2013

№ 2

УДК 669.273:622.772:662.346.3

ВЛИЯНИЕ КОЛИЧЕСТВА АККУМУЛИРОВАННОЙ ЭНЕРГИИ НА СТРУКТУРНЫЕ ИЗМЕНЕНИЯ В МИНЕРАЛАХ РЕДКИХ МЕТАЛЛОВ ПРИ МЕХАНОАКТИВАЦИИ КОНЦЕНТРАТОВ

Е. В. Богатырева, А. Г. Ермилов

Национальный исследовательский технологический университет "МИСиС" E-mail: Helen Bogatureva@mail.ru, 119049, г. Москва, Россия

Опробован метод прямой оценки количества аккумулированной при механоактивации энергии фазами вольфрамитового, лопаритового и шеелитового концентратов с помощью данных рентгеноструктурного анализа. Предложены зависимости для расчета изменения количества энергии, аккумулированной фазами концентратов редких металлов при "сухом" и "мокром" режимах механоактивации.

Механоактивация, рентгеноструктурный анализ, редкие металлы, вольфрамит, лопарит, шеелит

Для выбора эффективных условий механоактивации (МА) различных по природе материалов и выбора активатора необходимы критерии оценки степени механического воздействия и его эффективности. Несомненно, что различные по прочности кристаллические решетки способны запасать (аккумулировать) энергию с различной скоростью, что особенно важно для многокомпонентных систем. Использование методики оценки количества усвоенной энергии обрабатываемым материалом может не только сократить объемы исследования, но и обеспечить контроль за степенью активации для уже разработанных процессов.

Ранее предпринимались попытки установить взаимосвязь между усвоенной цирконом энергии при механохимической обработке со скоростью и изменением энергии активации процесса спекания активированной шихты [1, 2]. Эффективность же предварительной механоактивации* для интенсификации химических и металлургических процессов до сих пор определяется в основном эмпирически. В связи с этим поиск более универсальной методики оценки количества усвоенной энергии материалом при механоактивации является актуальным.

Контроль количества усвоенной при МА энергии может осуществляться с помощью рентгеноструктурного анализа (PCA) [3] на периодически отбираемых пробах активированного материала по зависимости, разработанной на кафедре редких металлов МИСиС для простой системы W-C:

^{*}Предварительная механоактивация не имеет свойственных механохимической обработке недостатков, таких, как: снижение эффективности механического воздействия на исходные материалы и значительное повышение энергозатрат по мере накопления продуктов реакции, которые, в свою очередь, могут тормозить взаимодействие исходных компонентов.

$$\Delta E_{\Sigma} = \Delta E_d + \Delta E_s + \Delta E_{\varepsilon} \,, \tag{1}$$

где ΔE_{Σ} — количество запасенной при МА энергии, Дж/моль; ΔE_d — количество энергии, затраченное на изменение межплоскостных расстояний кристаллической решетки, Дж/моль; ΔE_s — количество энергии, запасенное в виде свежеобразованной поверхности ОКР, Дж/моль; ΔE_{ε} — количество энергии, запасенное в виде микродеформации, Дж/моль.

Цель работы — установить взаимосвязь между количеством энергии, аккумулируемой фазами концентратов редких металлов при МА, и показателями рентгеноструктурного анализа активированного материала.

Объекты исследования — стандартный и низкосортный вольфрамитовые, шеелитовый и лопаритовый концентраты. Химический и фазовый составы концентратов редких металлов приведены в табл. 1.

Механоактивации подвергали:

стандартный вольфрамитовый концентрат двух фракций (-0.071 + 0.056) и (-0.125 + 0.106) мм;
исходный (неизмельченный) низкосортный вольфрамитовый концентрат, содержащий 93.8 % фракции (-2.00 + 0.071) мм;

— исходный шеелитовый концентрат, содержащий ~ 90 % фракции (-0.071) мкм;

— измельченный лопаритовый концентрат, содержащий 89.9 % фракции (-0.100 + 0.010) мм.

Для МА концентратов использовали центробежную планетарную мельницу (ЦПМ) ЛАИР-0.015 с развиваемым ускорением 25 g; мелющие тела — стальные шары диаметром 5–8 мм. Механоактивации в "сухом" режиме были подвергнуты все перечисленные выше концентраты, а в "мокром" режиме — низкосортный вольфрамитовый концентрат.

Структурные характеристики фаз концентратов редких металлов определяли методом PCA на установке ДРОН-4 с компьютерной расшифровкой дифрактограмм с помощью данных ASTM [4].

В табл. 2 приведены режимы МА перечисленных концентратов, результаты РСА исходных и активированных концентратов редких металлов и результаты расчета количества запасенной при МА энергии ΔE_{Σ} .

