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С помощью прямого численного моделирования исследуется влияние нагрева стенок
на характеристики обратного пристенного течения, возникающего при турбулентном
течении различных теплоносителей в канале с квадратным поперечным сечением. По-
ле температур рассматривается как в приближении пассивной примеси, так и в при-
ближении малого числа Маха. Получены качественные и количественные результаты,
характеризующие вероятность возникновения обратных пристенных течений во всех
рассматриваемых случаях при числе Рейнольдса Re = 3150, вычисленном по средне-
расходной скорости и полувысоте канала. Установлено, что в рассмотренных случаях
нагрев стенок приводит к увеличению вероятности образования обратных пристенных
течений в среднем в 2–3 раза.

Ключевые слова: прямое численное моделирование, обратное пристенное течение,
пассивная примесь, приближение малого числа Маха

Введение. Ранее возникновение событий обратного пристенного течения (ОПТ) счи-
талось невозможным [1]. Однако последующие теоретические [2] и экспериментальные [3]
исследования показали возможность его существования.

В настоящее время ОПТ хорошо изучено, получены геометрические и статистиче-
ские характеристики области ОПТ и исследован механизм его формирования. Механизм
формирования событий ОПТ впервые описан в работе [4]. Эти события вызваны чрезвы-
чайно интенсивными вихревыми структурами, “живущими” в буферной области турбу-
лентного пограничного слоя (ТПС), имеющими вытянутую форму и наклоненными от-
носительно продольного направления. Большинство событий ОПТ (69 %) наблюдались
в области потока, расположенной непосредственно под крупномасштабными вихревыми
структурами, характеризующимися положительным значением пульсации продольной со-
ставляющей вектора скорости (u′ > 0) и находящимися в логарифмической области ТПС.

Работа выполнена при финансовой поддержке Российского научного фонда (код проекта 22-29-01274).
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Экспериментальное подтверждение возникновения событий ОПТ в соответствии с меха-
низмом, описанным в работе [4], было также приведено в работах [3, 5]. В [6] показано, что
данное течение возникает вблизи стенки y+ < 15 (в координатах закона стенки) и имеет
низкую вероятность появления по времени и пространству (P ≈ 0,01 %), которая уве-
личивается с ростом числа Рейнольдса. В теоретической работе [4] показано увеличение
вероятности возникновения события ОПТ с P = 0,01 % при Reτ = 180 до P = 0,06 % при

Reτ = 1000, что согласуется с результатами эксперимента [7]. В работе [4] также показано,
что обычно область ОПТ имеет форму эллипсоида вращения с диаметром, приближенно
равным 20 (в координатах закона стенки), в плоскости, параллельной стенке. Данные [4]
сравнивались с результатами, полученными в работе [8].

Согласно [9] образование ОПТ всегда сопровождается появлением сложной трехмерной
вихревой структуры вблизи стенки. В работе [10] при исследовании ТПС с наложенным

положительным продольным градиентом давления обнаружена связь между появлением

событий ОПТ с крупномасштабными вихревыми структурами, находящимися в логариф-
мической области ТПС, и их взаимодействием с вихревыми структурами, расположенными
в буферной области ТПС. В работах [11, 12] предложен более полный сценарий возникно-
вения событий ОПТ в случае течения в канале с квадратным поперечным сечением. Полу-
ченные данные согласуются с результатами работ [4, 9, 10, 13] и обобщают предложенные
ранее механизмы формирования ОПТ на случай течения на пластине и в круглой трубе в

диапазоне чисел Рейнольдса Reτ = 180÷1000. Анализ профилей касательного напряжения
на стенке и мгновенных полей продольной и поперечной скоростей, экспериментально и
численно полученных в работах [11, 12], показал, что причиной формирования событий
ОПТ являются интенсивные подковообразные вихревые структуры, возникающие в при-
стенной области ТПС на границе между крупномасштабными областями ускоренного и

замедленного течений. Неожиданный результат получен в работе [12], в которой установ-
лено, что в рассматриваемом диапазоне чисел Рейнольдса в углах канала с квадратным
поперечным сечением события ОПТ возникают чаще (P = 12,5 %), чем в центральной об-
ласти стенки канала (P = 0,01 %). Показано, что существенное различие статистических
характеристик событий ОПТ обусловлено различием механизмов их формирования.

