2007. Том 48, № 1

Январь – февраль

C. 54 - 62

УДК 539.27:539.194

СТРОЕНИЕ МОЛЕКУЛ ScBr₃ И Sc₂Br₆ ПО ДАННЫМ СИНХРОННОГО ЭЛЕКТРОНОГРАФИЧЕСКОГО И МАСС-СПЕКТРОМЕТРИЧЕСКОГО ЭКСПЕРИМЕНТА И КВАНТОВОХИМИЧЕСКИХ РАСЧЕТОВ

© 2007 С.А. Шлыков*, А.В. Захаров, Г.В. Гиричев

Ивановский государственный химико-технологический университет

Статья поступила 19 апреля 2006 г.

Проведено исследование структуры мономерной и димерной молекул трибромида скандия посредством синхронного электронографического и масс-спектрометрического эксперимента при температуре T = 888(10) K, а также квантовохимических расчетов. Экспериментальные данные о структурных параметрах молекулы ScBr₃ получены впервые; также впервые исследована молекулярная структура димерной молекулы Sc₂Br₆. Установлено, что молекула ScBr₃ имеет эффективную конфигурацию симметрии $C_{3\nu}$ с расстоянием $r_g(Sc-Br) = 2,430(3)$ Å и валентным углом $\angle_g(Br-Sc-Br) = 117,6(5)^\circ$. Равновесная структура данной молекулы является плоской, симметрии D_{3h} . Молекула Sc₂Br₆ согласно теоретическому исследованию методами DFT и MP2, подтвержденному результатами анализа электронографических данных, имеет равновесную структуру симметрии D_{2h} с четырьмя мостиковыми связями Sc-Br.

Ключевые слова: газовая электронография, квантовая химия, массспектрометрия, трибромид скандия, димер трибромида скандия, молекулярная структура, частоты колебаний.

Структуру молекулы ScF₃ неоднократно изучали методом газовой электронографии [1—3]. В первом исследовании, проведенном Акишиным и Наумовым в 1961 г. [1], было найдено, что указанная молекула имеет симметрию D_{3h} , однако авторы не приняли во внимание эффект сокращения расстояния F...F и предполагали, что $r_g(F...F) = \sqrt{3r_g}$ (Sc—F). Согласно данным

работы [2] молекула ScF₃ должна иметь пирамидальную структуру с валентным углом $\angle_g(F$ —Sc—F) = 110,0±2,5°. Наконец, результаты последнего исследования [3] молекулы трифторида скандия согласуются с предположением о плоской равновесной структуре этой молекулы.

Недавно проведенное квантовохимическое исследование строения молекулы ScF₃ [4], включающее расчет эффективной геометрии и среднеквадратичных амплитуд колебаний, демонстрирует хорошее согласие результатов расчетов с экспериментальными величинами [3], подтверждая заключение о структуре симметрии D_{3h} . Экспериментальные и расчетные данные о строении димерной молекулы Sc₂F₆ в литературе отсутствуют.

Мономерная и димерная молекулы трихлорида скандия были изучены в 1998 г. с помощью газовой электронографии и квантовохимических расчетов в работе [5], по данным которой молекула ScCl₃ имеет плоскую равновесную структуру симметрии D_{3h} , а молекула Sc₂Cl₆ — структуру симметрии D_{2h} с четырьмя мостиковыми связями Sc—Cl_b.

Экспериментальные исследования структуры молекулы трибромида скандия, а также данные о строении молекулы димера трибромида скандия (как экспериментальные, так и теоретические) в настоящее время отсутствуют.

Структуру молекул ScI₃ и Sc₂I₆ впервые изучили в 1995—1997 гг. Ежов и др. [6,7]. Согласно этим данным, молекула ScI₃ является плоской (симметрия D_{3h}), а структура Sc₂I₆ аналогична структуре димера трихлорида скандия. В работе [7] сообщалось, что при температуре

^{*} E-mail: shlykov@isuct.ru

1050 К пар над ScI₃ на 79(3) % состоял из димерных молекул. Однако такая высокая степень димеризации пара противоречит имеющимся в литературе данным.

Масс-спектрометрическое исследование пара над ScI₃ в диапазоне температур 766—801 К и эффузионный эксперимент по методу Кнудсена с расчетом потери веса в диапазоне температур 782—872 К, проведенные Хираямой и др. [8], показали, что концентрация молекул Sc₂I₆ при T = 872 К составляла 7 мол. %. Расчеты в [8] проводили в предположении, что соотношение сечений ионизации Sc₂I₆ и ScI₃ составляет 1:1. Позднее в работе [9] была проведена интерпретация данных [8] с использованием соотношения сечений ионизации 1,5:1. Экстраполяцией по уравнению, приведенному в работе [8], мы провели верхнюю оценку концентрации димерных молекул при температуре 1050 К эксперимента [7], которая составила 25 мол. %, что существенно ниже величины 75—79 %, предлагаемой авторами работ [6, 7].

