УДК 621.45.022

Характеристики прямоточных воздушно-реактивных двигателей с двухрежимной камерой сгорания

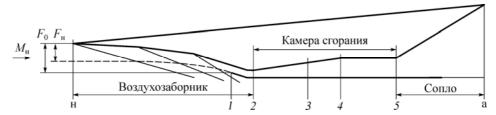
Ю.П. Гунько, В.В. Шумский

Институт теоретической и прикладной механики им. С.А. Христиановича, Новосибирск

E-mail: gounko@itam.nsc.ru, shumsky@itam.nsc.ru

Обсуждается возможность использования схемы двухрежимной камеры сгорания разгонного прямоточного воздушно-реактивного двигателя, позволяющей за счет расширения камеры начинать работу двигателя с чисел Маха полета $M_{\rm H \ Haq} = 2-3$. Степень расширения, представляющая отношение площади камеры сгорания на выходе к площади горла воздухозаборника, постоянная при всех числах Маха полета $M_{\rm H}$, определяется при $M_{\rm H} = M_{\rm H \ Haq}$ и зависит от двух факторов: расположения прямого скачка в горле воздухозаборника и условия достижения критической скорости на выходе из камеры. Двухрежимная камера сгорания обеспечивает подвод тепла в одном и том же канале сначала к дозвуковому потоку, а затем, по мере разгона, к сверхзвуковому потоку, что связано с уменьшением относительного подогрева рабочего тела. Выполнены расчеты характеристик рассмотренного для примера прямоточного воздушно-реактивного двигателя с плоским воздухозаборником в диапазоне $M_{\rm H} = 3-7$.

Ключевые слова: прямоточный воздушно-реактивный двигатель, воздухозаборник, двухрежимная камера сгорания.


Перспективным применением высокоскоростных прямоточных воздушно-реактивных двигателей (ПВРД) является их использование в качестве разгонных или разгонно-маршевых двигателей для летательных аппаратов (ЛА) с числами Маха полета до $M_{\rm H}=8-10$. В этом качестве ПВРД является многорежимным двигателем и включение его в работу становится целесообразным начиная с умеренных сверхзвуковых чисел Маха $M_{\rm H\,Haq}=2-3$. При этом рассматриваются два режима подвода тепла: для чисел Маха полета $M_{\rm H}<6-7$ эффективен цикл с подводом тепла к дозвуковому потоку в камере сгорания (КС), а при $M_{\rm H}>6-7$ используется цикл с подводом тепла к сверхзвуковому потоку в КС.

Получение высоких тягово-экономических характеристик (ТЭХ) многорежимных ПВРД требует либо регулирования их геометрии, либо перераспределения с увеличением $M_{\rm H}$ подачи горючего по длине КС, либо и того и другого вместе. Однако во многих применениях желательно отказаться от всякого регулирования. Камера сгорания, в которой отсутствует регулирование геометрии и в которой может осуществляться подвод тепла как к дозвуковому, так и к сверхзвуковому потоку, была названа двухрежимной [1–3], хотя правильнее было бы называть ее двухсекционной (с параллельным расположением секций КС [1] и с последовательным расположением секций).

В настоящей работе рассматриваются характеристики ПВРД с двухрежимной КС неизменной геометрии, позволяющей автоматически переходить от режима дозвукового подвода тепла к режиму сверхзвукового подвода только за счет изменения газотермодинамических параметров течения в КС, связанного с уменьшением подогрева рабочего тела (РТ) при увеличении числа М_н полета. Работоспособность такой КС на режиме подвода тепла к дозвуковому потоку проверена при испытаниях моделей ПВРД, включающих воздухозаборник (ВЗ) и КС, в импульсной трубе с использованием в качестве горючего газообразного водорода в условиях его самовоспламенения [4, 5]. В этих работах также демонстрировался процесс смены режима теплоподвода от первоначально сверхзвукового, устанавливающегося в КС при запуске модели, к устойчивому дозвуковому, определяемому относительным теплоподводом и уровнем потерь в тракте модели.

Работа ПВРД, в отличие от ракетных двигателей, зависит от внешних условий. Поэтому выбор параметров и оценка эффективности ПВРД конкретного назначения должны проводиться исходя из возможности обеспечения требуемых характеристик ЛА [6]. Расчет ТЭХ в связи с этим является необходимой, но лишь составной частью комплекса расчетов, конечной целью которого является определение параметров ЛА: дальности, траектории полета, массогабаритных показателей и т.д. Эти расчетные исследования на начальном этапе вынужденно носят параметрический характер, поскольку заранее не определены многие параметры как двигателя, так и ЛА. То есть требуется модель рабочего процесса ПВРД, позволяющая анализировать и сравнивать большое количество вариантов работы ПВРД в зависимости от условий полета ЛА.