В работе [13] для случая обтекания крыла NACA4412 показано, что при относитель-
но малых значениях градиента давления возникновение событий ОПТ вызвано наличием

пристенных подковообразных вихревых структур, как в случае течения в канале с квад-
ратным поперечным сечением [11] или в трубе [4], а при больших — наличием процессов,
протекающих на большом расстоянии от стенки вблизи границы ТПС.

Одной из главных проблем, возникающих при решении задач теплообмена, которые
встречаются, в частности, в атомной энергетике, является формирование локального пе-
регрева, обусловленного наличием отрывных застойных областей течения. Высокая веро-
ятность возникновения событий ОПТ может привести к работе техники на нерасчетных

режимах, а также к ее неисправности или разрушению. Целью данной работы является
исследование влияния нагрева стенок на формирование ОПТ в случае течения различ-
ных теплоносителей, таких как свинцово-висмутовый сплав и жидкий натрий, в канале с
квадратным поперечным сечением.

1. Постановка задачи. С помощью метода прямого численного моделирования

исследуется влияние нагрева стенок на статистические характеристики ОПТ в канале

c квадратным поперечным сечением. В качестве теплоносителей рассматриваются пассив-
ная примесь, жидкий натрий (Na) и свинцово-висмутовый сплав (Pb–Bi), используемые
на атомных станциях на быстрых нейтронах.

На рис. 1 показана расчетная область, представляющая собой канал с квадратным
поперечным сечением размером 2πH × 2H × 2H (H — полувысота канала) в направле-
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Рис. 1. Геометрия расчетной области и расчетная сетка

ниях осей x, y, z соответственно. Поле температуры рассматривалось как в приближении
малого числа Маха для жидких металлов, поскольку их свойства зависят от температуры,
так и в приближении пассивной примеси, поле температуры которой не влияет на поле
скорости, что позволяет сравнивать полученные результаты с известными данными для
изотермического течения [11, 12]. Система уравнений Навье — Стокса в обезразмеренном

виде в приближении малого числа Маха записывается следующим образом:
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Здесь ui — i-я компонента скорости; ρ — плотность; p — давление; cp — удельная теп-
лоемкость; T — температура; Re = UbH/ν — число Рейнольдса, определенное по средне-
расходной скорости Ub, полувысоте канала H и кинематической вязкости ν; Pr = µcp/k —
число Прандтля; k — температуропроводность. Выражение для тензора вязких напряже-
ний можно записать в виде
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где µ — динамическая вязкость; δij — символ Кронекера.
Для скорости в направлении оси x заданы периодические граничные условия, на стен-

ках (z/H = ±1, y/H = ±1) — условие прилипания (ui = 0). На поле температур накла-
дываются граничные условия Дирихле: на верхней границе (y/H = 1) Tв = 1, на нижней
границе (y/H = −1) Tн = 0. Боковые стенки z/H = ±1 теплоизолированы, граничное
условие имеет вид ∂T/∂ni = 0. Задача решается с помощью открытого вычислительного
пакета Nek5000 [14], в котором используется метод спектральных элементов. Для дискре-
тизации по времени и пространству используются схемы 3-го и 10-го порядков точности
соответственно. Для получения решения уравнений Навье — Стокса с точностью до кол-
могоровского масштаба вблизи стенок используется сгущение сетки (см. рис. 1). Всего в
сетке содержится 18×32×32 спектральных элементов, что соответствует количеству вы-
числительных узлов, приближенно равному 18,5 ·106. Время сбора статистических данных
равно ∆t = 355.
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В рассматриваемой задаче число Рейнольдса равно Re = 3150, в случае пассивной
примеси Pr = 1,15 · 10−2. Следует отметить, что все характеристики рассматриваемых
сред в уравнениях (1)–(4) обезразмерены на соответствующие масштабы, но при этом
зависят от безразмерной температуры T . Поэтому в расчетах зависимости плотности ρ,
вязкости µ, теплоемкости cp, температуропроводности k и числа Прандтля Pr от темпера-
туры аппроксимировались полиномами третьей степени по известным экспериментальным

