НЕКОТОРЫЕ ХАРАКТЕРИСТИКИ СПИНОВОГО ОЧАГА ГОРЕНИЯ И ПРОЦЕССОВ, ПРОИСХОДЯЩИХ В НЕМ

А. К. Филоненко

Институт структурной макрокинетики РАН, 142432 Черноголовка

Исследованы прессованные из порошка титана образцы, сгоревшие в атмосфере азота. Обнаружены каналы под поверхностью образцов, сгоревших в спиновом режиме. Проведена оценка размера спинового очага горения и определено влияние давления азота в диапазоне 100÷1800 Торр на размер очага. Получены данные по степени азотирования металла и фазовому составу слоя, где проходил спиновый очаг, и других слоев образца в зависимости от их расстояния от поверхности.

Для спинового режима горения характерен очаг химической реакции, имеющий вид ярко светящегося пятна, которое движется вдоль прогретого слоя еще не сгоревшего вещества. В случае горения цилиндрического образца с торца такой очаг движется по образующей цилиндра вдоль оси образца по спирали. Как показали наблюдения, направление движения очага (вправо, влево) произвольно. Очаг может быть несколько, движущихся друг за другом или навстречу [1, 2].

После того как спиновый режим горения был обнаружен [1], основное внимание исследователей обращалось на особенности существования спинового горения, его динамические характеристики (скорость движения очага U_{cp}, частота спинового горения v, шаг спина $S = U/v$), на связь средней скорости горения U со спиновой U_{cp} и на выявление параметров, влияющих на эти характеристики. Каких-либо данных о самом очаге в настоящее время практически нет.

В данной работе получены косвенные свидетельства об очаге спинового горения при исследовании образцов, сгоревших в спиновом режиме. Рассматриваются цилиндрические образцы диаметром 10 мм, прессованные из порошка титана до плотности $\rho = 2$ г/см3, сгоревшие в атмосфере азота. По внешнему виду образцы, сгоревшие в спиновом или стационарном режиме, практически не отличаются. На образцах, сгоревших в спиновом режиме, иногда можно наблюдать с трудом различимую более темную полоску — след от прохождения очага спинового горения. Этот след как бы нарисован на гладкой поверхности образца. (Это не касается термических систем, при спиновом горении которых наблюдалось изменение рельефа поверхности [3]). Оказалось, что внутренние слои образца, сгоревшего в спиновом режиме, претерпевают существенные изменения. На рис. 1 показан внешний вид спиновых образцов в спиновом режиме после механической очистки от более рыхлого наружного слоя. Для сравнения приведен необработанный образец. Образцы 1 и 8 сгорели в пограничных областях: соответственно вблизи области, где горение невозможно, и вблизи области, где горение стационарное [4]. Первый, начав гореть в спиновом режиме, погас. Его нижняя часть не горела и при механической обработке рассыпалась. Борозды, наблюдаемые на образцах, сгоревших при более низких давлениях (см. рис. 1, 1–4), имеют хорошо сформированный спиралеобразный вид. При повышении давления они вырождаются в рифленую поверхность с обрывистыми, не делающими полного оборота витками (см. рис. 1, 5–8), что соответствует наблюдаемому многоочаговому хаотичному спиновому режиму, который при еще большем давлении переходит в стационарный.

Проведено сравнение шагов спина, измеренного на сгоревшем образце (расстояние между ближайшими витками, S_w) и полученного из фоторегистрограмм процесса (S_f). Эти данные при разных давлениях азота приведены на рис. 2, где помимо значений S_f, полученных в настоящей работе, нанесены значения S_w из работ [4, 5]. Из рисунка видно, что значения S_w и S_f при $p \leq 800$ Торр совпадают. Поэтому можно утверждать, что по крайней мере в этом диапазоне давлений именно очаг спинового горения, из визуального наблюдения кото-
Рис. 1. Фотографии сгоревших в спиновом режиме образцов после обработки (1–8):

\[p = 100 \ (1), \ 150 \ (2), \ 200 \ (3), \ 400 \ (4), \ 600 \ (5), \ 800 \ (6), \ 1000 \ (7), \ 1800 \ \text{Torr} \ (8), \ 9 — \ \text{необработанный образец, сгоревший в спиновом режиме}

рого получена величина \(S_n \), вызывает структурные изменения поверхности образца в виде витков с шагом \(S_n \).

Зная путь прохождения очага по поверхности, можно провести дополнительное исследование сгоревшего образца. На рис. 3 схематично представлен разрез сгоревшего образца радиусом \(r \). В его механической структуре различаются следующие образования, условно названные слоями \(A, B, V, G \). Слои \(A \) — легко отделяемый наружный слой сгоревшего порошка, после снятия которого образец имеет вид, представленный на рис. 1 (1–8). Слой \(B \) — «наземка» из спеченного сгоревшего порошка, находящаяся под поверхностью на расстоянии \(d_1 - d_2 \), где \(d_1 \) — глубина проникновения спинообразного очага горения в образец, \(d_2 \) — толщина слоя. Несмотря на идентичность структур \(A \) и \(B \) по параметру \(S_n \), очаг спина проходит вероятно, в слое \(A \) поскольку он более открыто проникновение азота извне при поверхностном горении. Слой \(V \) находится под «наземкой» и кончается там, где желтый цвет сгоревшего порошка становится серым. Слой \(G \) — серый слой порошка, примыкающий к оси образца.