Необходима также разумная идеализация рабочего процесса, что определяется задачей настоящей статьи: рассмотреть методику получения ТЭХ ПВРД, приспособленную для использования в комплексном исследовании характеристик ЛА. Так, в тракте ПВРД на режиме дозвукового подвода тепла имеет место переход от сверхзвукового в среднем потока к дозвуковому. Реально такой переход в каналах с числами Маха М > 1,5-2 и развитым пограничным слоем осуществляется через пространственную структуру — псевдоскачок [7]. Но параметры дозвукового потока за псевдоскачком (при правильном выборе основных величин, осредняющих по Маху неравномерный сверхзвуковой поток перед псевдоскачком) хорошо совпадают с параметрами потока за прямым скачком. Это позволяет принять для расчетов ТЭХ схему течения с прямым скачком. Современная вычислительная газодинамика позволяет рассматривать пространственные сверх- и дозвуковые течения, в том числе в каналах с химическими реакциями (см., например, [8, 9]). Однако на начальном этапе рассмотрения эффективности применения ПВРД для ЛА заданного назначения желательно отвлечься от конкретной конфигурации КС, и тогда методы, для которых требуется знание геометрии и детального механизма кинетики химических реакций в КС, становятся неприменимыми. В этих случаях для расчета параметров в КС и сопле приходится привлекать одномерную модель течения с определением параметров РТ, основываясь на уравнениях сохранения массы, энергии, количества движения, энтропии, записываемых для характерных сечений тракта двигателя, что позволяет получать простые и наглядные результаты, применимые для массовых расчетов при анализе характеристик ЛА.

 $Puc.\ 1.$ Расчетная схема ПВРД с двухрежимной КС. F_0 — площадь входа в ВЗ, $F_{_{\rm H}}$ — площадь струи воздуха, входящего в ВЗ.

Схема проточного тракта, учитывающая характерные особенности ПВРД, необходимые для анализа протекания термогазодинамических процессов при переходе от одного сечения к другому, представлена на рис. 1. Характерные сечения: н — набегающий поток, I — вход в канал ВЗ, 2 — горло ВЗ, 3 — место перехода сверхзвукового потока в дозвуковой, 4 — начало подвода тепла в КС, 5 — выходное сечение КС, а — выходное сечение сопла. Граница между ВЗ и КС назначается различным образом. Например, при исследовании ВЗ диффузорный участок 2–4, как правило, включают в состав ВЗ. При исследованиях КС, особенно на присоединенном трубопроводе, участок 2–4 часто включают в состав КС, так как течения на участках 2–4 и 4–5 взаимосвязаны и зависят одно от другого. Назначение границы между ВЗ и КС принципиального значения не имеет и определяется только удобством анализа расчетных или экспериментальных данных. В настоящей статье принято, что КС начинается с сечения 2. То есть параметры в горле ВЗ служат входными параметрами для КС. Принято, что участок 4–5, на котором подводится тепло, имеет постоянную площадь поперечного сечения F_5 = F_4 .

Режимы работы камеры сгорания

В зависимости от значения $M_{_{\rm H\,Hau}}$, с которого ПВРД включается в работу, вида горючего, коэффициента избытка воздуха α , полноты сгорания η и уровня потерь в тракте подвод тепла Q в КС организуется разными способами. Эволюция течения на начальном участке КС в процессе разгона ЛА от $M_{_{\rm H\,Hau}}$ приведена на рис. 2. Предполагается, что α и η постоянны при всех значениях $M_{_{\rm H\,Hau}}$.

Если в момент включения в работу ПВРД при ${\rm M_H}={\rm M_{H\, Ha^{44}}}$ в КС постоянного сечения $F_{\rm KC}=F_2=F_5$ возможно подвести к сверхзвуковому потоку все тепло Q, выделяющееся при сгорании горючего с данными α и η , то для всех ${\rm M_H}>{\rm M_{H\, Ha^{44}}}$ КС $F_{\rm KC}=$ const будет удовлетворять требованиям работы без термического запирания, так как относительный подогрев РТ уменьшается при увеличении ${\rm M_H}$. В этом случае во всем диапазоне чисел Маха от начального ${\rm M_H}={\rm M_{H\, Ha^{44}}}$ до конечного значения ${\rm M_H}={\rm M_{H\, MakC}}$ можно использовать КС со степенью расширения $f_{\rm KC}=F_5/F_2={\rm const}=1$.

