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Мультиминеральное моделирование и оценка индекса  
хрупкости минералов с использованием результатов изучения 
керна и данных ГИС в скважинах на угольном месторождении 

Восточный Бокаро (Индия)
А. Банерджи

Department of Subsurface Team, Oil and Natural Gas Corporation Limited,  
Bokaro, Jharkhand, 827001, India

Точная оценка содержания и индекса хрупкости минералов имеет важное значение для разработки 
эффективных методов гидроразрыва угольных пластов, необходимого на угольном месторождении Вос-
точный Бокаро в Индии. В настоящем исследовании объединены данные изучения керна бокового ствола 
и данные ГИС в скважинах. Основное внимание уделено скважине А-1, где был проведен рентгенострук-
турный анализ керна бокового ствола для определения содержания минералов. Полученные минерало-
гические данные были экстраполированы на скважину А-2 путем комбинирования результатов ГИС, 
рентгеноструктурного анализа и предыдущих исследований. Уравнения линейной регрессии, включа-
ющие известные минералы и данные ГИС в качестве входных параметров, использовались для расче-
та объемного содержания минералов в пластах. Надежность модели была подтверждена путем оценки 
минимальной разницы между прогнозируемыми и полученными логарифмическими кривыми. Индекс 
хрупкости определялся как геомеханическими методами, основанными на скорости продольных волн, 
так и минералогическими методами с учетом содержания кварца, полевого шпата и доломита. Сравни-
тельный анализ значений индекса хрупкости продемонстрировал устойчивую тенденцию их изменения 
и их зависимость от содержания минералов. Данное исследование позволяет построить непрерывную 
мультиминеральную модель для случаев, когда данные по керну отсутствуют, а также дает представле-
ние о вариациях содержания минералов. Кроме того, корреляция между изменениями значений индекса 
хрупкости и содержанием минералов позволяет получить дополнительные сведения о геомеханических 
свойствах, необходимых для проектирования гидроразрыва угольных пластов. Представленные здесь 
результаты дают ценную информацию для оптимизации технологии гидроразрыва пласта на угольном 
месторождении Восточный Бокаро и служат основой для дальнейших исследований в аналогичных гео-
логических обстановках.
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Multimineral Modeling and Brittleness Index Estimation Using Core  
and Geophysical Well Log Data in the East Bokaro Coalfield of India

A. Banerjee
Accurate assessment of mineral content and the brittleness index (BI) is crucial for designing effective hy-

draulic fracturing treatments in coal seams, a parameter required in the East Bokaro Coalfield in India. This study 
combines sidewall-core and well log data, focusing on well A-1, where X-ray diffraction analysis of sidewall 
cores was conducted to identify mineral content. The obtained mineralogical data were extrapolated to well A-2 
through a synthesis of well log parameters, X-ray diffraction analysis, and prior research results. Linear regres-
sion equations incorporating known minerals and well log data as input parameters were employed to calculate 
volumetric mineral content in the formations. The reliability of the model was validated by assessing the minimal 
difference between predicted and observed log curves. Furthermore, the brittleness index was determined using 
both geomechanical methods based on compressional wave velocity and mineralogical methods incorporating 
quartz, feldspar, and dolomite content. Comparative analysis of BI values demonstrated a consistent trend, while 
variations in the mineralogic BI were observed in relation to mineral content. This study not only establishes a 
continuous multimineral model for cases with unavailable core data but also contributes to advancing the under-
standing of mineral content variations. Additionally, the correlation between BI variations and mineral contents 
enhances our knowledge of the geomechanical properties essential for design of hydraulic fracturing in coal for-
mations. The results presented herein offer valuable insights for optimizing hydraulic fracturing strategies in the 
East Bokaro Coalfield and provide a foundation for further research in similar geologic settings.
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introduction