данным [15, 16] (рис. 2).
При исследовании процессов, протекающих в пристенной области течения, некоторые

величины удобно представлять в координатах закона стенки [17]: y+ = yuτ/ν, u+ = u/uτ ,

Reτ = uτH/ν (динамическое число Рейнольдса), uτ =
√

τw/ρ (динамическая скорость),
τw = ρν(∂ux/∂y) (касательное напряжение на стенке). Области ОПТ на стенках опре-
делялись по мгновенным полям касательного напряжения τw. Вне стенок события ОПТ
определялись по отрицательным значениям продольной скорости (ux < 0).

2. Результаты расчетов. На рис. 3,а,б приведены профили средней продольной

скорости и касательного напряжения на стенке, а также расчетные данные [12, 13]. В слу-
чае пассивной примеси профили хорошо согласуются, что указывает на достоверность
результатов численного моделирования, так как в приближении пассивной примеси поле
температуры не влияет на поле скорости и должно совпадать с результатами работы [12].
Следует отметить, что в случае нагрева профили для нижних (холодных) стенок распо-
ложены выше, чем для верхних (горячих). Это объясняется меньшей конвективной скоро-
стью течения в областях с большей вязкостью и, как следствие, меньшим значением дина-
мической скорости uτ , на которое нормируется значение ū+

x . На рис. 3,в–д представлены
зависимости диагональных компонент тензора напряжений Рейнольдса от координаты y+.
Можно отметить, что в случае пассивной примеси полученные зависимости также хорошо
согласуются с данными [12, 13].

На рис. 4 приведено пространственное распределение вероятности возникновения ОПТ
для верхней и нижней стенок в случае течения среды с пассивной примесью, жидкого на-
трия и свинцово-висмутового сплава. Под вероятностью появления ОПТ понимается отно-
шение общего количества моментов времени с зарегистрированным ОПТ в фиксированной

точке пространства к суммарному количеству моментов времени. Поскольку возникнове-
ние областей ОПТ является редким событием, данная характеристика существенно зави-
сит от времени осреднения. Однако, несмотря на небольшую выборку, можно заметить,
что в приближении пассивной примеси вероятность возникновения ОПТ и размеры обла-
стей, в которых возникает ОПТ, на верхней и нижней стенках приблизительно равны, что
соответствует результатам работ [11, 12], в которых были получены одни и те же зна-
чения вероятности на всех стенках. В случае полей температуры в приближении малого
числа Маха различие характеристик ОПТ на верхней и нижней стенках становится суще-
ственным. Для обоих теплоносителей на верхней стенке размеры характерных областей
ОПТ меньше, чем на нижней, однако количество таких областей значительно больше.
При этом распределения вероятности для жидкого натрия и свинцово-висмутового сплава
качественно различаются, что свидетельствует о влиянии переменных параметров сре-
ды (вязкости, плотности, теплопроводности) на статистические характеристики событий
ОПТ. Следует отметить, что, несмотря на это отличие, распределения вероятности по-
перек верхней и нижней стенок практически не различаются (рис. 5). Иными словами,
распределение вероятности возникновения ОПТ характеризует это явление неоднозначно.

На рис. 5,а представлена зависимость вероятности возникновения ОПТ P , осреднен-
ной в области −0,5 6 z 6 0,5, от расстояния от стенки y+. Заметим, что вероятности
возникновения ОПТ на верхних (горячих) стенках приблизительно одинаковы для обо-
их теплоносителей, а на нижних (холодных) различаются приблизительно в 1,5 раза. На
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Рис. 2. Зависимости плотности ρ (а), вязкости µ (б), температуропроводно-
сти k (в), числа Прандтля Pr (г) и теплоемкости cp (д) от температуры для

свинцово-висмутового сплава (1) и жидкого натрия (2):
точки — справочные данные, линии — их аппроксимации
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и диагональных компонент тензора напряжений Рейнольдса (в–д) в поперечном
сечении:
1, 2 — Na (1 — нижняя холодная стенка (Reτ = 167), 2 — верхняя горячая стенка