Если для $M_H = M_{H \text{ нач}}$ при подводе располагаемого количества тепла Q к сверхзвуковому потоку в КС $F_{\text{кс}} = F_2 = F_5$ наступает термическое запирание, то участок КС 2–4 должен быть расширяющимся. Степень расширения КС $f_{\text{кс}}$ для этого случая рассчитывается при $M_H = M_{H \text{ нач}}$ (рис. 2, a) из следующих соображений. На входе в КС (в горле ВЗ) располагается прямой скачок. При этом $\lambda_{2+} = 1/\lambda_2$, где $\lambda_2 > 1$ — приведенная скорость перед скачком, $\lambda_{2+} < 1$ — за скачком. Затем определяется такая величина степени расширения участка 2–4 $f_{\text{кс}} > 1$, для которого получающееся значение $\lambda_4 < \lambda_{2+} < 1$ соответствует (за счет подвода располагаемого количества тепла Q) разгону дозвукового потока на участке 4–5 до $M_5 = 1$. Выбранная из этих соображений величина $f_{\text{кс}}$ используется затем при расчете характеристик ПВРД при всех $M_H > M_{H \text{ нач}}$.

С увеличением M_H от $M_H = M_{HHAM}$ картина течения на участке 2-5 изменяется (рис. 2,b). Прямой скачок смещается в расширяющуюся часть КС и располагается в таком промежуточном сечении 3 между началом КС и сечением 4, чтобы при подводе располагаемого тепла Q обеспечивалось $M_5 = 1$. Течение на участке 3-5 при этом дозвуковое. При дальнейшем увеличении M_H наступает момент, когда для выполнения требования $M_5 = 1$ прямой скачок должен располагаться в сечении 4 (рис. 2,c). При этом тепло подводится на участке 4-5 к дозвуковому потоку, начиная с параметров, равным параметрам за прямым скачком в сечении 4.

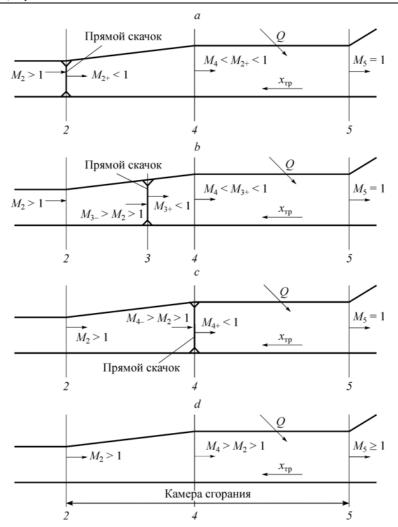


Рис. 2. Режимы работы КС.

Еще один режим работы КС с расширяющимся участком 2-4 и со сверхзвуковым потоком на этом участке соответствует подводу тепла к сверхзвуковому потоку на участке 4-5, начиная с параметров, равным сверхзвуковым параметрам в сечении 4, и до достижения $M_5=1$ в сечении 5 (рис. 2, d). Этот режим со сверхзвуковым течением по всему тракту двигателя возможен с того же значения $M_{\rm H}$, что и для режима, изображенного на рис. 2, c. С этого значения $M_{\rm H}$ (при дальнейшем увеличении $M_{\rm H}$) течение по всему тракту двигателя является сверхзвуковым (рис. 2, d).

Картина течения, имеющая место в КС при дозвуковом подводе тепла на участке 4–5, аналогична картине течения при экспериментальном определении дроссельных характеристик ВЗ, когда уменьшением поперечного сечения канала на выходе из модели перемещают замыкающий скачок ближе к горлу без изменения расхода воздуха через ВЗ. Для КС ПВРД роль дросселя выполняет теплоподвод в КС. Аналогичная картина наблюдается и при работе системы ВЗ + турбореактивный двигатель, когда изменение режима двигателя приводит к изменению положения замыкающего скачка в диффузоре ВЗ. Таким образом, рассматриваемая двухрежимная КС позволяет без регулирования геометрии камеры осуществлять в одном канале подвод тепла как к дозвуковому потоку, так и к сверхзвуковому.