Minerals form in the surface and subsurface rock owing to volcanic eruption, transportation of rock, pres-
sure, and temperature in the formation. That is why the mineral composition in sedimentary, metamorphic, and 
igneous rock is different. Analysis of minerals in rock formations is important in understanding the deposi-
tional processes occurring in the Earth’s system. The estimation of minerals using conventional well logs is 
difficult and less accurate. There are few cross-plotting techniques using well logs, such as neutron-density-
sonic plots, and matrix identification plots separately cannot identify the minerals correctly in the formation 
(Clavier and Rust, 1976). For accurate identification, direct methods of X-ray diffraction (XRD) mineralogical 
tests are executed in core samples. However, the feasibility of extracting the core and its mineralogical analysis 
in every well is a constraint. Besides, continuous core extraction requires more time and involves more cost, so 
that it becomes challenging to extract continuous core. Therefore, an alternative method is used to determine 
the volume of multiminerals in a lithologic formation using conventional well logs and prior information on the 
minerals present in the area. The multimineral model visualizes the variation of mineral content in the subsur-
face formation. The mineral content can also provide a quantitative output of the brittleness in the formation 
which is expressed by an index known as the brittleness index (BI). The geomechanical and the mineralogical 
methods are two commonly used methods for estimating the BI. Although there is no accurate method for esti-
mating the BI, the geomechanical and multimineral method acts as a guiding technique for estimating the BI 
without core sample analysis (Wang et al., 2015; Zhang et al., 2016). 

The East Bokaro Coalfield is located in the Jharkhand state of the eastern part of India. The Bokaro Coal-
field exhibits a complete succession of Gondwana sediments from the Basement to the Mahadeva Formation. 
The sequence is Basement, Talchir, Barakar, Barren, Raniganj, Mahadeva, and unconformity (Banerjee et al., 
2023). For example, the Barakar formation is significant for the coalbed methane (CBM) reservoir develop-
ment, as it contains all the coal seams inclusive of shale and sandstone. Generally, the lithology of the Bokaro 
Coalfield is categorized into coal, shale, and sandstone. In literature on the Bokaro Coalfield, a mineralogical 
study is conducted using XRD analysis, which shows that quartz and kaolinite are dominant while illite, mont-
morillonite, siderite, and analcime are intermediate minerals. Also, pyrite, dolomite, and calcite are observed in 
minor quantities in coal (Equeenuddin et al., 2016). Figure 1 represents the Bokaro Coalfield illustrating the 
surface exposure of various formations and the well location. The study area consists of two wells named A-1 
and A-2 on the eastern side. In well A-1, a basic conventional well log suite including gamma-ray (GR), resis-
tivity (MLR), density (ZDNC = ρ), photoelectric index (PE), and neutron porosity (NPHI = ϕn) was recorded, 
and X-ray diffraction (XRD) analysis was carried out in ten sidewall core (SWC) samples to determine the 

Fig. 1. The geological map of the Bokaro Coalfield illustrates the surface exposure of different formations 
and two wells named A-1 and A-2 in the study area. 
1 – Mahadeva, 2 – Panchet, 3 – Raniganj, 4 – Barren, 5 – Barakar, 6 – Talchir, 7 – Archaeans, 8 – well.



1186

mineral contents. In well A-2, compressional sonic 
slowness (SONIC = ∆t) is an additional log available 
in the basic conventional well log suite. 

The lack of understanding of mineral deposi-
tion and the absence of a standardized model has mo-
tivated us to undertake this study with the objectives 
(a) to determine the mineral contents from the XRD 
study of SWC samples in well A-1, (b) to generate 

multimineral models and volumetric estimation of minerals in well A-2 by solving linear equations using geo-
physical well logs and minerals as input parameter, and (c) to estimate the brittleness index of the formation 
using the geomechanical and mineralogical approach. A flowchart was adopted to attain the objectives. Figure 2 
depicts the adopted flowchart, which illustrates core and well log as input data in establishing the models. The 
identified minerals from the XRD study of cores were incorporated with geophysical well logs to determine the 
percentage of minerals in the wellbore. The lithology, such as sandstone, shale, and coal, was distinguished 
based on well log parameters (Banerjee et al., 2023). In these zones, its mineral contents were classified, and 
based on mineralogic volume, the BI was estimated, and the same was compared with the geomechanical BI 
estimated using a sonic log.

