УДК 539.3 DOI: 10.15372/PMTF202315320

ОПРЕДЕЛЕНИЕ КОНСТАНТ УПРУГОСТИ ГРАФИНА МЕТОДОМ МОЛЕКУЛЯРНОЙ ДИНАМИКИ

П. В. Полякова, Р. Т. Мурзаев, Ю. А. Баимова

Институт проблем сверхпластичности металлов РАН, Уфа, Россия E-mails: polina.polyakowa@yandex.ru, murzaevrt@gmail.com, julia.a.baimova@gmail.com

С использованием метода молекулярной динамики рассчитаны константы жесткости пяти структурных конфигураций графина — монослоя углерода, в котором атомы уложены особым образом и имеют sp- и sp²-гибритизацию. Установлено, что укладка атомов в слое графина оказывает существенное влияние на константы жесткости. Обнаружено, что наибольшую константу жесткости c_{11} (1091 ГПа) имеет γ_2 -графин, наименьшую (258 ГПа) — α -графин. Показано, что β_3 -графин и γ_2 -графин являются сильно анизотропными структурами.

Ключевые слова: графин, молекулярная динамика, константы жесткости

Двумерные структуры представляют собой функциональные материалы, обладающие уникальными физико-механическими свойствами [1, 2]. В 2004 г. в эксперименте был получен графен — одноатомный слой графита [3]. У этого материала обнаружено большое количество новых физических свойств, которые обусловлены его двумерной структурой [4]. В настоящее время помимо графена известно большое количество других двумерных структур, одной из которых является графин — монослой атомов углерода, имеющих *sp*- и *sp*²-гибритизацию и особым образом уложенных в решетке [5]. В данной работе методом молекулярной динамики (МД) рассчитываются константы жесткости для пяти структурных конфигураций графина.

На рисунке показаны фрагменты ячеек моделирования для пяти основных конфигураций графина: α , β_1 , β_3 , γ_1 , γ_2 [6]. Графин α , β_1 , γ_1 имеет гексагональную анизотропию, графин β_3 — ромбическую, а γ_2 — моноклинную. Размеры начальной структуры: $L_x = 250$ Å, $L_y = 250$ Å.

Расчеты проводятся с использованием программы LAMMPS и межатомного потенциала AIREBO. С помощью термостата Нозе — Хувера в системе поддерживается постоянная температура, равная 0,001 К. Периодические граничные условия применяются во всех направлениях. Размер расчетной ячейки по нормали к плоскости графина H = 20 Å значительно больше толщины графина h = 3,4 Å.

Для расчета констант жесткости c к ячейке моделирования прикладывается растягивающая деформация $\varepsilon = 0.1$ %, а затем рассчитываются напряжения σ , возникающие

Работа выполнена в рамках гранта Республики Башкортостан РФ для молодых ученых и государственного задания молодежной лаборатории Института проблем сверхпластичности металлов РАН.

[©] Полякова П. В., Мурзаев Р. Т., Баимова Ю. А., 2023

Фрагменты ячейки моделирования конфигураций графина α (a), β_1 (б), β_3 (e), γ_1 (c) и γ_2 (d) в проекции на плоскость x, y, а также ячейка моделирования, используемая для расчета констант упругости графина (e)

в решетке. Константы жесткости рассчитываются на основе закона Гука:

σ_{xx}	=	c_{11}	c_{12}	c_{13}	c_{14}	c_{15}	c_{16}	ε_{xx}]
σ_{yy}		c_{21}	c_{22}	c_{23}	c_{24}	c_{25}	c_{26}	ε_{yy}	
σ_{zz}		c_{31}	c_{32}	C_{33}	C34	C35	C_{36}	ε_{zz}	
σ_{yz}		c_{41}	c_{42}	c_{43}	c_{44}	c_{45}	c_{46}	ε_{yz}	
σ_{xz}		c_{51}	c_{52}	c_{53}	c_{54}	c_{55}	c_{56}	ε_{xz}	
σ_{xy}		c_{61}	c_{62}	c_{63}	c_{64}	c_{65}	c_{66}	ε_{xy}	