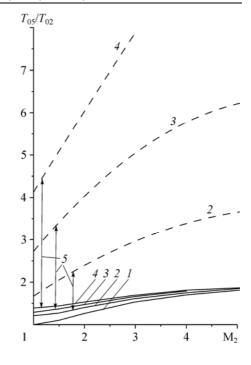
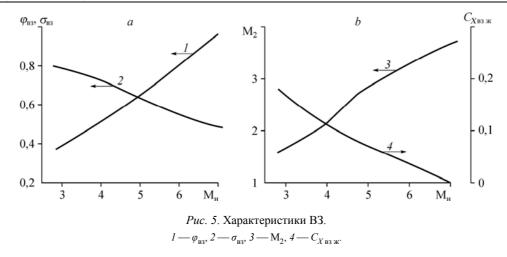

симости от числа Маха ${\rm M_2}>1$ на входе в КС и степени расширения КС $f_{\rm KC}$ при условии ${\rm M_5}=1$. Подвод тепла к сверхзвуковому потоку — сплошные линии, к дозвуковому потоку (прямой скачок расположен

Рис. 3. Относительный подогрев РТ в КС в зави-

нии, к дозвуковому потоку (прямои скачок расположен в сечении 2) — штриховые. $f_{\rm KC}=1$ (1), $f_{\rm KC}=1$,5 (2), $f_{\rm KC}=2$ (3), $f_{\rm KC}=2$,5 (4), 5 — разница в относительном подогреве

при до- и сверхзвуковом подводе тепла.

На рис. З приведен относительный подогрев воздуха T_{05}/T_{02} , который может быть обеспечен в двухрежимной КС при различных значениях $f_{\rm KC}$ (графики рис. З получены при показателе адиабаты процесса k=1,4), где $T_{02}=T_{0\rm H},\,T_{02}$ и T_{05} — температуры торможения соответственно на входе в КС (в сечении 2), в набегающем потоке и на выходе из КС (в сечении 5). Видно, что при данном числе Маха $\rm M_H$ подвод тепла к дозвуковому потоку позволяет значительно увеличить подогрев по сравнению с подводом тепла к сверхзвуковому потоку, что и обеспечивает возможность начала работы


двухрежимной КС гиперзвукового ПВРД с малых значений $M_{\scriptscriptstyle H}$.

Заметим, что двухрежимная КС позволяет отказаться от распределения подачи горючего по длине КС. Место подачи горючего может быть выбрано в любой части участка 2–5 и зависит, прежде всего, от способа и организации подачи горючего и от его кинетических характеристик. Кроме того, двухрежимная КС позволяет выполнить участки 2–4 не в виде плавно расширяющегося канала, как изображено на рис. 1 и 2, а, например, в виде канала с уступом, для которого роль границы расширяющегося участка будет играть разделительная линия тока за уступом. Применение уступа в схеме с двухрежимной КС позволяет использовать те преимущества, которые он дает при использовании в КС ПВРД: ограничивает проникновение возмущений по пограничному слою и зонам отрыва вверх по потоку на поверхности сжатия ВЗ и тем самым предотвращает срыв работы ВЗ из-за работы КС, служит стабилизатором пламени [10].

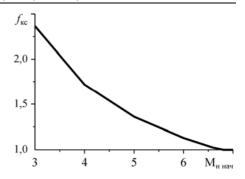
Воздухозаборник

Для исследования ТЭХ ПВРД, имеющего двухрежимную КС, рассмотрена газодинамика внутреннего тракта ПВРД, имеющего плоский ВЗ с клином внешнего сжатия. Выбор ВЗ такого типа обусловлен двумя причинами. Во-первых, плоские ВЗ часто используются в проектах сверх- и гиперзвуковых ЛА. Во-вторых, характеристики плоских ВЗ могут быть сравнительно просто оценены в широком диапазоне чисел $M_{\rm H}$. Схема такой конфигурации ВЗ приведена на рис. 4. Углы наклона поверхностей клина внешнего

сжатия $\delta_1=10^\circ$, $\delta_2=15^\circ$, $\delta_3=20^\circ$, угол поднутрения обечайки $\delta_{00}=10^\circ$. Расчетное число Маха (M_p), при котором скачки внешнего сжатия при невязком обтекании фокусируются на передней кромке обечайки, равно 7. Относительная площадь горла $f_2=F_2/F_0=0,15$, где F_0 — площадь входа в ВЗ, характеризуемая высотой h_0 . При определении размеров ВЗ, необходимых для расчета пограничного слоя, высота ВЗ была принята $h_0=1$ м. Параметры ВЗ рассчитывались в диапазоне чисел Маха $M_H=3-7$ для траектории полета со скоростным напором $q_H=0,5\cdot 10^5$ Па.