METHODS

X-ray diffraction (XRD) analysis. The XRD analysis in the laboratory provides accurate mineral iden-
tification by interpreting the characteristics of peak positions either through eye estimation or by an automated 
computerized matching technique with the incident angle (Hillier, 2003). The presence of minerals from the 
peak intensity in the XRD curve uses a generalized instrument that is independent of the semiquantitative 
method (Fisher and Underwood, 1995; Gandhi et al., 2010). In this method, the percentage of the mineral pres-
ent in a sample is calculated from the XRD peak heights (i) and standard intensity factors (c) of the composite 
minerals. The standardized equation is presented in the following equations: 

	 m
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,	 (1)

where mi denotes the abundance of the ith mineral; ii is the peak intensity of the ith mineral; ci is a constant 
intensity factor of mineral used to transform intensity into abundance; and m is the number of minerals. Values 
of the intensity factor (ci) of the identified mineral peaks were assigned as mentioned by Gandhi et al. (2010) 
for the determination of mineral abundance. In well A-1, ten SWC at different depths were crushed for XRD 
analysis (plot between intensity (counts per second) versus angle) to compute the mineral contents. In Table 1, 
the SWC sample number, depth of extraction, mineral content, and respective well log magnitude of well A-1 

Fig. 2. The adopted flowchart of the study in esti
mating the multimineral model and brittleness in-
dex along the well.

T a b l e  1 .  	 Mineral contents from XRD analysis and well log magnitude at respective depths

SWC sample 
No. Depth, m Minerals (XRD) GR (API) MLR  

(Ohm·m)
ZDNC  
(g/cm3)

NPHI 
(v/v )

SWC-01 674.0 Illite, kaolinite, montmorillonite, mica, quartz 125 600 2.15 0.30
SWC-02 629.0 Illite, kaolinite, montmorillonite, mica, quartz, feldspar 170 250 2.54 0.30
SWC-03 572.6 Illite, kaolinite, mica, quartz, siderite 175 150 2.68 0.24
SWC-04 419.0 Illite, mica, quartz, siderite, carbonaceous minerals 190 100 2.38 0.30
SWC-05 418.5 Illite, montmorillonite, mica, quartz 162 10 2.60 0.24
SWC-06 418.0 Feldspar, quartz, calcite, dolomite, siderite, and pyrite 135 0.3 0.21 2.55
SWC-07 417.5 Illite, montmorillonite, mica, quartz, siderite 167 10 0.27 2.55
SWC-08 405.5 Quartz, dolomite 60 300 0.09 2.74
SWC-09 404.5 Illite, mica, dolomite, quartz 67 200 0.10 2.70
SWC-10 402.9 Illite, kaolinite, mica, quartz, siderite 110 80 0.18 2.53
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are shown. The peaks on the intensity curves in the XRD pattern permit identifying illite, kaolinite, smectite, 
montmorillonite, siderite, quartz, feldspar, mica, and dolomite in the SWC sample. Figure 3a–d illustrates a few 
XRD patterns depicting the intensity (count per second) versus 2θ (degree) plot drawn on the SWC samples: (a) 
SWC-01 at 674.0 m, (b) SWC-02 at 629.0 m, (c) SWC-07 at 417.5 m, and (d) SWC-09 at 404.5 m. Also, the 
microscopy study of the SWC samples shows mineral contents. Figure 4a–d represents the study of sample 
SWC-02 under the microscope (a) at 629.0 m and (b) the enlarged view of sample SWC-02 shows mica, oxi-
dized matter, and carbonaceous content, (c) similar study of sample SWC-09 at 404.5 m shows the presence of 
mica and quartz. 

Multimineral modeling. The identification of minerals is difficult from the quick-look analysis of the 
conventional well logs, but the volumetric content of minerals can be modeled using geophysical logs provided 
that the number and the type of minerals are known. Hence, to estimate the mineral volume and content, the 
prior information on minerals in the formation is an input to solve the set of linear equations. Thus, multimin-
eral modeling utilizes the relationship between the set of known and unknown parameters in the set of linear 
equations. Here, log measurements are known parameters, and the properties of the mineral constituents are the 
unknown parameters. The log measurements used in the models are gamma ray, conductivity (C = 1/MLR), 
density (ρ), photoelectric parameter (L = ρ.PE), compressional slowness (∆t), and neutron porosity (NPHI = ϕn). 
The proposed multimineral model uses seven equations to solve seven unknowns (six minerals and porosity). 
The first six equations can be written as

	 X X M Xf i i
i

� �
�
��
1

6

,	 (2)

where X represents the log magnitude; ϕ is the porosity obtained from multimineral modeling; Xf represents the 
log magnitude in the fluid where subscript f stands for fluid; Mi represents the concentration of a respective min-