Указанное обстоятельство привело к необходимости изучения структуры мономерной и димерной молекул трииодида скандия с помощью синхронного электронографического и массспектрометрического эксперимента и квантовохимических расчетов, результаты которого были недавно опубликованы [10]. Согласно результатам [10], насыщенный пар над ScI₃ при температуре 896(10) К содержал от 3 до 4 % димера. Состав пара определяли двумя независимыми методами — по масс-спектрам, записанным во время съемки электронограмм, и из МНКанализа электронографических данных, и составил (мол. % димера): $3,9\pm0,6$ (МС, отношение сечений ионизации 2:1) и $3,4\pm0,5$ (ЭГ). Пересчет результатов [8] с принятым соотношением сечений ионизации димер:мономер как 2:1 приводит к величине концентрации димера, хорошо согласующейся с данными [10]. Таким образом, концентрация Sc₂I₆, рекомендуемая в работах [6,7], представляется сильно завышенной.

В работе [10] показано, что молекула ScI₃ имеет равновесную структуру симметрии D_{3h} , а молекула Sc₂I₆ — структуру симметрии D_{2h} с четырьмя мостиковыми связями Sc—I_b, сходную со структурой Sc₂Cl₆ [5]. Данные [6, 7] согласуются с результатами [10] в том, что касается симметрии равновесной геометрии мономерной и димерной молекул, но структурные параметры находятся в противоречии. Так, расстояние $r_g(Sc-I) = 2,62(2)$ Å при указанной в работе [6] температуре T = 1050 K значительно (на 0,03 Å) меньше расстояния 2,650(5) Å [10] для более низкой температуры T = 896(10) K. Разница $\Delta r = r_a(Sc-I_b) - r_a(Sc-I_t)$ расстояний в димерной молекуле Sc₂I₆, приведенная в работе [7], равна 0,13(2) Å. Эта величина противоречит всей имеющейся в литературе информации о строении димеров аналогичной структуры, согласно которой разница этих расстояний должна составлять около 0,2 Å (см., например, [5, 11 — 16]). По данным работы [10] $\Delta r = 0,18(4)$ Å из ЭГ эксперимента и 0,193 Å из расчета методом МР2.

Проведенное в 2000 г. теоретическое исследование молекул тригалогенидов скандия методом CISD(Q) [17] свидетельствует о плоской равновесной структуре симметрии D_{3h} для всех четырех мономерных молекул ScX₃, где X = F, Cl, Br, I.

ИК спектры поглощения молекул ScCl₃, ScBr₃ и ScI₃ в газовой фазе были изучены Селивановым и др. [18]. Во всех случаях было зарегистрировано только по одной широкой полосе поглощения, которые были отнесены авторами [18] к частоте колебаний v_3 соответствующих молекул. Полос, которые могли быть отнесены к частотам v_1 симметричных валентных колебаний, обнаружено не было. Область ниже 100 см⁻¹, где следует ожидать появления полос, относящихся к частотам v_2 и v_4 , не была исследована.

В работе [19] в ИК спектре поглощения ScBr₃ в матрице из Кr были обнаружены три полосы, отнесенные к частотам колебаний v_2 , v_3 и v_4 . Отсутствие полосы, которая могла бы быть отнесена к частоте v_1 , может свидетельствовать либо о ее малой интенсивности, либо о том, что соответствующая частота не активна в ИК спектре (в случае, если молекула ScBr₃ имеет симметрию D_{3h}). Однако авторы работы [19] указывают, что ответ на данный вопрос может быть получен лишь после дополнительных исследований ИК и, в особенности, КР спектров.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синхронный электронографический и масс-спектрометрический эксперимент проводили на комплексе аппаратуры ЭМР-100/АПДМ-1 [20-22]. Коммерческий образец трибромида

Таблица 1

Масс-спектры насыщенного пара над ScBr₃ (температура 888(10) К, ионизирующее напряжение 50 В), полученные при съемке электронограмм с двух расстояний L сопло—фотопластинка

 Sc^+ Br^+ $ScBr^+$ $\mathrm{ScBr_2}^+$ $ScBr_3^+$ $Sc_2Br_5^+$ *L*, мм 598 28(3) 100 35(1) 53(2) 37(1) 31(1) 28(3) 41(3) 36(2) 100 37(1) 33(1) 338

П р и м е ч а н и е. В скобках приведены погрешности σ , рассчитанные на основе статистического разброса данных, полученных при записи серии масс-спектров в ходе съемки электронограмм (серии из трех и четырех масс-спектров для $L_1 = 598$ и $L_2 = 338$ мм соответственно). скандия (ScBr₃·6H₂O, квалификация "х.ч.", осушенный в вакууме при медленном подъеме температуры) испаряли при T = 888(10) К из молибденовой ампулы псевдобарабанного типа с цилиндрическим эффузионным соплом размером 0,6×1,2 мм (диаметр×длина). Отношение площади поверхности испарения к площади эффузионного отверстия превышало 500.