Для расчета характеристик B3 была использована приближенная методика, представленная в работах [11, 12]. Основные ее особенности заключаются в следующем. При рассмотрении течения используется модель совершенного газа с постоянным k=1,4. Расчет обтекания клина внешнего сжатия проводится в предположении плоского течения с учетом вытесняющего действия безотрывного пограничного слоя. Рассматриваются режимы обтекания со сверхзвуковой скоростью на входе во внутренний канал и в горле B3. В диапазоне $M_{\rm H}=3-7$ скачки внешнего сжатия не пересекаются до сечения входа, и поток вне пограничного слоя в этом сечении является однородным.

Основные характеристики ВЗ: коэффициент расхода $\varphi_{\rm B3} = F_{\rm H}/F_0$, коэффициент восстановления полного давления потока в горле $\sigma_{\rm B3} = p_{02}/p_{0\rm H}$, число Маха $\rm M_2$, коэффициент сопротивления ВЗ по жидкой линии $C_{X_{\rm B3\, ж}} = X_{\rm B3\, ж}/(F_0\cdot q_{\rm H})$ представлены на рис. 5, здесь $X_{\rm B3\, ж}$ — проекция на ось x силы от избыточного давления, действующего на поверхность струи, захватываемой ВЗ, от сечения в набегающем потоке до передней кромки обечайки, $q_{\rm H}$ — скоростной напор набегающего на двигатель воздуха. Можно отметить, что эффективность рассматриваемого ВЗ по коэффициенту восстановления полного давления вполне соответствует уровню этого показателя, полученного в исследованиях характеристик двумерных ВЗ различной конфигурации со сверхзвуковым потоком в горле (см. [13]). Этот уровень охватывает диапазон величин от $\sigma_{\rm B3} = 0.75 \div 0.8$ при $\rm M_{\rm H} = 4$ до $\sigma_{\rm B3} = 0.35 \div 0.55$ при $\rm M_{\rm H} = 7$.

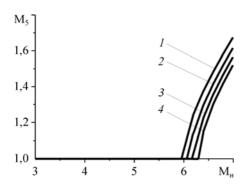

Газотермодинамические характеристики двухрежимной камеры сгорания

В качестве горючего рассматривался керосин TC-1, впрыскиваемый в КС при температуре 25 °C, с коэффициентом избытка воздуха $\alpha=1$ и полнотой сгорания $\eta=0.95$. Рабочим телом на выходе из КС и сопла служили продукты сгорания, теплофизические свойства которых определялись в результате термодинамического расчета

Рис. 6. Степень расширения КС.

равновесных состояний в зависимости от давления, температуры и коэффициента избытка воздуха [14]. Коэффициент потери скорости в сопле принимался $\varphi_{\rm c}=0,97$. Расширение двигательного тракта $f_{\rm a}=F_{\rm a}/F_0=1,5,\ F_{\rm a}$ —выходная площадь сопла.

Расчеты ТЭХ и параметров РТ на выходе из КС и сопла проводились в диапазоне чисел $M_{_{\rm H}}$ от $M_{_{\rm H \ Hau}}$ до $M_{_{\rm H}}=7,\,$ параметры потока



в горле (в сечении 2, рис. 5) соответствовали указанной для ВЗ траектории полета со скоростным напором $q_{\rm H}=0.5\cdot 10^5$ Па. В качестве ${\rm M_{H~Hau}}$ брались значения 3, 4, 5, 6 и 7. При каждом значении ${\rm M_{H~Hau}}$ вычислялась степень расширения КС $f_{\rm KC}=F_5/F_2$, которая затем использовалась для расчета во всем диапазоне от ${\rm M_{H~Hau}}$ до ${\rm M_H}=7$.

Необходимая степень расширения КС в зависимости от $M_{\rm H\,Hau}$, при котором ПВРД вступает в работу, приведена на рис. 6. При $M_{\rm H\,Hau} > 6,85$ тепло, выделяющееся при сгорании керосина с коэффициентом избытка воздуха $\alpha=1$ и полнотой сгорания $\eta=0,95$, может быть подведено к сверхзвуковому потоку в КС с $f_{\rm kc}={\rm const}=1$. При $M_{\rm H\,Hau} < 6,85$ для подвода выделяющегося тепла необходимо расширение КС, причем $f_{\rm kc}$ существенно увеличивается с уменьшением $M_{\rm H\,Hau}$.