Fig. 3. The XRD pattern depicting the intensity (count per second) versus 2θ (degree) plot conducted on 
the sidewall core (SWC) samples: 
a  – SWC-01 at 674.0 m; the peak intensity detects illite/mica, kaolinite, montmorillonite, and quartz; b – SWC-02 at 629.0 m; peak 
intensity detects illite, kaolinite, montmorillonite, and quartz/feldspar; c – SWC-07 at 417.5 m, shows the additional presence of siderite 
mineral; and d – SWC-09 at 404.5 m, shows dolomite as additional content.
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eral; and Xi represents the log magnitude in the mineral formation, where the subscript (i = 1 to 6) in Mi and Xi 
denotes the mineral concentration of six minerals. Equation (2) generates six separate equations for the different 
log values, such as (1) GR, (2) ρ, (3) ϕn, (4) L, (5) ∆t, and (6) C. Thus, using the log values in equation (2), six 
linear equations can be established. The seventh equation is established considering the sum of the effective po-
rosity and the mineral content equal to the total volume of the rock. Thus, the equation is expressed as

	 1
1

6

� �
�
�� Mi
i

,	 (3)

where the notations are the same as described previously. Subsequently, solving the set of seven linear equa-
tions determines the seven unknown parameters. The equations are expressed in the matrix form as follows:
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The matrix system presented in equation (4) illustrates the simultaneous matrix inversion calculation 
performed for the mineral composition (Singh et al., 2013) which can be expressed as

	 FM W= ,	 (5)

where F is the matrix of the physical properties of rock constituents; M is the matrix of the mineral constituents; 
and W is the measured well log values. The dominant rock constituents that were applied in matrix F are listed 
in Table 2. The mineral volume can be estimated by solving an inverse problem in equation (5):

	 M F W� �1 .	 (6)

Thus, by solving equation (6), the quantification of minerals can be executed. Banerjee and Chatterjee 
(2022) discussed well log cutoff parameters in the Bokaro Coalfield to distinguish sandstone, shale, and coal, 
based on this zonations were prepared in well A-2. Table 2 shows the mineral contents and well log parameters 

Fig. 4. The study of sidewall core sample SWC-02 
under the microscope (a) at 629.0 m; b – the enlarged 
view of the same sample reveals mica, oxidized mat-
ter, and carbonaceous content. c – A similar study of 
SWC-09 at 404.5 m shows the presence of mica and 
quartz content.
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used during the processing of the shale, sandstone, and coal lithology. In shale and sandstone, minerals, such as 
illite, kaolinite, smectite, quartz, dolomite, orthoclase, and siderite, were selected. Coal is considered a special 
mineral along with the inclusion of illite, kaolinite, smectite, and quartz. Solving the matrix equation (4) gives 
the effective porosity, while the total porosity is calculated for comparing the effective porosity with the total 
porosity. The total porosity (ϕT) is calculated using the following equation:

	 �
� �
� �T
ma b

ma f

�
�
�

,	 (7)

where ρma is the matrix density; ρb is the bulk density obtained from the density log; and ρf is the fluid density (1.0 
g/cm3). Figure 5 represents the layout illustrating (1) the color code of lithologic formations in the first track, 
such as illite, kaolinite, montmorillonite, quartz, dolomite, feldspar, siderite, and coal; (2) the volume of miner-
als (fraction) in the second track; (3) depth (m) in the third track; (4) variation in total and effective porosity in 
the fourth track; (5) the fifth to ninth tracks validate the results from the correlation between actual and pre-
dicted log curve of NPHI, GR, ZDNC, PEF, and SONIC. 

Brittleness index estimation. The estimation of the BI using well log data is a preferred method, as it 
involves low cost and provides continuity throughout the well. Both the geomechanical and mineralogical 
methods can be used to estimate the BI. Previous studies by Jarvie et al. (2007) and Jin et al. (2015) show that 
the brittleness estimated from the mineralogical method is more reliable compared to that estimated by the 
geomechanical approach for a shale reservoir. The geomechanical approach relates the BI in terms of Young’s 
modulus and Poisson’s ratio empirically using sonic velocity, which is further implemented to estimate the BI 
(Mallick, 1995; Lai et al., 2015). The empirical equations for the estimation of geomechanical parameters and 
the BI are as follows: 

	 Y V
V V
V Vs
p s

p s

�
�

�

�

�
��

�

�
��� 2

2 2

2 2

3 4
,	 (8)

	 �   �
�

�

V V
V V
p s

p s

2 2

2 2

2

2( )
,	 (9)