Анализ результатов расчетов выявил линейный характер зависимости ΔE_{Σ} от ΔE_d (рис. 1). Так, для:

• шеелита, активированного в "сухом" режиме:

$$\Delta E_{\Sigma} = 0.9173 \Delta E_d + 23.328 \,; \tag{2}$$

• вольфрамита стандартного концентрата, активированного в "сухом" режиме:

$$\Delta E_{\Sigma} = 0.9308 \Delta E_d + 13.309;$$
 (3)

• вольфрамита низкосортного концентрата, активированного в "сухом" режиме:

$$\Delta E_{\Sigma} = 0.9221 \Delta E_d + 22.413; \tag{4}$$

• вольфрамита низкосортного концентрата, активированного в "мокром" режиме:

$$\Delta E_{\Sigma} = 1.0689 \Delta E_d + 1.860;$$
 (5)

• лопарита, активированного в "сухом" режиме:

$$\Delta E_{\Sigma} = 1.0860 \Delta E_d + 1.381.$$
 (6)

	Th]	Ţ	1	0.43
	Та		l		0.49
	Na]	[Ĵ	5.12 N, фазо
	ЧN	Ì	I]	5.73 VISIO
	P3Э	<u>]</u>	Ţ	J	27.44 YROS
	Ti	1	Ţ		21.67 RO C'
ıc. %	Ca]	1	22.3	5.29 SPECT
	As	< 0.01	0.31]	
OB, Mac	Ч	1.83	1.79	1.19	— — — — — — — — — — — — — — — — — — —
Содержание элементо	Mo	< 0.003	< 0.003	< 0.003	— На ИСП-6
	Ъb	0.024	0.18		
	Cu	0.052	0.23	0.16	
	S	0.17	0.56	0.46	пссио
	Al	1.38	1.53		МЄ ОНЧ
	Sn	7.35	90.6		
	Si	2.26	2.83	1.23	1.02 Нен сп
	Mn	10.1	3.86	J	BbIIIOIII
	Fe	7.23	25.2		Нализ
	M	40.4	12.7	35.6	ский а
ине bA	Mac., %	84.7 6.8 8.5	24.0 8.4 6.8 60.8	61.7 38.3	100 имиче
Содержан фаз по РФ	Фаза	MnWO4 SiO2 SnO2	FeWO4 SnO2 SiO2 FeCO3	CaWO4 CaCO3	(Ла,Са,Се) (Ti,Nb)O ₃ ечание. X:
(e HT- IT	вq пноЯ	Стандартный Киндартиный Киндартины	йынтоооэгин вольфрамитовый	-лпээШ йыаот	-идвпоП ст и йыяот м м

ТАБЛИЦА 1. Химический и фазовый составы концентратов редких металлов

на установке ДРОН-4.

№	Режим МА-обработки	Период	Размер ОКР	Микроде-	ΔE_d	ΔE_s	ΔE_{ε}	ΔE_{Σ}	ΔE_a^{\exp}	$\Delta E_a^{eq.7-11}$
	ин сорасотки	Å	OIU	формация, %			кЛа	ж/моль		
1	2	3	4	5	6	7	8	9	10	11
	-	Стандарт	ный вольа	врамитовый	кониені	, прат	Ũ	-	10	
1.0	Измельченный -0.07+0.056 мм	a = 4.795; b = 5.736; c = 4.987; $\beta = 90.827$	530±50	0.20±0.01				_	_	
1.1	$M_{\kappa}:M_{m} = 4:80;$ $Z_{m} = 0.60;$ $\tau_{a} = 0.5$ мин	a = 4.796; b = 5.738; c = 4.986; $\beta = 90.830$	454±10	0.26±0.01	10.55	1.61	0.55	12.72	28.3	33.7
1.2	$M_{\kappa}:M_{\mu}=1:20;$ $Z_{\mu}=0.15;$ $\tau_{a}=0.5$ мин	a = 4.795; b = 5.737; c = 4.988; $\beta = 90.831$	310±10	0.25±0.01	10.98	6.84	0.45	18.27	63.8	47.9
1.3	$M_{\kappa}:M_{\mu\nu} = 4:20;$ $Z_{\mu\nu} = 0.15;$ $\tau_a = 2.5$ мин	a = 4.796; b = 5.739; c = 4.987; $\beta = 90.843$	309±10	0.32±0.01	21.54	6.89	1.25	29.69	57.8	61.4
1.4	$M_{\kappa}:M_{\mu\mu} = 1:80;$ $Z_{\mu\mu} = 0.60;$ $\tau_a = 2.5$ мин	a = 4.790; b = 5.739; c = 4.990; $\beta = 90.851$	170±50	0.42±0.01	2.15	20.41	2.74	25.30	71.3	80.8
2.0	Измельченный -0.125+0.106 мм	a = 4.794; b = 5.737; c = 4.988; $\beta = 90.789$	700±50	0.17±0.01						
2.1	$M_{\kappa}:M_{\mu}=4:80;$ $Z_{\mu}=0.60;$ $\tau_{a}=2.5$ мин	a = 4.796; b = 5.739; c = 4.988; $\beta = 90.857$	369±10	0.38±0.01	22.18	6.55	2.32	31.05	78.7	63.3
2.2	$M_{\kappa}:M_{\mu\nu} = 1:20;$ $Z_{\mu\nu} = 0.15;$ $\tau_a = 2.5$ мин	a = 4.792; b = 5.737; c = 4.988; $\beta = 90.885$	160±50	0.35±0.01	13.14	24.63	1.88	39.65	98.0	99.0
2.3	$M_{\kappa}:M_{\mu\nu} = 4:20;$ $Z_{\mu\nu} = 0.15;$ $\tau_a = 0.5$ мин	a = 4.795; b = 5.737; c = 4.988; $\beta = 90.831$	360±50	0.25±0.01	5.38	6.89	0.67	12.95	41.1	38.5
2.4	$M_{\kappa}:M_{\mu\mu} = 1:80;$ $Z_{\mu\mu} = 0.60;$ $\tau_a = 0.5$ мин	a = 4.794; b = 5.735; c = 4.985; $\beta = 90.826$	330±50	0.24±0.01	28.42	8.18	0.35	36.96	82.4	65.5
2.5	$M_{\kappa}:M_{\mu}=1:20;$ $Z_{\mu}=0.15;$ $\tau_{a}=1.0$ мин	a = 4.800; b = 5.742; c = 4.991; $\beta = 90.866$	450±20	0.37±0.01	79.89	4.06	2.17	86.11	65.8	48.2

