УДК 620.179.1 DOI: 10.15372/PMTF202315288

УЛЬТРАЗВУКОВЫЕ И МЕТАЛЛОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ ЗОНЫ ТЕРМИЧЕСКОГО ВЛИЯНИЯ СВАРНОГО СОЕДИНЕНИЯ ИЗ УГЛЕРОДИСТОЙ СТАЛИ ПРИ ПЛАСТИЧЕСКОМ ДЕФОРМИРОВАНИИ И УСТАЛОСТИ

А. В. Гончар, А. А. Соловьев

Институт проблем машиностроения РАН — филиал Федерального исследовательского центра "Институт прикладной физики им. А. В. Гапонова-Грехова РАН", Нижний Новгород, Россия E-mails: avg-ndt@mail.ru, alexteory@yandex.ru

С использованием металлографического и ультразвукового эхо-импульсного методов проведены исследования процесса разрушения стали марки СтЗсп при одноосном растяжении и усталости. Образцы вырезались из сварного соединения, а именно из зоны основного металла и участка неполной перекристаллизации в зоне термического влияния. Проведен сравнительный анализ эволюции грубых полос скольжения в зоне термического влияния и в основном металле. Установлена связь коэффициента Пуассона, определяемого ультразвуковым методом, с механическими характеристиками материала. Предложены способы оценки ресурса пластичности при одноосном растяжении и числа циклов до разрушения при усталости.

Ключевые слова: зона термического влияния, ультразвуковой контроль, микроструктура, усталость, одноосное растяжение, сталь, коэффициент Пуассона

Введение. В металлических конструкциях большое количество неразъемных соединений выполнены с помощью сварки. Особенностью материала сварных соединений является сильная структурная неоднородность в зоне термического влияния (ЗТВ) (зоне неполного расплавления, перегрева, нормализации, неполной перекристаллизации, рекристаллизации). При этом наблюдается градиент упругих, прочностных и пластических характеристик материала. Так, при нагреве свариваемого материала до температуры 725 ÷ 900 °С формируется участок неполной перекристаллизации, который характеризуется наличием мелких перекристаллизовавшихся зерен феррита и перлита наряду с крупными зернами феррита, не прошедшими перекристаллизацию вследствие недостатка теплоты, полученной металлом при нагреве. Неравномерное кристаллическое строение вызывает ухудшение механических свойств этого участка. Таким образом, участок неполной перекристаллизации в ЗТВ является уязвимой зоной сварных конструкций, в которой возможно образование трещин и последующее разрушение изделия. Поэтому в процессе эксплуатации сварных изделий и конструкций необходимо проводить оценку состояния материала на различных участках ЗТВ.

Работа выполнена при финансовой поддержке Российского научного фонда (код проекта 21-79-10395). (с) Гончар А. В., Соловьев А. А., 2023

Для оценки влияния процесса разрушения на упругие и акустические характеристики в объеме материала широко применяются методы, основанные на использовании объемных ультразвуковых волн, в частности простой, надежный и учитывающий структуру материала ультразвуковой эхо-импульсный метод, позволяющий контролировать состояние материала [1-6]. Например, в работе [7] описан процесс измерения методом автоциркуляции скорости распространения ультразвука в стальных образцах при их растяжении в области малых пластических деформаций и предложен неразрушающий метод определения временного сопротивления отрыву. В работе [3] с использованием ультразвукового метода проведено исследование эволюции анизотропии в стальных листах ASTM A-36 и получены зависимости изменения коэффициента Пуассона и параметра акустической анизотропии от степени деформации и рекристаллизационной термообработки. В [8, 9] ультразвуковым методом изучена неоднородность распределения одноосных напряжений сжатия или растяжения в конструкциях большой протяженности, обусловленная, в частности, неоднородностью структуры металла, и предложены способы диагностирования предкритического состояния железнодорожных рельсовых плетей. Существует множество других работ, подтверждающих, что при определенных условиях акустические характеристики могут быть использованы для описания физических процессов, происходящих в материале.