	 BI Y Y
Y YY �

�
�
min

max min

,  BI�
� �
� �

�
�
�
max

min max

,

	
BI

BI BI
g

Y�
� �

2
,
	 (10)

where Y is Young’s modulus; ν is Poisson’s ratio; BIY and BIν are the brittleness indices obtained from Y and ν, 
respectively. BIg is the average magnitude of the geomechanical BI. The notation ‘min’ and ‘max’ denote the 

T a b l e  2 .  The mineral contents and well log parameters used in the shale, sandstone, and coal during processing

Models Minerals Density NPHI DTC U GR

Shale Illite
Kaolinite
Smectite 
Quartz 
Feldspar 
Dolomite 

2.78
2.62
2.63
2.65
2.67
2.84

0.300
0.300
0.210
0.090
0.090
0.025

70
70
85
50
53
43

6.7
6.5
7.6
5.0
8.7
9.6

190
180
150
90
130
50

Sandstone Illite 
Kaolinite 
Smectite 
Quartz 
Feldspar
Dolomite

2.78
2.62
2.63
2.55
2.60
2.84

0.080
0.450
0.210
0.070
0.060
0.025

70
85
85
70
53
43

3.1
5.3
7.6
5.0
8.7
9.6

65
104
168
85
165
30

Coal Coal
Illite 
Kaolinite 
Smectite 
Quartz

1.27
2.78
2.62
1.80
2.65

0.600
0.010
0.010
0.210
0.050

132
85
85
120
50

0.9
7.1
5.5
0.4
5.0

70
170
180
80
15

Note. In shale and sandstone, illite, kaolinite, smectite, quartz, dolomite, orthoclase, and siderite were selected. Coal is 
considered a special mineral with the inclusion of illite, kaolinite, smectite, and quartz.
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minimum and maximum values, respectively. In the mineralogical approach, the volume of mineral content 
estimates the BI using established equations. Jarvie et al. (2007) proposed the BI as the ratio of the volume of 
quartz content to the total volume of the minerals contained in the rock formation. However, Wang and Gale 
(2009) modified the equation using the sum of the volume of quartz and dolomite divided by the total volume 

of mineral content. Later, Jin et al. (2015) consid-
ered the sum of the volume of quartz, feldspar, 
mica, and carbonate minerals divided by the total 
volume of minerals in the rock formation. The pre-
viously used mineralogical approach for the BI esti-
mation is listed in Table 3. In our case, quartz, feld-
spar, and dolomite were present in the formation, 
and based on the methods presented in Table 3, the 
mineralogic BI is obtained by integrating the tabu-
lated equation. The equation is expressed as

                        BI
V V V

V
q F d

T

�
� �

,	 (11)

where V represents the volume of minerals and the 
subscripts have the following meanings: q, quartz; 
F, feldspar; d, dolomite; and T, total volume of the 

Fig. 5. The layout represents (1) the color code of lithologic formations, such as: 
illite (1), kaolinite (2), montmorillonite (3), quartz (4), dolomite (5), feldspar (6), siderite (7), and coal (8) in the first track; (2) the volume 
of minerals (fraction) in the second track; (3) depth (m) in the third track; (4) variation in total and effective porosity in the fourth track; 
and (5) the fifth to ninth tracks validate the results from the correlation between actual and predicted log curve of NPHI, GR, ZDNC, PEF, 
and SONIC. 

T a b l e  3 .  List of the equations considered in the previous 
                         study in different formations

Formula Variable definition References

q

T

V
BI

V
=

Vq is the volume of quartz; 
VT is the total volume of 
minerals.

Jarvie et al., 
2007

q d

T

V V
BI

V
+

=
Vq and Vd are the volumes of 
quartz and dolomite.

Wang and Gale, 
2009

q F M carb

T

V V V V
BI

V
+ + +

=
V is the volume of minerals: 
q –quartz; F – feldspar; M – 
mica; carb – carbonate.

Jin et al., 2015

q cal al

q cal al m cl

V V V
BI

V V V V V
+ +

=
+ + + +

V is the volume of minerals: 
q – quartz; cal – calcite; 
al – albite; m – muscovite; 
cl – clay.