Увеличение $f_{\rm KC}$ с уменьшением ${\rm M_{H\,Hal}}$ связано с тем, что относительный подогрев РТ в тракте двигателя $T_{05}/T_{02}=T_{05}/T_{0{\rm H}}\approx h_{05}/h_{0{\rm H}}$ увеличивается с уменьшением ${\rm M_{H\,Hal}}$, причем тем сильнее, чем меньше ${\rm M_{H\,Hal}}$, здесь h — физическая удельная энтальпия РТ. При этом на участке $2{\text -}4$ КС происходит торможение воздуха от сверхзвукового потока на входе в КС (в сечении 2) до дозвукового потока в сечении 4 в соответствии со схемой течения на участке $2{\text -}4$, приведенной на рис. 2, $a{\text -}c$. Схематично на этих рисунках переход течения от сверхзвукового к дозвуковому рассматривается, как было указано выше, в прямом скачке. Реально этот переход осуществляется в псевдоскачке. Причем требуется достаточно протяженная зона для размещения на участке $2{\text -}4$ псевдоскачка, увеличивающаяся с увеличением числа Маха перед псевдоскачком. Требования к размещению псевдоскачка определяются при конструктивном оформлении участка $2{\text -}4$ в конкретном двигателе.

На рис. 7 приведено значение числа Маха $\rm M_5$ на выходе из КС. В диапазоне $\rm M_H=3$ -6, то есть для большей части траектории полета, на участке 4–5 за счет подвода тепла в КС осуществляется режим разгона дозвукового потока от $\rm M_4<1$ до звуковой

скорости $M_5 = 1$ на выходе из КС. С увеличением $f_{\rm KC}$ (при уменьшении $M_{\rm H\,HaH}$) граница смены режима подвода тепла к дозвуковому потоку на участке 4-5 на подвод тепла к сверхзвуковому потоку смещается в область

Puc. 7. Число Маха на выходе из КС в зависимости от числа $M_{\rm H}$ полета и начального числа $M_{\rm H\ hau}$, с которого ПВРД начинает работу.

$$\begin{aligned} \mathbf{M}_{\mathrm{H \, Hau}} &= 3 \, (\mathit{I}), 4 \, (\mathit{2}), 5 \, (\mathit{3}), 6 \, (\mathit{4}), \\ f_{\mathrm{KC}} &= 2,37 \, (\mathit{I}), 1,72 \, (\mathit{2}), 1,36 \, (\mathit{3}), 1,13 \, (\mathit{4}). \end{aligned}$$

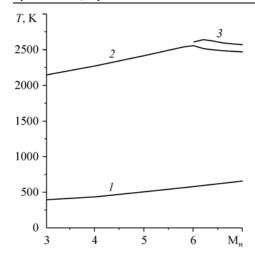


Рис. 8. Температура РТ в тракте ПВРД. 1 — статическая температура воздуха T_2 в горле ВЗ (на

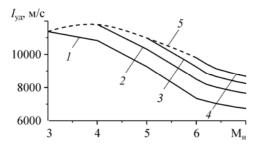
входе в КС), 2, 3 — статическая температура продуктов сгорания T_5 на выходе из КС, $M_{_{\rm H\ Haq}}=3$ (2), 6 (3), $f_{\rm KC} = 2,37 (2), 1,13 (3).$

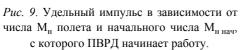
меньших М_н. Причем смена режима происходит в сравнительно узком диапазоне М_н: от $M_H = 6$ при $f_{KC} = 2,4$ до $M_H = 6,85$ при $f_{KC} = 1$.

На рис. 8 приведены статические температуры по тракту ПВРД: температура воздуха T_2 в горле ВЗ (на входе в КС) и температура T_5 продуктов сгорания на выходе из КС. Значения T_5 слабо зависят и от режима подвода тепла в КС и от $M_{_{\rm H\,Hay}}$. Это объясня-

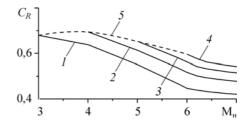
ется тем, что для всего диапазона $M_{\rm H}=3-7$ поток на выходе из КС имеет либо $M_{\rm S}=1$ (для режима подвода тепла к дозвуковому потоку), либо небольшие значения M_5 от 1 до 1,6 (для режима подвода тепла к сверхзвуковому потоку). Значения T_5 незначительно увеличиваются с увеличением M_H в основном из-за увеличения температуры T_2 на входе в КС. Излом на кривых связан со сменой режима теплоподвода в КС.