Размер очага спинообразного горения характеризуется шириной шага \(S_n \) и глубиной проникновения в образец \(d_1 \). Из рис. 2 видно, что обе величины уменьшаются с ростом давления. Что касается зависимости \(S_n(p) \), то её характер соответствует выражению \(S = a/U [6] \), где \(a \) — температуропроводность металла, а значение \(U \), как известно, с ростом давления увеличивается [5]. Вероятно, и глубина проникновения очага в образец пропорциональна ширине прогретого слоя, образующего очаг, движущегося по поверхности со скоростью \(U_{кр} \), и подчиняется той же закономерности: \(d_1 \sim a/U_{кр} \), где \(U_{кр} = 2\pi r/v \). Так как частота спинообразного горения \(v \) при увеличении давления растет [5], значение \(d_1 \) уменьшается.

Таким образом, давление газового компонента (азота) влияет на размер спинообразного очага горения опосредовано, через скорость горения. При непосредственном влиянии давления на размеры очага, очевидно, эффект был бы противоположным, так как с ростом давления усилилась бы фильтрация газа сквозь поры и
Рис. 2. Зависимость характерных размеров спи-нового очага горения от давления азота:
1 — ширина, измеренная на сторожевых образцах (\(S_h, \times\)) и полученная из фотопрограмм (\(S_p, \circ\)); 2 — глубина проникновения спинового очага горения в образец \((d_1)\); 3 — толщина слоя \(B\) \((d_2)\)

увеличилась бы глубина проникновения очага горения в образец.

Возвращаясь к данным, представленным на рис. 2, и делая некоторые предположения, можно объяснить значительное (примерно в два раза) уменьшение значений \(S_h\) и \(S_p\) при \(p > 800\) Торр. Такое возможно, если на этом участке возникает двухочаговый (двух- головоий) спин, фиксируемый как дополнительный из-за ограниченной возможности методики или сложности и строения двухочагового спина. (Например, два сходящихся или расходящихся очага, движущиеся в противоположных направлениях, воспринимаются как один при фоторегистрации [7] с одной стороны образца, обращенной к прибору). В этом случае фиксируемая частота спина \(\nu_f\) в два раза меньше истинной \(\nu_n\) \((\nu_f = \nu_n/2)\), а следовательно, и \(S_h = U/\nu_f = 2U/\nu_n = 2S_n\).

Многоголовый спин наблюдался ранее, например в [1], в виде нескольких очагов горения движущихся в одном или разных направлениях. Возможность появления многоголового спина и в связи с этим кратное увеличение его частоты теоретически рассмотрены в работах [6, 8]. Однако подробно эти вопросы не исследовалась, и предыдущие рассуждения об образовании двухочагового спина всего лишь гипотеза.

Представляет интерес сравнение интенсивности процесса горения в слое, где прошел спиновый очаг (см. рис. 3, слой А), и в соседних слоях образца. Показателем интенсивности может служить степень азотирования металла в спироцвем образце. В таблице приведены данные химического анализа содержания азота в слоях образца радиусом \(r = 5,1\) мм при давлении азота \(p = 400\) Торр.

Как видно из таблицы, массовое содержание азота в образце по мере удаления от поверхности уменьшается и даже на поверхности не достигает максимально возможного (22,6%, в расчете на образование стехиометрического нитрида титана). Содержание азота в слое Б, фиксирующем границу между витками спи-нового очага, практически такое же, как и в слое А, где очаг прошел. (Небольшая разница в содержании азота в слоях А и Б близка к методической ошибке применяемого метода химического анализа). Вероятно, это связано с тем, что слой Б, хотя и состоит из участков, разграниченных спиновыми очагами, подвергается прогреву и азотированию дважды: предыдущим и последующим виткам спина. Во всех слоях содержится непрореагированный титан: от 20 до 65% по мере приближения к оси образца. Рентгеновский анализ слоев А — Г показал, что

<table>
<thead>
<tr>
<th>Слой</th>
<th>Азот, %</th>
<th>Толщина слоя, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>А</td>
<td>16</td>
<td>0,4</td>
</tr>
<tr>
<td>Б</td>
<td>17</td>
<td>0,2</td>
</tr>
<tr>
<td>В</td>
<td>10</td>
<td>1,0</td>
</tr>
<tr>
<td>Г</td>
<td>6</td>
<td>3,5</td>
</tr>
</tbody>
</table>
они состоят из титана и нитрида титана.

ВЫВОДЫ

1. Выявлены механические изменения поверхностного слоя горевшего вещества, являющиеся следствием прохождения спинового очага горения.
2. Дана оценка размера спинового очага горения и влияния на него давления азота.
3. Проведено сравнение интенсивности процессов горения в спиновом очаге и окружающих его слоях по степени азотирования металла.

Благодарю сотрудников лабораторий химического и рентгенографического анализа за помощь в работе.

Работа выполнена при поддержке МНЦ (код проекта 355).

ЛИТЕРАТУРА

2. Филоненко А. К., Вершинников В. И. Закономерности спинового горения титана в азоте // Физика горения и взрыва. 1975. Т. 11, № 3. С. 353.
4. Филоненко А. К. Влияние плотности на пределы и закономерности спинового горения титана в азоте // Физика горения и взрыва. 1996. Т. 32, № 1. С. 53.
8. Новожилов Б. В. Двумерное приближение в теории поверхностного спинового горения // Докл. РАН. 1995. Т. 341, № 1. С. 69.

Поступила в редакцию 28/II 1997 г.