(Reτ = 270)), 3, 4 — Pb–Bi (3 — нижняя холодная стенка (Reτ = 170), 4 — верхняя

горячая стенка (Reτ = 252)), 5 — пассивная примесь (Reτ = 204), 6 — данные [12]
(Reτ = 204), 7 — данные [13] (Reτ = 180)
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ней (2) стенках для пассивной примеси (а), жидкого натрия Na (б) и свинцово-
висмутового сплава Pb–Bi (в)
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Рис. 5. Зависимости вероятности появления ОПТ P от y+ при z ∈ [−0,5; 0,5] (а)
и от z (б):
1, 2 — Na (1 — нижняя холодная стенка (Reτ = 167), 2 — верхняя горячая стенка

(Reτ = 270)), 3, 4 — Pb–Bi (3 — нижняя холодная стенка (Reτ = 170), 4 — верхняя

горячая стенка (Reτ = 252)), 5 — данные [11] (Reτ = 204), 6, 7 — данные [4] (6 —
Reτ = 108, 7 — Reτ = 590)
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Рис. 6. Гистограмма амплитуды отрицательной продольной скорости в области
обратных пристенных течений:
1 — пассивная примесь, 2, 3 — Na (2 — нижняя холодная стенка, 3 — верхняя горячая

стенка)

рис. 5,а видно, что вероятность возникновения ОПТ в случае холодной стенки выше, чем
в случае горячей, на всех расстояниях от стенки, что является неожиданным результатом,
поскольку на горячей стенке вероятность возникновения ОПТ выше вследствие меньшего

значения вязкости и, следовательно, большего значения локального числа Рейнольдса, а
это согласно данным [4, 11] должно приводить к увеличению вероятности возникновения
ОПТ. Обнаруженная особенность требует экспериментального подтверждения. На рис. 5,б
представлено распределение поперек канала вероятности P возникновения ОПТ на стенке.
Видно, что в среднем вероятность ОПТ P при наличии поля температуры увеличивается

по всей ширине канала.

На рис. 6 представлена гистограмма “интенсивности” ОПТ, т. е. модуля продольной
скорости жидкости в области ОПТ, для жидкого натрия. (Для свинцово-висмутового спла-
ва получена аналогичная закономерность.) Видно, что наиболее часто возникают события,
характеризующиеся малой вероятностью, для которых значение отрицательной скорости
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не превышает 0,1 % среднерасходной скорости. Далее количество событий ОПТ монотонно
убывает с увеличением “интенсивности” ОПТ до значения, равного 1 % среднерасходной

скорости. Следует отметить, что для жидкого натрия количество событий ОПТ, харак-
теризующихся высокой вероятностью, меньше, чем для жидкости с пассивной примесью.

Заключение. Методом прямого численного моделирования исследовано влияние на-
грева стенок на характеристики ОПТ, возникающего при турбулентном течении различ-
ных теплоносителей в канале c квадратным поперечным сечением при Re = 3150. В ка-
честве теплоносителей рассмотрены жидкий натрий и свинцово-висмутовый сплав. Поле
температур рассматривалось как в приближении пассивной примеси, так и в приближении
малого числа Маха.

Анализ гистограмм “интенсивности” ОПТ показал, что наиболее часто возникают
события, характеризующиеся малой вероятностью, для которых значение отрицательной
скорости не превышает 0,1 % среднерасходной скорости. Кроме того, для жидкого натрия
и свинцово-висмутового сплава количество событий ОПТ, характеризующихся высокой
вероятностью, меньше, чем для жидкости с пассивной примесью. Анализ профилей веро-
ятности возникновения ОПТ позволил обнаружить увеличение вероятности возникновения

ОПТ вблизи холодных стенок канала по сравнению с вероятностью возникновения ОПТ

вблизи горячих стенок. Для обоих теплоносителей на верхней стенке размеры характер-
ных областей ОПТ меньше, чем на нижней, однако количество таких областей значительно
больше.
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