Мониторинг состава пара осуществляли при помощи съемки масс-спектров в течение всех основных стадий эксперимента, от начала нагрева образца до экспозиции фотопленок. Полученные масс-спектры насыщенного пара над ScBr₃ представлены в табл. 1. Предполагалось, что все ионы, кроме $Sc_2Br_5^+$, образуются только из мономера ScBr₃. Соотношение сече-

ний ионизации Sc₂Br₆ и ScBr₃ было принято равным 2:1. Согласно полученным масс-спектрам в насыщенном паре над ScBr₃ при температуре 888(10) К присутствовало 7,3(3) и 7,6(4) мол. % димерных молекул при съемке электронограмм с длинного ($L_1 = 598$ мм) и короткого ($L_2 = 338$ мм) расстояний сопло—фотопластинка соответственно. Каких-либо летучих примесей в паре при температуре эксперимента зафиксировано не было.

Для регистрации электронограмм использовали пленку фирмы "Кодак" для электронной микроскопии (тип SO-163). При ускоряющем напряжении 67 кВ были получены 6 и 5 электронограмм для L_1 и L_2 соответственно. Длину волны электронов определяли по дифракционным картинам поликристаллического ZnO и она составила для $\lambda_{L_1} = 0.04599(5)$ и $\lambda_{L_2} = 0.04581(4)$ Å.

Оптическую плотность измеряли с помощью модифицированного микроденситометра MD-100 (Carl Zeiss, Jena) с компьютерным управлением [23]. Первичную обработку данных и определение длины волны электронов проводили с использованием методики, описанной в [24].

КВАНТОВОХИМИЧЕСКИЕ РАСЧЕТЫ

Расчеты геометрии, а также силового поля и частот колебаний молекул ScBr₃ и Sc₂Br₆ про-

Таблица 2

GAMESS [25]. Были использова-DFT ны методы (гибрилный B3LYP), функционал MP2 И CCSD(Т), последний только для молекулы ScBr₃. Для атома сканлия использовали валентный трехэкспонентный базис (14s11p6d3f/10s8p3d1f),полученный ИЗ базиса Вахтерса (14s9p5d/10s8p3d) [26] со следующими модификациями [25]: наиболее диффузная s-функция была заменена s-функцией с показателем экспоненты $\alpha_s = 0.077533$, перекрывающей область 3s—4s; для описания области 4р были добавлены две *p*-функции с α_p , равными 0,137 и 0,053; d- и fфункции были взяты из работ

водили с помощью программы

Структурные параметры молекул ScBr₃ и Sc₂Br₆, полученные в результате квантовохимических расчетов

Параметр	DFT(B3LYP)	MP2	CCSD(T)	CISD(Q) [17]				
Мономер								
r _e (Sc—Br), Å	2,435	2,420	2,434	2,436				
α _e (Br—Sc—Br), град.	120	120	120	120				
Димер								
$r_{\rm e}({\rm ScBr_t}), {\rm \AA}$	2,428	2,410	_	—				
$r_{\rm e}({ m Sc}{ m Br}_{ m b}),$ Å	2,645	2,606	_	—				
α _e (Br _t —Sc—Br _t), град.	115,5	117,4	—	—				
а _e (Br _b —Sc—Br _b), град.	90,8	91,6	—	—				
$\Delta r_{\mathrm{b-t}}$, Å*	0,217	0,196	—	—				

* Разность расстояний $\Delta r_{b-t} = [r(Sc-Br_b) - r(Sc-Br_t)]$ в димерной молекуле.

[27] и [28] соответственно. Релятивистские эффекты учитывали согласно [29]. В случае атомов брома остовные оболочки ($1s^22s^22p^63s^23p^63d^{10}$) описывали релятивистским эффективным остовным потенциалом [30], а для описания валентных оболочек использовался набор базисных функций (14s10p2d1f/3s3p2d1f) [31]. Релятивистские эффективные остовные потенциалы и наборы базисных функций были взяты из базы данных [32].

Структурные параметры молекул ScBr₃ и Sc₂Br₆, полученные в результате квантовохимических расчетов в нашей работе, приведены в табл. 2. Там же для сравнения даны параметры мономера ScBr₃ из работы [17]. Рассчитанные частоты колебаний молекулы ScBr₃ приведены в табл. 3. Таблица З

Частоты колебаний молекулы ScBr₃

Метод	ν_1	v_2	v ₃	ν_4
DFT	211	61	380	62
MP2	221	67	401	62
CCSD(T)	218	70	395	62
CISD(Q) [17]	223	76	404	64
Эксп. [18]*	_	_	378	_
Эксп. [19]**	(200)	62	370	100

* ИК спектр поглощения в газовой фазе.