Для мониторинга повреждений поверхности целесообразно использовать металлографический метод, позволяющий непосредственно наблюдать за изменениями микроструктуры, которые можно оценить количественно, применяя цифровую обработку изображений микроструктуры [10–16]. Например, метод фрактального анализа используется при исследовании коллективной эволюции поверхностных трещин при усталости [14]. В работе [15] нейронная сеть с глубоким обучением была применена для прогнозирования влияния микроструктуры на механические свойства высокопрочной стали. В [16] метод контролируемого машинного обучения использовался для определения механических свойств многофазных материалов на основе изображений микроструктуры.

Целью данной работы является исследование эволюции микроструктуры на поверхности и изменения акустических и упругих свойств в объеме материала в зоне основного металла и ЗТВ сварного соединения из углеродистой стали в процессе пластического деформирования при одноосном растяжении и усталости.

1. Материалы и методика исследований. Для исследования были использованы образцы из стали марки СтЗсп, применяемой для изготовления несущих элементов сварных конструкций и деталей, работающих при переменных нагрузках. Исследуемый материал имел следующий химический состав: Fe — 98,71 %, C — 0,16 %, Cr — 0,11 %, Si — 0,21 %, Mn — 0,56 %, Ni — 0,08 %, S — 0,01 %, P — 0,04 %, Cu — 0,08 %, As — 0,04 %. Механические характеристики стали марки СтЗсп приведены в таблице.

Для получения образцов, испытываемых на усталость в режиме растяжения-сжатия, а также на ступенчатое одноосное растяжение, были изготовлены сварные соединения двух полос квадратного сечения размером 30×30 мм. Сварной шов выполнен за несколько проходов методом ручной дуговой сварки в соответствии с ГОСТ 5264-80 (рис. 1,*a*). Образцы для всех видов нагружений были вырезаны вдоль сварного соединения на различных расстояниях от зоны сплавления. Образцы вырезались в зоне неполной перекристаллизации, а также в зоне основного материала (рис. 1,*б*).

· · ·	•		
Зона материала	$\sigma_{\tau}, M\Pi a$	$ σ_{\rm B}, M\Pi a $	$\delta, \%$
Основной металл	226	404	25
Участок неполной перекристаллизации	209	387	23

Механические характеристики стали марки Ст3сп

Рис. 1. Внешний вид сварного соединения (a) и схема изготовления образцов (b): 1 — рабочие зоны образцов, 2 — участки, на которых вырезались образцы, 3 — ЗТВ

При проведении механических испытаний использовались образцы с круглым сечением типа II диаметром 12 мм (ГОСТ 25.502-79). На каждом образце были выточены две плоские, параллельные друг другу площадки размером 4 × 21 мм, которые служили рабочей зоной. На одну площадку устанавливались пьезоэлектрические преобразователи для проведения ультразвуковых измерений, на противоположной площадке вытачивался микрошлиф и проводились металлографические исследования.

Одноосное растяжение проводилось поэтапно, величина пластической деформации на каждом этапе составляла приблизительно 4 %, скорость деформации — 10^{-3} 1/с. Величина деформации и ее скорость контролировались с помощью экстензометра BISS AC-07-1025.

В ходе испытаний на усталость образцы подвергались регулярному жесткому нагружению с частотой 1 Гц, при котором задавалась амплитуда деформаций в цикле ε_{α} . Коэффициент асимметрии цикла равен R = -1. Образцы были испытаны при амплитуде деформаций цикла, равной 0,3 %, что соответствовало области малоцикловой усталости. Для образца, вырезанного в зоне основного металла, циклическая долговечность N_f составила 3300 циклов, для образца, вырезанного в ЗТВ, — 6500 циклов. Усталостные испытания каждого образца проводились поэтапно с шагом 500 ÷ 1000 циклов. Амплитуда деформации в цикле и частота нагружения контролировались с помощью экстензометра BISS AC-07-1005.

