальным и максимальным значениями. Эти значения зависят от толщины соударяющихся пластин, угла соударения, скорости точки контакта, а также от плотности, скорости звука и прочности материалов пластин. С использованием модели Ландау, описывающей нестабильность стационарного течения вязкой жидкости, получены полуэмпирические соотношения для расчета минимальной и максимальной длин волн. На плоскости число Струхаля число Рейнольдса построена область существования устойчивых волновых течений, возникающих в зоне соединения при сварке взрывом.

ЛИТЕРАТУРА

- 1. Злобин Б. С., Киселев В. В., Штерцер А. А., Пластинин А. В. Использование эмульсионных взрывчатых веществ в экспериментальных исследованиях течений в зоне соединения при сварке взрывом // Физика горения и взрыва. 2018. Т. 54, № 2. С. 114—121. DOI: 10.15372/FGV20180212.
- 2. Allen W. A., Mapes J. M., Wilson W. G. An effect produced by oblique impact of a cylinder on a thin target // J. Appl. Phys. 1954. V. 25, iss. 5. P. 675–676. DOI: https://doi.org/10.1063/1.1721710.
- 3. Cowan G. R., Holtzman A. H. Flow configuration in colliding plates: explosive bonding // J. Appl. Phys. 1963. V. 34, iss. 4. P. 928–939. DOI: https://doi.org/10.1063/1.1729565.
- 4. Пай В. В., Лукьянов Я. Л., Кузьмин Г. Е., Яковлев И. В. Волнообразование при высокоскоростном симметричном соударении металлических пластин // Физика горения и взрыва. 2006. Т. 42, № 5. С. 132–137.

- Киселев С. П. Численное моделирование методом молекулярной динамики образования волн при косом соударении пластин // ПМТФ. — 2012. — Т. 53, № 6. — С. 121–133.
- 6. **Яковлев И. В., Пай В. В.** Сварка металлов взрывом. Новосибирск: Изд-во СО РАН, 2013.
- 7. Zlobin B. S., Kiselev V. V., Shtertser A. A., Plastinin A. V. The peculiarities of wave formation at explosive welding via thin interlayer // Proc. 14th Int. Symp. on Explosive Production of New Materials: Science, Technology, Business, and Innovations (EPNM-2018). Saint Petersburg, Russia, May 14–18, 2018 / M. I. Alymov, O. A. Golosova (Eds). Moscow: Torus Press, 2018. P. 311–314. DOI: 10.30826/EPNM18-107.
- 8. **Дерибас А. А.** Физика упрочнения и сварки взрывом. 2-е изд., доп. и перераб. Новосибирск: Наука, 1980.
- 9. Hampel H., Richter U. Formation of interface wave in dependence of the explosive welding parameters // Proc. II Meeting on Explosive Working of Materials (EWM), Novosibirsk, Russia, Sept. 8–10, 1981. Novosibirsk: Inst. of Hydrodynamics, 1982. P. 251–263.
- 10. Bahrani A. S., Black T. J., Crossland B. The mechanics of wave formation in explosive welding // Proc. Roy. Soc. London A. 1967. V. 296. P. 123–136. DOI: 10.1098/rspa.1967.0010.
- 11. Чувичилов В. А., Кузьмин С. В., Лысак В. И., Долгий Ю. Г., Кокорин А. В. Исследование структуры и свойств композиционных материалов, полученных по батарейной схеме сварки взрывом // Изв. ВолгГТУ. 2010. № 5 (65). С. 34–43.
- 12. **Ландау Л. Д., Лифшиц Е. М.** Теоретическая физика: учеб. пособие. В 10 т. Т. VI: Гидродинамика. 4-е изд., стер. М.: Наука, 1988.
- 13. Годунов С. К., Дерибас А. А., Козин **H.** С. Волнообразование при сварке взрывом // ПМТФ. 1971. Т. 12, № 3. С. 63–72.
- 14. Zlobin B. S., Kiselev V. V., Shtertser A. A., Plastinin A. V. The peculiarities of wave formation at explosive welding via thin interlayer // Adv. Mater. Technol. 2018. Iss. 3. P. 22–25. DOI: 10.17277/amt.2018.03.pp.022-025.

Поступила в редакцию 26.10.2018. Принята к публикации 20.02.2019.