** ИК спектр поглощения в матрице из инертного газа (Kr), в скобках приведена оценка.

Расчеты с использованием всех трех методов

(DFT, MP2 и CCSD(T)) дали плоскую равновесную структуру молекулы ScBr₃. Аналогичный результат был получен ранее методом CISD(Q) в работе [17].

В соответствии с результатами нашего теоретического исследования димерная молекула Sc_2Br_6 имеет структуру симметрии D_{2h} с четырьмя мостиковыми связями Sc_-Br_b , показанную на рис. 1. Она аналогична структурам молекул Sc_2I_6 [10] и Sc_2CI_6 [5], а также структурам димеров тригалогенидов лантанидов (см. электронографические исследования Lu_2CI_6 [13], Er_2Br_6 [15] и Ce_2I_6 [11] и квантовохимические расчеты молекул La_2Br_6 и Dy_2Br_6 [14], а также обзоры [12, 16]). Рассчитанные частоты колебаний молекулы димера трибромида скандия приведены в табл. 4.

СТРУКТУРНЫЙ АНАЛИЗ

МНК-анализ проводили с использованием модифицированного варианта программы КСЕД-35 [33]. Для расчета функций g(s) использовали амплитуды и фазы атомного рассеяния из работы [34].

Предполагали, что молекула ScBr₃ имеет ось симметрии третьего порядка. В качестве независимых параметров были взяты межъядерные расстояния $r_a(Sc-Br)$ и $r_a(Br...Br)$, среднеквадратичные амплитуды колебаний l(Sc-Br) и l(Br...Br) и константа асимметрии к(Sc-Br). Константу асимметрии к(Br...Br) принимали равной нулю.

Для димерной молекулы Sc_2Br_6 была принята структура симметрии D_{2h} с четырьмя мости-

Таблица 4

			-		-	-	-		
№ моды	Симмет- рия Частота, см ⁻¹		Интенсивность в ИК спектре, км/моль	№ Симмет- моды рия		Частота, см $^{-1}$		Интенсивность в ИК спектре, км/моль	
		DFT	MP2	MP2			DFT	MP2	MP2
1	A_g	343	365	_	10	A_u	28	28	_
2	A_g	180	193	—	11	B_{1u}	375	400	248,0
3	A_g	95	107	—	12	B_{1u}	72	74	0,08
4	A_g	45	45	—	13	B_{1u}	17	9	0,30
5	B_{1g}	187	216	—	14	B_{2u}	259	288	65,6
6	B_{1g}	63	67	—	15	B_{2u}	47	49	5,92
7	B_{2g}	369	393	—	16	B_{3u}	314	335	275,2
8	B_{2g}	48	50	—	17	B_{3u}	173	186	16,3
9	B_{3g}	49	48	-	18	B_{3u}	63	62	1,73

Частоты колебаний молекулы Sc₂Br₆, полученные в результате квантовохимических расчетов

Рис. 1. Структура, нумерация атомов и внутренние координаты молекулы Sc₂Br₆

ковыми связями Sc—Br_b (см. рис. 1), полученная в результате нашего теоретического исследования (см. выше). В процессе МНК-анализа данную структуру описывали четырьмя независимыми параметрами: расстоянием r(Sc—Br_t), которое

определяли из расстояния r(Sc Br) в мономере через фиксированную разность $\Delta r_{t-mon} = [r(Sc Br_t) - r(Sc Br)]$, взятую из квантовохимического расчета методом MP2 ($\Delta r_{t-m} = -0,0098 \text{ Å}$), разностью между расстояниями $\Delta r_{b-t} = [r(Sc Br_b) - r(Sc Br_t)]$ и углами $\angle (Br_b Sc Br_t)$ и $\angle (Br_t Sc Br_t)$. Коэффициент, соответствующий отношению концентраций молекулярных форм в паре, также уточняли в качестве независимого параметра.

Анализ данных о параметрах молекулы Sc_2Br_6 проводили в рамках геометрически согласованной структуры r_{h1} . Для перехода от r_{a} - к r_{h1} -параметрам нами был применен набор поправок, рассчитанный с использованием силового поля данной молекулы, полученного в результате расчета методом MP2, посредством программы Shrink [35] (так называемое второе приближение, учитывающее нелинейность при переходе от декартовых к внутренним координатам). Стартовые значения среднеквадратичных амплитуд также были взяты из данного расчета. Амплитуды уточняли в группах, соответствующих отдельным пикам на кривой радиального распределения. По этой причине значения амплитуд колебаний в молекуле димера имеют погрешности, одинаковые с погрешностями тех амплитуд в мономере, в группе с которыми они уточнялись.