Механические испытания проводились с помощью сервогидравлической испытательной машины BISS Nano UT-01-0025 (рис. 2).

До начала механических испытаний рабочая зона образцов делилась на три участка, на которых проводились измерения. После каждого этапа растяжения образец вынимался из испытательной машины, в свободном от нагрузки состоянии выполнялись ультразвуковые измерения и металлографические исследования, затем образец вновь помещался в испытательную машину и подвергался следующему этапу пластического деформирования. Этапы растяжения для каждого образца повторялись до тех пор, пока не образовывалась шейка. Эксперимент проводился при комнатной температуре.

Во всех испытаниях ультразвуковые измерения выполнялись с помощью специально разработанной установки (рис. 3). Эхо-импульсным методом измерялось время прохождения продольной и поперечных упругих волн по толщине образцов.

В качестве генератора электрических импульсов использовался ультразвуковой дефектоскоп AKC A1212 MASTER. Для возбуждения и приема сдвиговых и продольных волн применялись широкополосные пьезоэлектрические преобразователи Olympus V157

Рис. 2. Образец (1) в захватах испытательной машины с установленным экстензометром (2)

Рис. 3. Схема ультразвуковой установки:

1 — генератор электрических импульсов, 2 —
пьезоэлектрический преобразователь, 3 — образец для испытаний, 4 — синхроимпульсы, 5 — цифровой осци
ллограф, 6 — компьютер

и V1091 (диаметр 3 мм, центральная частота 5 МГц) соответственно. Для сохранения амплитудно-временной диаграммы в компьютере и ее обработки использовались цифровой осциллограф LA-n1USB и программное обеспечение ADCLab. Частота дискретизации составляла 1 ГГц, разрешение по времени — 1 нс.

Время прохождения двух сдвиговых волн, поляризованных во взаимно перпендикулярных направлениях вдоль (τ_{zx}) и поперек (τ_{zy}) оси растяжения, а также время распространения продольной волны τ_{zz} измерялись в интервале между вторым и третьим эхо-импульсами. В качестве синфазных точек в импульсах принимались точки перехода через нуль. На каждом участке измерения повторялись пять раз, затем их результаты осреднялись. Абсолютная погрешность измерения времени распространения сдвиговых и продольных волн не превышала 1 нс.

Для элементов конструкций, измерение толщины которых затруднено, целесообразно использовать параметры, выражающиеся через соотношение времен прохождения поперечных и продольных волн, так как в этом случае не требуется измерять длину акустического пути. Для ортотропных материалов, из которых изготавливаются катаные листы, уголки, швеллеры и другие изделия проката, такими параметрами являются коэффициенты Пуассона ν_{zx} и ν_{zy} (измеренные в двух поперечных направлениях), определяемые выражениями [17]

$$\nu_{zx} = \frac{0.5 - (\tau_{zz}/\tau_{zx})^2}{1 - (\tau_{zz}/\tau_{zx})^2}, \qquad \nu_{zy} = \frac{0.5 - (\tau_{zz}/\tau_{zy})^2}{1 - (\tau_{zz}/\tau_{zy})^2},\tag{1}$$

где τ_{zi} , τ_{zz} — время распространения поперечных упругих и продольной упругой волн; индекс z соответствует направлению распространения, i = x, y — направлению поляризации.

Для проведения дальнейшего анализа полученные значения ν_{zx} и ν_{zy} были осреднены по следующей формуле:

$$\nu = (\nu_{zx} + \nu_{zy})/2.$$
(2)

Изменение параметра $\Delta \nu$ рассчитывалось как разность его текущего и исходного значений. При определении коэффициента Пуассона абсолютная погрешность не превышала $5 \cdot 10^{-4}$.