Тягово-экономические характеристики ПВРД


Для ПВРД с рассматриваемой двухрежимной КС и плоским ВЗ были рассчитаны ТЭХ: удельный импульс $I_{vn} = R/G_{rop}$ и коэффициент эффективной тяги $C_R = R/(q_H F_0)$. Под эффективной тягой R понимается проекция на ось связанной с двигателем системы координат сил избыточного давления и трения, приложенных к внутренним поверхностям двигателя [15, с. 26]. Из уравнения количества движения для контрольной поверхности, включающей все поверхности двигательного тракта и жидкую линию ВЗ, следует выражение для определения тяги R через параметры РТ на входе и выходе из двигателя:


$$R = G_{RO3} (\beta W_a \varphi_c - W_H) + F_a (p_a - p_H) - C_{XR3 \times K} F_0 q_H$$

Здесь $G_{\text{гор}}, G_{\text{воз}}$ — расходы горючего и воздуха, $\beta = (G_{\text{воз}} + G_{\text{гор}})/G_{\text{воз}}, W_{\text{а}}, W_{\text{н}}$ — скорости реактивной струи на срезе сопла и набегающего на двигатель потока воздуха соответственно, p_a и p_H — давления на срезе сопла и в набегающем потоке (см. рис. 1).


Графики ТЭХ приведены на рис. 9 и 10 в зависимости от $M_{\rm H}$. Кривые 1-4показывают изменение ТЭХ для ряда значений M_{H-HAY} и f_{KC} . Излом на этих кривых соответствует смене режимов теплоподвода в КС. Кривая 5 представляет собой огибающую точек начала кривых I-4 для различных значений M_{HBH} , она характеризует возможные предельные ТЭХ (для данного конкретного набора исходных параметров, принятых в настоящих расчетах), которые могут быть получены для разгонных ПВРД за счет регулирования $f_{\kappa c}$ по $M_{\rm H}$.

Из рис. 6-10 видно, что двухрежимная КС позволяет без регулирования геометрии и перераспределения подачи горючего между секциями КС начинать работу ПВРД с умеренных сверхзвуковых чисел М_н. Однако требование начала работы ПВРД с меньших значений $M_{H H H H}$ приводит к существенному уменьшению ТЭХ при $M_{H} = 6-7$. Так, уменьшение $M_{H \text{ HAM}}$ от 6 до 3 уменьшает ТЭХ для M_{H} = 6 на 25 % (см кривые 1 и 4

 $\mathbf{M}_{\mathrm{H \ Haq}}=3 \ (I), 4 \ (2), 5 \ (3), 6 \ (4), f_{\mathrm{KC}}=2,37 \ (1), 1,72 \ (2), 1,36 \ (3), 1,13 \ (4), 5$ — огибающая I_{YJ} по $\mathbf{M}_{\mathrm{H \ Haq}}$ (величины I_{YJ} при регулировании значений f_{KC} по числам $\mathbf{M}_{\mathrm{H \ Haq}}$).

 $Puc.\ 10.\$ Коэффициент тяги в зависимости от числа $M_{\rm H\ Haq}$, с которого ПВРД начинает работу. $M_{\rm H\ Haq}$ = 3 (I), 4 (2), 5 (3), 6 (4), $f_{\rm KC}$ = 2,37 (I), 1,72 (2), 1,36 (3), 1,13 (4), 5 — огибающая C_R по $M_{\rm H\ Haq}$ (величины C_R , полученные при регулировании значений $f_{\rm KC}$ по числам $M_{\rm H\ Haq}$).

на рис. 9 и 10). Такую цену приходится платить за уменьшение того числа $M_{\rm H\, Ha^{4}}$ полета, с которого ПВРД вступает в работу, что объясняется необходимостью расширения КС при меньших значениях $M_{\rm H}$ для предотвращения термического запирания КС.

Заключение

Рассмотрена схема ПВРД с двухрежимной КС, обеспечивающей подвод тепла в одном и том же канале КС сначала к дозвуковому потоку, а затем, по мере увеличения скорости полета, к сверхзвуковому потоку. КС позволяет начинать работу при числах $M_{\rm H\, Hau}=2-3$ за счет расширения КС $f_{\rm KC}$. Величина $f_{\rm KC}$ определяется при $M_{\rm H\, Hau}$ и быстро увеличивается с уменьшением $M_{\rm H\, Hau}$.