Параметры, полученные в ходе МНК-анализа экспериментальных функций sM(s) с учетом и без учета наличия в паре димерной формы, приведены в табл. 5. Экспериментальные и теоретические кривые молекулярной составляющей интенсивности рассеяния sM(s), а также разностные кривые показаны на рис. 2. На рис. 3 приведены экспериментальная и теоретическая кривые радиального распределения f(r), а также разностные кривые, полученные при окончательной обработке с учетом наличия в паре димерных молекул (верхняя кривая), а также при Т а б л и ц а 5

Параметр	s, Å ⁻¹						
	1,5—14,5	2,8—26,0	1,5—26,0	1,5—26,0			
Мономер							
$r_{\rm a}({\rm Sc}-{\rm Br}), {\rm \AA}$	2,4291(3)	2,4284(5)	2,4288(4)	2,4375(5)			
$r_{\rm a}({ m Br}{ m Br}), { m \AA}$	4,147(2)	4,136(4)	4,141(2)	4,126(2)			
<i>l</i> (Sc—Br), Å	0,0784(5)	0,0815(4)	0,0809(4)	0,0858(4)			
<i>l</i> (BrBr), Å	0,271(2)	0,267(2)	0,270(2)	0,274(2)			
$k(Sc-Br), Å^3$	$1,4.10^{-5}*$	$1,4(2)\cdot 10^{-5}$	$1,4(2)\cdot 10^{-5}$	$4,4(2)\cdot 10^{-5}$			
Димер							
$r_{\rm a}({ m Sc}-{ m Br}_{ m b})$, Å	2,613(5)	2,617(7)	2,615(5)	-			
∠ _a (Br _b —Sc—Br _t), град.	112(2)	112(2)	112(2)	_			
∠ _a (Br _t —Sc—Br _t), град.	117(4)	116(8)	117(4)	-			
<i>l</i> (Sc—Br _b), Å	0,1140(5)	0,1137(4)	0,1138(4)	-			
$l(Br_tBr_t), Å$	0,268(2)	0,267(2)	0,268(2)	-			
$l(Br_bBr_b), Å$	0,171(2)	0,170(2)	0,171(2)	-			
<i>l</i> (Sc…Sc), Å	0,175(2)	0,174(2)	0,175(2)	-			
R_{f} , %	1,9	3,9	3,2	4,0			
χ _{dim} , мол. %	7,8(4)	7,0(5)	7,1(4)	0*			

Эффективные r_a-параметры молекул ScBr₃ и Sc₂Br₆, полученные в ходе МНК-анализа экспериментальных функций sM(s)

П р и м е ч а н и е. В скобках приведены стандартные отклонения σ_{MHK} . *Фиксированное значение.

Рис. 2. Экспериментальные (точки) и теоретические (линии) кривые молекулярной составляющей интенсивности рассеяния *sM*(*s*), а также разностные кривые (внизу)

Рис. 3. Экспериментальная (точки) и теоретическая (линия) кривые радиального распределения f(r), а также разностные кривые, полученные при обработке с учетом наличия в паре димерных молекул (верхняя кривая) и без учета димера (нижняя кривая)

обработке без учета димера (нижняя кривая). В табл. 6 представлены термически средние r_g параметры структуры молекул ScBr₃ и Sc₂Br₆ в сравнении с результатами квантовохимического исследования.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Определение состава насыщенного пара над ScBr₃, выполненное в нашей работе двумя независимыми методами — по масс-спектрам, записанным во время съемки электронограмм, и по ЭГ данным, — показало, что при температуре 888(10) К пар содержал от 7 до 8 % димера. Расчеты по масс-спектрам проводили в предположении, что соотношение сечений ионизации Sc₂Br₆ и ScBr₃ составляет 2:1. При этом наблюдали хорошее согласие между массспектральными и электронографическими данными по составу пара (7,4(4) и 7,1(9) мол. % димера соответственно). Следует отметить, что для соотношения сечений ионизации димер : мономер 1,5:1 согласовать результаты определения состава пара двумя методами (с помощью масс-спектров и электронографического анализа) невозможно. Согласно нашим данным, ниж-

Таблица б

Параметр	ЭГ		MI	22	CCSD(T)			
Расстояния и среднеквадратичные амплитуды, Å								
	r _g	l	r _e	l	r _e	l		
Sc—Br	2,431(3)	0,081(2)	2,420	0,079	2,434	0,080		
BrBr	4,159(7)	0,270(4)	4,191	0,262	4,216	0,260		
Sc—Br _t	2,422(3)	0,080(2)	2,410	0,079				
Sc—Br _b	2,619(12)	0,114(2)	2,606	0,113				
ScSc	3,70(12)	0,175(4)	3,634	0,174				
Br_bBr_b	3,64(12)	0,171(4)	3,735	0,170				
Br_tBr_t	4,09(25)	0,268(4)	4,117	0,267				
Br_bBr_t	4,15(8)	0,338(4)	4,141	0,337				
		Вале	ентные углы, град	·	·			
	\angle_{g}	\angle_{α}	\angle_{e}		\angle_{e}			
Br—Sc—Br	117,6(5)		120		120			
Sc—Br _b —Sc		91(4)	88,4					
Br_t — Sc — Br_t		117(5)	117,4					
Эффект сокращения								
δ(BrBr)	0,053(8)		0,062		0,059			
-		-						

Экспериментальные термически средние r_g-параметры структуры молекул ScBr₃ и Sc₂Br₆ в сравнении с результатами квантовохимического исследования

П р и м е ч а н и е. В скобках приведены полные погрешности, рассчитанные по следующим формулам: для расстояний $\sigma = [(2,5\sigma_{\text{MHK}})^2 + \sigma_{\text{масш}}^2]^{1/2}$, где $\sigma_{\text{масш}} = 0,001r$ (исходя из погрешности в определении длины волны, составлявшей 0,1%); для амплитуд $\sigma = 3\sigma_{\text{MHK}}$.