Рис. 4. Эволюция микроструктуры на поверхности образцов при пластическом деформировании:

а, б — зона основного металла (а — в исходном состоянии, б — после разрушения),

е, г — ЗТВ (е — в исходном состоянии, г — после разрушения)

Во всех испытаниях исследование микроструктуры стали марки Ст3сп проводилось на металлографическом оптическом микроскопе Altami MET 3M. Предварительно полированная поверхность образцов протравливалась 4 %-м раствором азотной кислоты (HNO₃). Анализ микроструктуры проводился в программном пакете металлографического анализа MICROKON MET 5.9. Размер зерна определялся методом измерения длин хорд в соответствии с ГОСТ 5639-82, содержание ферритной фазы определялось по ГОСТ 11878-66.

2. Результаты исследований и их обсуждение. Основной металл имеет однородную ферритно-перлитную структуру (рис. 4,a; 5,a). Средний размер зерна равен 30 мкм, а соотношение феррита и перлита — 9 : 1. Микроструктура участка неполной перекристаллизации, показанная на рис. $4, \epsilon; 5, \epsilon$, неоднородна и представляет собой смесь крупных зерен и скоплений рекристаллизованных мелких зерен. В процессе усталостных испытаний, а также испытаний на одноосное растяжение микроструктурные изменения сопровождаются появлением и развитием грубых полос скольжения (ГПС). В процессе испытания в зернах феррита число ГПС и их размеры увеличиваются, при этом некоторые полосы сливаются (рис. $4, \delta, z; 5, \delta, c$).

Анализ микроструктуры показал, что полосы скольжения ориентированы преимущественно поперек оси нагружения. Аналогичное явление наблюдалось ранее при циклическом нагружении образцов из малоуглеродистой стали [18] и при пластическом деформировании образцов из железа [19]. Следует отметить, что в ЗТВ ГПС развиваются более активно, чем в зоне основного металла. Этот факт можно объяснить большей подвижностью дислокаций на участке, который был подвергнут термическому воздействию. При

Рис. 5. Эволюция микроструктуры на поверхности образцов при усталости: *a*, *б* — зона основного металла (*a* — в исходном состоянии, *б* — после разрушения), *e*, *c* — ЗТВ (*e* — в исходном состоянии, *c* — после разрушения)

пластической деформации энергия расходуется не только на накопление микродефектов, но и на формирование текстуры деформации [4, 6], т. е. происходят стесненный поворот и фрагментация зерен. При испытаниях на усталость накопленная пластическая деформация, величина которой достигает 1000 %, локализуется в ГПС. Вдоль ГПС, представляюцих собой экструзии, образуются интрузии — микротрещины, что приводит к появлению трещин на поверхности и в приповерхностном слое, толщина которого приближенно равна двум размерам зерна. Накопление микродефектов в материале приводит к изменению его упругих характеристик и, соответственно, акустических параметров.

В результате ультразвуковых исследований при одноосном растяжении установлено, что с ростом величины пластической деформации происходит увеличение коэффициента Пуассона (рис. 6). В ЗТВ на начальном этапе деформирования происходит незначительное уменьшение коэффициента Пуассона, что обусловлено, по-видимому, релаксацией остаточных сварочных напряжений. Дальнейшее растяжение приводит к монотонному увеличению коэффициента Пуассона по линейному закону как в ЗТВ, так и в зоне основного металла. Величина изменения коэффициента Пуассона в ЗТВ больше, чем в зоне основного металла.

Величину изменения коэффициента Пуассона на линейном участке можно использовать для оценки ресурса пластичности материала (рис. 7,a):

$$\varepsilon/\varepsilon_f = k_{\varepsilon}\Delta\nu$$

 $(\varepsilon_f$ — относительное удлинение; в зоне основного материала $k_{\varepsilon} = 233$, в ЗТВ $k_{\varepsilon} = 153$).

В результате усталостных испытаний при одноосном растяжении-сжатии установлено, что с увеличением числа циклов нагружения коэффициент Пуассона монотонно умень-

б

Рис. 6. Зависимость коэффициента Пуассона от величины пластической деформации: 1 — зона основного металла, 2 — ЗТВ; линии — аппроксимация экспериментальных данных

Рис. 7. Зависимости коэффициента Пуассона от ресурса пластичности (a) и числа циклов до разрушения при усталости (b):

1 — зона основного металла, 2 — ЗТВ; линии — аппроксимация экспериментальных данных

шается (рис. 7,6). Величины изменения коэффициента Пуассона при усталости в зоне основного металла и в ЗТВ различаются несущественно, поэтому связь $\Delta \nu$ и N/N_f можно аппроксимировать единой линейной зависимостью.