Lai et al., 2015; 
Gholami et al., 
2016
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minerals. The result from equation (13) is presented in 
Fig. 6, where the layout shows the (1) depth (m) in the 
first track; (2) volume of minerals (fraction) in the sec-
ond track; (3) estimated geomechanical [BI (g)] in a 
black line and mineralogic [BI (m)] in a blue line; and 
(4) the fourth track represents the color code of litho-
logic formations, such as illite, kaolinite, montmorillo
nite, quartz, dolomite, feldspar, siderite, and coal. The 
BI estimated from both methods was cross-plotted. Fig-
ure 7 illustrates the cross-plot of the BI (geomechanical) 
versus BI (mineralogic) of (a) all formations where 
color dots in red, green, and blue are shale, sandstone, 
and coal, respectively, (b) shale formation only, (c) 
sandstone formation only, and (d) coal formation only. 
The cross-plots in Fig. 7b show scattered BI dots, and 
the BI in shale increases linearly up to 0.6, and then BI 
(geomechanical) follows a trend toward a constant 
value 0.6–0.7, while the BI (mineralogic) increases 
from 0.6 to 1.0. Also, in some shale formations, the BI 
(mineralogic) is estimated at a lower value compared to the BI (geomechanical). In Fig. 7c, the BI, both geome-
chanical and mineralogic, are concentrated toward the higher side in sandstone, and in Fig. 7d, the BI is con-
centrated toward the lower side in coal. The plot of the BI (mineralogic) versus the sum of the volume of quartz, 
feldspar, and dolomite [volume (Q + F + D)] is shown in Fig. 8. The plot of the BI (mineralogic) versus volume 
(Q + F + D) (a) for shale, sandstone, and coal, (b) for a shale formation, (c) for a sandstone formation, and (d) 
for a coal formation. Summarizing Figs. 7 and 8, Table 4 shows the average range of the BI (geomechanical), 
the BI (mineralogic) and [volume (Q + F + D)] in shale, sandstone, and coal, respectively.

DISCUSSION

The use of the harmonic mean in equation (1) for XRD studies (specifically, in determining mineral con-
tent), is closely tied to the nature of crystalline materials and the analysis of their diffraction patterns. When ana-
lyzing XRD data in a laboratory setting to identify and quantify minerals in a sample, the harmonic mean is often 
incorporated to account for the anisotropic nature of crystallite size in polycrystalline materials. Geologic sam-
ples are typically polycrystalline; that is, they consist of many small randomly oriented crystalline domains. Each 
domain may have different crystallographic orientations and sizes. The harmonic mean is used to average the 
sizes of these crystalline domains along different crystallographic directions, providing a more representative 
measure of the overall crystallite size. Crystallites within a sample may exhibit different sizes along different 
crystallographic directions. This anisotropy is especially relevant in geologic materials in which crystal growth 
may occur preferentially in certain directions. The harmonic mean considers the reciprocal of the crystallite sizes 

Fig. 6. The layout representing the (1) depth (m) in 
the first track; (2) the volume of minerals (fraction) 
in the second track; (3) estimated geomechanical 
brittleness index BI (g) in a black line and minera
logic brittleness index BI (m) in a blue line; and (4) 
the fourth track represents the color code of illite, 
kaolinite, montmorillonite, quartz, dolomite, feld-
spar, siderite, and coal.

T a b l e  4 . 	The BI computed from geomechanical and mineralogical analysis with the volume of quartz, feldspar,  
	 and dolomite in shale, sandstone and dolomite

Lithology BIg (average) BIm (average) Volume (quartz + feldspar + dolomite)

Shale 0.45–0.75 0.15–0.95 0.01–0.90
Sandstone 0.50–0.75 0.60–0.95 0.50–0.95

Coal 0.01–0.35 0.01–0.30 0.01–0.40
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along different directions, emphasizing the influence of smaller sizes in the overall average. Thus, the use of the 
harmonic-mean equation for mineral content determination enhances the accuracy of estimating the average 
crystallite size in polycrystalline materials. At the same time, the arithmetic mean approach in equation (2) for 
the determination of multimineral modeling from well log data is considered due to its simplicity, ease of inter-
pretation, and computational efficiency, making it suitable for quick assessments and initial screening of mineral 
content in subsurface formations. The arithmetic mean is straightforward to calculate and computationally effi-
cient. In well log analysis, in which large datasets are often involved, simplicity and speed are essential for quick 
and practical modeling. The arithmetic mean provides a single representative value that is easy to interpret. In the 
context of well log data, mineral content is often presented as an average percentage, simplifying the understand-
ing of the overall mineral composition. Well log data are often measured at discrete depths along a borehole. The 
arithmetic mean is well-suited for summarizing data at these discrete points and is particularly useful when deal-
ing with well log curves representing different minerals. The arithmetic mean also allows a rapid initial estima-
tion without the need for more complex and time-consuming modeling techniques.