няя оценка соотношения сечений ионизации Sc₂Br₆ и ScBr₃ составляет 1,8:1.

Анализ полученных экспериментальных данных показал, что молекула ScBr₃ в газовой фазе при T = 888(10) К имеет эффективную структуру симметрии $C_{3\nu}$ с валентным углом \angle_g (Br—Sc—Br) = 117,6(5)°. Поскольку это значение близко к 120°, можно предположить, что молекула трибромида скандия имеет плоскую равновесную структуру симметрии D_{3h} , а пирамидальность эффективной структуры связана исключительно с усреднением по различным колебательным состояниям молекулы. Для того чтобы проверить данную гипотезу, необходимо сравнить экспериментальный и теоретический эффекты сокращения, причем последний может быть рассчитан как с использованием силового поля, полученного из квантовохимических расчетов, так и с помощью экспериментальных значений частот колебаний из работ [18, 19].

Расчет в гармоническом приближении в криволинейных координатах (программа Shrink, второе приближение [35]) с использованием силовых полей из расчетов методами MP2 и CCSD(T) дал эффекты сокращения $\delta_{\text{расч}}(\text{Br...Br}) = 0,062$ и 0,058 Å соответственно. Первое значение несколько выше экспериментального $\delta(\text{Br...Br}) = 0,053(8)$, второе согласуется с ним в пределах погрешности. Расчет с использованием частот колебаний из работ [19] (v₁ = 200 см⁻¹ (оценка), v₂ = 62 см⁻¹, v₄ = 100 см⁻¹ (ИК спектр в матрице из Kr)) и [18] (v₃ = 378 см⁻¹, ИК спектр в газовой фазе) дал эффект сокращения $\delta_{\text{расч}}(\text{Br...Br}) = 0,058$ Å, также совпадающий с экспериментальным в пределах погрешности последнего.

Вышеприведенные результаты вместе с данными теоретического исследования позволяют утверждать, что молекула трибромида скандия имеет плоскую равновесную структуру симметрии D_{3h} , аналогично молекулам ScCl₃ [5] и Scl₃ [10].

Необходимо также особо отметить, что анализ электронографических данных без учета наличия в паре димерной формы приводит к значениям $r_g(Br_Sc_Br) = 2,440(3)$ Å, $\angle_g(Br_Sc_Br) = 116,2(5)^\circ$ и $\delta(Br...Br) = 0,083$ Å, $R_f = 4,0$ %. Такой результат однозначно свидетельствует о том, что игнорирование наличия в паре в условиях электронографического эксперимента даже относительно небольшого (не более 8 %) количества димерной формы при обработке данных может привести к неверным выводам о строении молекулы. Наличие информации о составе пара при прове-

дении электронографического эксперимента становится в подобных случаях необходимым условием получения точных структурных данных.

Частоты колебаний, полученные из квантовохимических расчетов, а также отдельные экспериментальные значения частот [18, 19] (см. табл. 3) в совокупности с электронографическими данными об амплитудах колебаний позволяют сделать некоторые рекомендации относительно наиболее достоверных значений частот. Величина v_3 в ИК спектре поглощения в матрице из инертного газа [19] ниже наблюдаемой в ИК спектре в газовой фазе [18] на 8 см⁻¹, и это позволяет предположить, что частота v_2 в работе [19] также может быть заниженной. Учитывая это обстоятельство, наилучшее согласие с экспериментальными значениями частот v_2 и v_3 имеет расчет методом CCSD(T). Расчет методом MP2 дал несколько завышенное значение частоты v_3 , данные работы [17] — завышенные значения v_2 и v_3 . Оценка частоты v_1 в работе [19] явно занижена, поскольку расчеты методами MP2, CCSD(T) (наша работа) и CISD(Q) [17] дали примерно одинаковые значения v_1 , превышающие оцененное в среднем на 20 см⁻¹. В расчете методом DFT занижены все значения частот (возможно, кроме v_3).