Двухрежимная КС позволяет избежать регулирования геометрии проходных сечений и перераспределения подачи горючего по траектории полета. Отсутствие такого регулирования достигается ценой ухудшения ТЭХ при больших значениях $M_{\rm H}$. Расчеты для рассмотренного примера ПВРД с плоским ВЗ показали, что для $M_{\rm H}=6-7$ (при $M_{\rm H\,Hall}=3$) ухудшение ТЭХ составляет ~ 25 % по сравнению с тем, как если бы ПВРД начинал работу с $M_{\rm H\,Hall}=6-7$. Поскольку отсутствие регулирования может представлять значительные преимущества, то суждение о возможности использования двухрежимной КС для разгонного ПВРД необходимо делать по конечной цели ЛА конкретного назначения.

Список литературы

- Billig F.S., Waltrup P.J., Stockbridge R.D. Integral-rocket dual-combustion ramjets: a new propulsion concept // J. Spacecraft and Rockets. 1980. Vol. 17, No. 5. P. 416–424.
- **2.** Сабельников В.А., Пензин В.И. К истории исследований в области высокоскоростных ПВРД в России. М.: Изд. ЦАГИ, 2008. 64 с.
- Левин В.М. Проблемы организации рабочего процесса в ПВРД // Физика горения и взрыва. 2010. Т. 46, № 4.
- Баев В.К., Шумский В.В., Ярославцев М.И. Исследование работы двухрежимной камеры сгорания при дозвуковом подводе тепла // Газодинамика течений в соплах и диффузорах. Новосибирск, 1982. С. 86–105.
- 5. Баев В.К., Шумский В.В., Ярославцев М.И. Исследование газодинамики модели с горением в импульсной аэродинамической трубе // ПМТФ. 1983. № 6. С. 58–66.
- 6. Фомин В.М., Звегинцев В.И., Мажуль И.И., Шумский В.В. Анализ эффективности использования комбинированной силовой установки для разгона малоразмерных ракет, стартующих с поверхности земли // ПМТФ. 2010. Т. 51, № 6. С. 21–30.
- Крокко Л. Одномерное рассмотрение газовой динамики установившихся течений // Основы газовой динамики / ред. Г. Эммонс. М.: Издательство иностранной литературы, 1963. С. 64–324.

- 8. Гуськов О.В., Копченов В.И., Липатов И.И., Острась В.Н., Старухин В.П. Процессы торможения сверхзвуковых течений в каналах. М.: Физматлит, 2008. 168 с.
- Trefny C.J., Dippold V.F. Supersonic free-jet combustion in a ramjet burner // AIAA Paper. 2010. No. 2010–6643.
 p.
- **10. Баев В.К., Головичев В.И., Третьяков П.К., Гаранин А.Ф., Константиновский В.А., Ясаков В.А.** Горение в сверхзвуковом потоке. Новосибирск: Наука, 1984. 304 с.
- 11. Белоглазкин А.Н., Гунько Ю.П., Кощеев А.Б., Мажуль И.И. Расчетный анализ аэродинамических и тягово-аэродинамических характеристик гиперзвукового летательного аппарата с ГПВРД // Ежегодная школа-семинар ЦАГИ "Механика жидкости и газа", 30 января—4 февраля 1990 г. Сб. докл. "Аэротермодинамика воздушно-космических систем". Жуковский: ЦАГИ, 1992. С. 51—60.
- 12. Гунько Ю.П., Мажуль И.И. Интегральная аэрогазодинамика гиперзвуковых летательных аппаратов с прямоточными воздушно-реактивными двигателями со сверхзвуковым горением // Теплофизика и аэромеханика. 1995. Т. 3, № 4. С. 309–321.
- 13. Гунько Ю.П., Мажуль И.И. Газодинамическое построение плоского воздухозаборника с повышенным коэффициентом расхода // Теплофизика и аэромеханика. 2012. Т. 19, № 4. С. 431–448.
- **14.** Алемасов В.Е., Дрегалин А.Ф., Тишин А.П., Худяков В.А. Термодинамические и теплофизические свойства продуктов сгорания: справочник Т. 1. Методы расчета / под ред. акад. Глушко В.П. М.: Изд-во ВИНИТИ, 1971. 267 с.
- **15. Зуев В.С., Макарон В.С.** Теория прямоточных и ракетно-прямоточных двигателей. М.: Машиностроение, 1971. 368 с.

Статья поступила в редакцию 28 августа 2013 г., после доработки — 8 ноября 2013 г.