The concept of matrix degeneracy is related to linear algebra, and it typically refers to a matrix that is 
singular or nearly singular. A matrix is said to be degenerate if its determinant is zero or very close to zero, 

Fig. 7. The geomechanical brittleness index [BI (geomechanical)] versus the mineralogic brittleness index 
[BI (mineralogical)] plot shows a scattered trend: 
a – brittleness plot shown for shale, sandstone, and coal; b – brittleness plot in the shale formation; c – brittleness plot in the sandstone 
formation; and d – brittleness plot in the coal formation.
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which implies that the matrix is not invertible. Proving the nondegeneracy of a matrix in equations (5) and (6) 
is often crucial in various mathematical and computational contexts, including those dealing with multivariate 
analysis, optimization problems, and systems of linear equations. A nondegenerate matrix is more likely to have 
a unique solution, and its properties are generally better understood. Here, the determinant of a square matrix F 
in equation (6) is denoted by |F|, which is nonzero, proving that the matrix is nondegenerate. Also, the rank of 
the matrix is equal to the size of the matrix, and F is a positive definite symmetric matrix, which proves that it 
is nondegenerate.

The adopted methodology for generating a multimineral model within a well using available well logs 
and prior inputs of mineral contents in the formation has proven to be robust and accurate. The resulting model 
offers a comprehensive volumetric distribution of minerals along the wellbore, facilitating the estimation and 
standardization of percentagewise mineral distribution in the subsurface formation. The reliability of this mul-
timineral model is underscored by the minimal difference observed between the observed and predicted log 
curves, affirming its accuracy. Furthermore, our investigation into brittle behavior, indicative of quartz, feld-
spar, and dolomite presence, reveals a linear increase in the brittleness index with the volume of these minerals. 
This result is consistent with those of previous studies that have shown a positive correlation between the BI 
and quartz content in shale formations (Jin et al., 2015; Zhang et al., 2016). The BI values obtained in this study 

Fig. 8. The mineralogic brittleness index [BI (mineralogical)] versus the sum of the volumes of quartz, 
feldspar, and dolomite [Volume (Q + F + D)] plot shows a linear trend: 
a – the plot represents shale, sandstone, and coal formations; b – the plot represents the shale formation; c – the plot represents the 
sandstone formation; d – the plot represents the coal formation.
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can be used to identify the most brittle zones in the coal seams, which are ideal targets for hydraulic fracturing 
treatments. The data in Table 4 show that the BI values are the highest in the sandstone formation, followed by 
those in the shale and coal formations. This suggests that the sandstone formation is the most brittle, which is 
consistent with results of previous studies that have shown that sandstone formations are more brittle than shale 
or coal formations (Zhang et al., 2016). The data in Table 4 also show that the volume (Q + F + D) values are 
the highest in the sandstone formation, followed by those in the shale and coal formations. This suggests that 
the sandstone formation has the highest porosity and permeability, which is consistent with previous studies 
that have shown that sandstone formations are more porous and permeable than shale or coal formations (Jin et 
al., 2015). Accurate assessment of mineral content and the brittleness index is crucial for designing effective 
hydraulic fracturing treatments in coal seams. Our methodology provides a reliable and efficient way of gener-
ating a multimineral model within a well, which can be used to estimate the volumetric distribution of minerals 
and identify the most brittle zones. This information can be used to optimize hydraulic fracturing treatments and 
improve production rates in the East Bokaro Coalfield. Further research is needed to extend our results to other 
coalfields.

conclusions

A comprehensive investigation of the CBM reservoir was conducted to address the critical need for ac-
curate characterization of mineral content and the brittleness index. Utilizing known minerals and well log data 
as input parameters, volumetric mineral content in the formations was obtained. The reliability of our model 
was confirmed by the minimal difference observed between predicted and observed log curves. The correlation 
established between BI variations and mineral contents enhances our ability to predict and optimize hydraulic 
fracturing treatments in coal formations. A comparative analysis of BI values revealed a consistent trend, though 
the mineralogic BI exhibited variability concerning mineral content. These insights contribute to the broader 
field of reservoir engineering and underscore the importance of integrating multiple methods for a comprehen-
sive understanding of subsurface formations.
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