Найденное в работе значение [19] частоты $v_4 = 100 \text{ см}^{-1}$ следует признать завышенным. Причины этой ошибки легко объяснимы. Во-первых, значения частот деформационных колебаний v_2 и v_4 в молекуле ScBr₃ очень близки — по данным расчета методами MP2 и CCSD(T) разница составляет лишь 5—8 см⁻¹. Во-вторых, согласно расчету методом MP2 интенсивность полосы в ИК спектре, соответствующей частоте v_4 , меньше интенсивности полосы, соответствующей частоте v_2 , более чем на порядок. Указанные обстоятельства не позволят наблюдать соответствующие полосы в ИК спектре по отдельности. По этой причине значение частоты $v_2 = 62 \text{ см}^{-1}$, приведенное в работе [19], соответствует полосе, общей для частот колебаний v_2 и v_4 .

Еще одним обстоятельством, которое могло ввести в заблуждение авторов работы [19], является высказываемое ими предположение о соотношении значений частот v_2 и v_4 . При оценке частот колебаний не изученных экспериментально тригалогенидов РЗЭ авторы приняли, что $v_2 < v_4$. Это соотношение действительно справедливо для всех изученных тригалогенидов лантанидов (см. [16]), а также для трифторида [4] и трихлорида [5] скандия. В случае же ScBr₃ и ScI₃ [10] имеет место обратное соотношение: $v_2 > v_4$, которое, очевидно, связано с тем, что в двух этих случаях масса атома галогена превышает массу атома металла.

Удовлетворительного объяснения наличия полосы в районе 100 см⁻¹ в спектре, полученном авторами [19], мы привести не можем. Частоты, близкие к указанной величине, отсутствуют в рассчитанных ИК спектрах как мономерной, так и димерной молекул. К сожалению, в работе [19] не приведены интенсивности полос и/или вид спектра, что еще более затрудняет поиск возможных объяснений.

Расчеты среднеквадратичных амплитуд колебаний в гармоническом приближении с использованием силовых полей, полученных в результате квантовохимических расчетов, и их сравнение с экспериментальными подтверждают вышеизложенные заключения. Значение амплитуды l(Sc-Br) = 0,081(2) Å, полученное в результате анализа электронографических данных, лучше всего согласуется с теоретическим значением $l_{pacy}(Sc-Br) = 0,080$ Å, рассчитанным по данным исследования методом CCSD(T). Все расчетные значения амплитуды l(Br...Br) несколько (в среднем на 0,01 Å) занижены по сравнению с экспериментальными. В то же время расчет с использованием частоты $v_4 = 100$ см⁻¹ из работы [19] дал величину амплитуды $l_{pacy}(Br...Br) = 0,177$ Å, которая ниже экспериментальной на 0,093 Å. Это еще раз свидетельствует о том, что значение частоты $v_4 = 100$ см⁻¹ в работе [19] определено неверно.

Димерная молекула Sc₂Br₆ по результатам экспериментального и теоретического исследований имеет структуру симметрии D_{2h} с четырьмя мостиковыми связями Sc—Br_b, аналогичную структурам молекул Sc₂I₆ [10] и Sc₂Cl₆ [5] (см. рис. 1). Как видно из табл. 6, электронографические и квантовохимические данные для димера хорошо согласуются между собой. Характерной особенностью всех изученных димерных молекул типа M_2X_6 , имеющих подобную структуру, является величина разности Δr_{b-t} между мостиковым и терминальным расстояниями металл—галоген ($r(M-X_b)$ и $r(M-X_t)$ соответственно), равная примерно 0,2 Å (см. обзоры структур тригалогенидов и их димеров [12, 16], а также отдельные исследования [5, 10, 11, 13 — 15]).

В нашем случае величина Δr_{b-t} составляет 0,197(12), 0,217 и 0,196 Å (ЭГ и расчеты методами DFT и MP2 соответственно). Можно отметить, что данная величина практически не зависит от атома галогена, что хорошо видно на примере галогенидов скандия. В случае $Sc_2I_6 \Delta r_{b-t}$ составляет 0,18(4), 0,216 и 0,193 Å (ЭГ и расчеты методами DFT и MP2 соответственно, работа [10]), в случае Sc₂Cl₆ — 0,19(3) и 0,215 Å (ЭГ и расчеты методом DFT, работа [5]). Все это еще раз подтверждает описанную выше особенность строения молекул димеров тригалогенидов.

В литературе отсутствует какая-либо информация о колебательных спектрах молекулы Sc₂Br₆ как экспериментальных, так и теоретических. По результатам данной работы можно рекомендовать набор частот колебаний, полученный в результате расчета силового поля методом МР2 (см. табл. 4), за исключением колебания, соответствующего "складыванию" цикла Sc-Вг_b—Sc—Bг_b (координата τ на рис. 1, мода № 13 в табл. 4). При использовании реализованного в программах для квантовохимических расчетов гармонического колебательного анализа данная частота определяется весьма плохо (аналогичная проблема имела место и в случае Sc₂I₆, см. [10]), и для ее надежного расчета необходим учет формы потенциальной функции соответствующего колебания.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 05-03-32804а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Акишин П.А., Наумов В.А. // Журн. структур. химии. 1961. **2**. С. 3 6. 2. Гиричева Н.И., Засорин Е.З., Гиричев Г.В. и др. // Там же. 1976. **17**. С. 797 801. 3. Засорин Е.З., Иванов А.А., Ермолаева Л.И., Спиридонов В.П. // Журн. физ. химии. 1989. **63**. C. 669 – 673.
- 4. Solomonik V.G., Stanton J.F., Boggs J.E. // J. Chem. Phys. 2005. 122. P. 094322-1 094322-12.