В случае гексагональной сингонии имеется пять независимых констант жесткости c_{11} , c_{12} , c_{13} , c_{33} , c_{44} и константа c_{66} , определяемая по формуле $c_{66} = 0,5(c_{11} - c_{12})$, в случае ромбической сингонии — девять констант c_{11} , c_{12} , c_{13} , c_{22} , c_{23} , c_{33} , c_{44} , c_{55} , c_{66} , в случае моноклинной сингонии — 13 констант c_{11} , c_{12} , c_{13} , c_{15} , c_{22} , c_{23} , c_{33} , c_{35} , c_{44} , c_{46} , c_{55} , c_{66} . Поскольку графин является двумерным материалом, а его толщина вдоль оси z пренебрежимо мала, число констант жесткости для данной структуры уменьшается до четырех: c_{11} , c_{22} , c_{12} , c_{66} .

Значения полученных констант жесткости графина приведены в таблице. Для α -, β_1 -, γ_1 -графина $c_{11} = c_{22}$, для β_3 - и γ_2 -графина константы жесткости c_{11} и c_{22} различаются, что свидетельствует о сильной анизотропности этих материалов. Полученные значения констант жесткости γ_1 -графина согласуются с результатами расчетов в работах [7, 8], где методами теории функционала плотности и МД соответственно определена жесткость данной конфигурации графина, составившая 564,4 и 700 ГПа соответственно.

Таким образом, с использованием метода МД проведен расчет констант жесткости двумерных материалов. Установлено, что атомная структура графина оказывает суще-

Конфигурация графина	$c_{11}, \Gamma \Pi a$	$c_{22}, \Gamma \Pi a$	$c_{12}, \Gamma \Pi a$	$c_{66}, \Gamma \Pi a$
α	$257,\!95$	$257,\!95$	$202,\!15$	25,70
eta_1	$374,\!34$	$374,\!34$	$211,\!30$	$80,\!90$
eta_3	447,22	259,39	$31,\!07$	$53,\!61$
γ_1	$523,\!96$	$523,\!96$	$192,\!58$	$180,\!62$
γ_2	1091,40	$349,\!52$	$225,\!46$	250,10

Константы жесткости графина различных конфигураций

ственное влияние на значения констант жесткости. Обнаружено, что среди пяти конфигураций графина наибольшую константу жесткости $c_{11} = 1091$ ГПа имеет γ_2 -графин, а конфигурации графина β_3 и γ_2 являются сильно анизотропными.

ЛИТЕРАТУРА

- 1. Кривцов А. М., Подольская Е. А. Моделирование упругих свойств кристаллов с гексагональной плотноупакованной решеткой // Изв. РАН. Механика твердого тела. 2010. № 3. С. 77–86.
- 2. Беринский И. Е., Кривцов А. М. Об использовании многочастичных межатомных потенциалов для расчета упругих характеристик графена и алмаза // Изв. РАН. Механика твердого тела. 2010. № 6. С. 60–85.
- 3. Geim A. K., Novoselov K. S. The rise of graphene // Nature Materials. 2007. V. 6. P. 183–191.
- Аннин Б. Д., Баимова Ю. А., Мулюков Р. Р. Механические свойства, устойчивость, коробление графеновых листов и углеродных нанотрубок (обзор) // ПМТФ. 2020. Т. 61, № 5. С. 175–189.
- Baughman R. H., Eckhardt H., Kertesz M. Structure-property predictions for new planar forms of carbon: Layered phases containing sp² and sp atoms // J. Chem. Phys. 1987. V. 87. P. 6687–6699.
- Belenkov E. A., Mavrinskii V. V., Belenkova T. E., Chernov V. M. Structural modifications of graphyne layers consisting of carbon atoms in the *sp*- and *sp*²-hybridized states // J. Exp. Theor. Phys. 2015. V. 120. P. 820–830.
- Kang J., Li J., Wu F., et al. Elastic, electronic, and optical properties of two-dimensional graphyne sheet // J. Phys. Chem. C. 2011. V. 115. P. 20466–20470.
- Cranford S. W., Buehler M. J. Mechanical properties of graphyne // Carbon. 2011. V. 49, N 13. P. 4111–4121.

Поступила в редакцию 30/V 2023 г., после доработки — 19/VI 2023 г. Принята к публикации 26/VI 2023 г.