Решая обратную задачу, можно рассчитать поврежденность при усталости, определяемую как относительное число циклов до разрушения, по формуле

$$N/N_f = k_N \Delta \nu$$
,

где N_f — циклическая долговечность; $k_N = 407$.

Как правило, увеличение концентрации микродефектов в материале приводит к уменьшению коэффициента Пуассона [20]. При усталости и симметричном цикле нагружения существенного изменения текстуры и геометрии образца не происходит. Процесс усталостного разрушения сопровождается движением дислокаций и эволюцией микродефектов на разных уровнях. Это приводит к уменьшению коэффициента Пуассона при усталости.

При пластическом деформировании происходит существенное изменение кристаллографической текстуры, влияние которого, по-видимому, больше влияния процесса накопления микродефектов. Изменение кристаллографической текстуры оказывает значительное влияние на скорости распространения продольной и поперечных упругих волн, что приводит к увеличению коэффициента Пуассона, определяемого акустическим методом. Максимальное изменение коэффициента Пуассона при пластическом деформировании составило 0,0043, что почти в два раза больше, чем при усталости ($\Delta \nu = 0,0025$). Таким образом, при пластическом деформировании коэффициент Пуассона изменяется более существенно, чем при усталости.

По данным ультразвуковых измерений можно оценить ресурс пластичности при одноосном растяжении и число циклов до разрушения при усталости. Учитывая неоднородность структуры конструкционных сталей и сплавов и, соответственно, неоднородность акустических характеристик, для реализации предлагаемых подходов на практике необходимо проводить ультразвуковые измерения в одном и том же объеме материала, т. е. устанавливать датчики в одну и ту же точку на поверхности элемента конструкции в течение всего времени его эксплуатации.

Заключение. Проведенное исследование эволюции микроструктуры показало, что в ЗТВ ГПС развиваются более активно, чем в зоне основного металла. Развитие дефектов при усталости приводит к монотонному уменьшению коэффициента Пуассона, в то время как изменение кристаллографической текстуры при пластическом деформировании к его монотонному увеличению. Установлено, что при пластическом деформировании величина изменения коэффициента Пуассона в ЗТВ больше, чем в зоне основного металла.

Максимальное изменение коэффициента Пуассона при пластическом деформировании равно $\Delta \nu = 0,0043$, что почти в два раза больше, чем при усталости ($\Delta \nu = 0,0025$).

Выявлена линейная зависимость величины изменения коэффициента Пуассона, определяемого акустическим методом, от величины пластической деформации при одноосном растяжении и числа циклов при усталости.

На основе результатов ультразвуковых измерений предложены способы оценки ресурса пластичности при одноосном растяжении и числа циклов до разрушения при усталости.

Результаты проведенных исследований могут быть использованы при разработке методик оценки поврежденности для экспертизы промышленной безопасности ответственных объектов.