- 5. Haaland A., Martinsen K.-G., Shorokhov D.J. et al. // J. Chem. Soc., Dalton Trans. 1998. Р. 2787 2791.
 6. Ежов Ю.С., Комаров С.А., Севастьянов В.Г. // Журн. физ. химии. 1995. 69. С. 2099 2101.
 7. Ежов Ю.С., Комаров С.А., Севастьянов В.Г. // Журн. структур. химии. 1997. 38. С. 489 494.
 8. Hirayama C., Castle P.M., Snider W.E., Klenovsky R.L. // J. Less-Common Met. 1978. 57. Р. 69 77.
- 9. Work D.E. // Ibid. 1980. 69. P. 383 387.
- 10. Zakharov A.V., Shlykov S.A., Haaland A. et al. // J. Mol. Struct. 2005. 752. P. 1 8.
- 11. Molnar J., Konings R.J.M., Kolonits M., Hargittai M. // Ibid. 1996. 375. P. 223 229.
- 12. Hargittai M. // Chem. Rev. 2000. 100. P. 2233 2301.
- 13. Гиричева Н.И., Гиричев Г.В., Краснов А.В., Краснова О.Г. // Журн. структур. химии. 2000. 41. C.480 - 488.
- 14. *Kovács A.* // Chem. Phys. Lett. 2000. **319**. P. 238 246. 15. *Zakharov A.V., Giricheva N.I., Vogt N. et al.* // J. Chem. Soc., Dalton Trans. 2001. P. 3160 3162.

- Гамиаго V А. V., Girleneva N.I., Vogr N. et al. // J. Chem. Soc., Dation Trais. 2001. Р. 5100 5102.
 Коvács А., Konings R.J.M. // J. Phys. Chem. Ref. Data. 2004. 33, N 1. Р. 377 404.
 Соломоник В.Г., Марочко О.Ю. // Журн. физ. химии. 2000. 74. С. 2296 2298.
 Селиванов Г.К., Секачев Ю.Н., Мальцев А.А. // Там же. 1973. 47. С. 2182.
 Перов П.А., Недяк С.В., Мальцев А.А. // Вестник МГУ. Сер. Химия. 1975. № 3. С. 281 283.
 Гиричев Г.В., Уткин А.Н., Ревичев Ю.Ф. // Приборы и техника эксперимента. 1984. 2. С. 187 190.
- 21. Гиричев Г.В., Шлыков С.А., Ревичев Ю.Ф. // Там же. 1986. **4**. С. 167 169.
- 22. Шлыков С.А., Гиричев Г.В. // Там же. 1988. 2. С. 141 142.
 23. Гиричев Е.Г., Захаров А.В., Гиричев Г.В., Базанов М.И. // Изв. вузов. Технология текстильной про-мышленности. 2000. № 2. С. 142 146.
- 24. Zakharov A.V., Vogt N., Shlykov S.A. et al. // J. Mol. Struct. 2004. 707. P. 147 152.
- 25. *Schmidt M.W., Baldridge K.K., Boatz J.A. et al.* // J. Comput. Chem. 1993. **14**. P. 1347 1363. 26. *Wachters A.J.H.* // J. Chem. Phys. 1970. **52**. P. 1033 1036.
- 27. *Rappe A.K., Smedley T.A., Goddard III W.A.* // J. Phys. Chem. 1981. **85**. P. 2607 2611. 28. *Bauschlicher C.W., Jr., Langhoff S.R., Barnes L.A.* // J. Chem. Phys. 1989. **91**. P. 2399 2411.
- 29. Fedorov D.G., Nakajima T., Hirao K. // Chem. Phys. Lett. 2001. 335. P. 183 187.
 30. Bergner A., Dolg M., Küchle W. et al. // Mol. Phys. 1993. 80. P. 1431 1441.

- Martin J.M.L., Sundermann A. // J. Chem. Phys. 2001. 114. P. 3408 3420.
 The Extensible Computational Chemistry Environment Basis Set Database, Version 02/25/04, developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, P. O. Box 999, Richland, Washington 99352, USA, and funded by the U. S. Department of Energy.
- 33. Anderson B., Seip H.M., Strand T.G., Stølevik R. // Acta Chem. Scand. 1969. 23. P. 3224 3234.
- 34. Ross A.W., Fink M., Hilderbrandt R.L. International tables for crystallography. C. Dodrecht: Kluwer Acad. Publ., 1992.
- 35. Sipachev V.A. // J. Mol. Struct. (Theochem). 1985. 121. P. 143 151.