ЛИТЕРАТУРА

- 1. Szelazek J., Mackiewicz S., Kowalewski Z. New samples with artificial voids for ultrasonic investigation of material damage due to creep // NDT & E Intern. 2009. V. 42, N 2. P. 150–156.
- 2. Беляев А. К., Лобачев А. М., Модестов В. С. и др. Оценка величины пластических деформаций с использованием акустической анизотропии // Изв. РАН. Механика твердого тела. 2016. Т. 51, № 5. С. 124–131.
- Carvajal L., Artigas A., Monsalve A., Vargas Y. Acoustic birefringence and Poisson's ratio determined by ultrasound: tools to follow-up deformation by cold rolling and recrystallization // Materials Res. 2017. V. 20, N 2. P. 304–310.
- Makowska K., Piotrowski L., Kowalewski Z. L. Prediction of the mechanical properties of P91 steel by means of magneto-acoustic emission and acoustic birefringence // J. Nondestruct. Evaluat. 2017. V. 36, N 2. P. 36–43.
- Krysztofik J., Kukla D., Manaj W., Socha G. Evaluation of damage degree of Inconel 718 alloy with the use of non-destructive methods // Russ. J. Nondestruct. Test. 2019. V. 55, N 4. P. 299–307.
- Mishakin V. V., Gonchar A. V., Kirikov S. V., Klyushnikov V. A. Evaluation of condition of low-carbon steels experiencing plastic deformation using the effect of acoustic birefringence // Nondestruct. Test. Evaluat. 2020. V. 36, N 4. P. 1–11.
- 7. Зуев Л. Б., Семухин Б. С., Лунев А. Г. О возможности оценки прочности металлов и сплавов неразрушающим ультразвуковым методом // ПМТФ. 2002. Т. 43, № 1. С. 202–204.

- 8. Курашкин К. В., Кириллов А. Г., Беляев Р. В. и др. Определение температурных напряжений в рельсовых плетях с помощью ультразвуковой тензометрии // Путь и путевое хоз-во. 2022. № 12. С. 7–10.
- Карабутов А. А., Подымова Н. Б., Черепецкая Е. Б. Определение одноосных напряжений в стальных конструкциях лазерно-ультразвуковым методом // ПМТФ. 2017. Т. 58, № 3. С. 146–155.
- Brueckner-Foit A., Huang X. On the determination of material parameters in crack initiation laws // Fatigue Fract. Engng Materials Structures. 2008. V. 31. P. 980–988.
- 11. Pan S., Yu G., He X., et al. Collective evolution of surface microcrack for compacted graphite iron under thermal fatigue with variable amplitude // Intern. J. Fatigue. 2018. V. 118. P. 128–139.
- Gonchar A. V., Anosov M. S., Ryabov D. A. Estimation of structural degradation of the heat affected zone of the welded joint under fatigue // Russ. J. Nondestruct. Test. 2022. V. 58, N 9. P. 790–799.
- Danilov V. A., Merson D. L. On the quantitative assessment of corrosion damages of aluminium at the early stages using confocal laser scanning microscopy // Lett. Materials. 2022. V. 12, N 3. P. 261–265.
- Pejkowski L., Karuskevich M., Maslak T. Extrusion/intrusion structure as a fatigue indicator for uniaxial and multiaxial loading // Fatigue Fract. Engng Materials Structures. 2019. V. 42. P. 15–23.
- Jung I. D., Shin D. S., Kim D., Lee J. Artificial intelligence for the prediction of tensile properties by using microstructural parameters in high strength steels // Materialia. 2020. V. 11. P. 1–50.
- Ford E., Maneparambil K., Rajan S., Neithalath N. Machine learning-based accelerated property prediction of two-phase materials using microstructural descriptors and finite element analysis // Comput. Materials Sci. 2021. V. 191. P. 1–20.
- 17. Klyuev V. Nondestructive testing and diagnostics: Handbook / V. Klyuev, G. Zusman. Houston: Metrix Instrum. Co., 2004.
- Gonchar A., Kurashkin K., Andreeva O., et al. Fatigue life prediction of structural steel using acoustic birefringence and characteristics of persistent slip bands // Fatigue Fract. Engng Materials Structures. 2021. V. 45, N 93. P. 101–118.
- Zolotorevsky N. Y., Ushanova E. A., Rybin V. V., Perevezentsev V. N. Characterization of fragmented structure developed during necking of iron tensile pecimen // Lett. Materials. 2021. V. 11, N 4. P. 503–507.
- Kachanov M. Micromechanics of materials, with applications / M. Kachanov, I. Sevostianov. Cham; Boston: Springer, 2018.

Поступила в редакцию 7/IV 2023 г., после доработки — 13/IV 2023 г. Принята к публикации 24/IV 2023 г.