ТАБЛИЦА 2. Режимы МА-обработки, результаты РСА минералов редких металлов в концентратах и изменения энергии активации процесса выщелачивания

Продолжение табл. 2.

1	2	3	4	5	6	7	8	9	10	11
2.6	$M_{\kappa}:M_{\mu}=1:20;$ $Z_{\mu}=0.15;$ $\tau_{a}=1.5$ мин	a = 4.797; b = 5.743; c = 4.990; $\beta = 90.858$	277±10	0.38±0.01	60.72	11.15	2.32	74.19	37.6	63.8
2.7	$M_{\kappa}:M_{\mu}=1:20;$ $Z_{\mu}=0.15;$ $\tau_{a}=2.0$ мин	a = 4.794; b = 5.740; c = 4.989; $\beta = 90.880$	266±10	0.45±0.01	20.67	11.91	3.48	36.06	60.8	76.1
Низк	осортный вольфр	амитовый ко	нцентрат	с (МА в "сухо	м" режі	іме)				
3.0	Исходный	a = 4.764; b = 5.721; c = 4.972; $\beta = 90.459$	> 5000	_		_	_	_	_	_
3.1	$M_{\kappa}: M_{\mu} = 1:20;$ $Z_{\mu} = 0.15;$ $\tau_a = 0.5$ мин	a = 4.750; b = 5.720; c = 4.966; $\beta = 90.376$	640±100	0.33 ± 0.1	127.64	7.96	2.19	137.79	11.8	9.9
3.2	$M_{\kappa}: M_{\mu} = 1:20;$ $Z_{\mu} = 0.15;$ $\tau_a = 2.5$ мин	a = 4.768; b = 5.729; c = 4.976; $\beta = 90.717$	300±50	0.60 ± 0.1	88.73	16.99	7.25	112.97	19.9	21.8
3.3	$M_{\kappa}:M_{\mu}=1:80;$ $Z_{\mu}=0.60;$ $\tau_{a}=0.5$ мин	a = 4.760; b = 5.718; c = 4.976; $\beta = 90.421$	485±50	0.38±0.04	16.39	10.51	2.91	29.81	35.2	36.1
3.4	$M_{\kappa}:M_{m}=1:80;$ $Z_{m}=0.60;$ $\tau_{a}=2.5$ мин	a = 4.758; b = 5.726; c = 4.974; $\beta = 90.510$	300±50	0.60±0.1	0.22	16.99	7.25	24.46	36.6	44.6
3.5	$M_{\kappa}:M_{\mu}=4:20;$ $Z_{\mu}=0.15;$ $\tau_{a}=0.5$ мин	a = 4.766; b = 5.726; c = 4.968; $\beta = 90.397$	738±30	0.29±0.01	14.64	6.91	1.69	23.24	34.6	29.4
3.6	$M_{\kappa}:M_{\mu\nu} = 4:20;$ $Z_{\mu\nu} = 0.15;$ $\tau_a = 2.5$ мин	a = 4.768; b = 5.722; c = 4.973; $\beta = 90.357$	475±15	0.41±0.01	36.28	10.73	3.38	50.39	47.8	36.8
3.7	$M_{\kappa}:M_{m}$ =4:80; Z_{m} = 0.60; τ_{a} = 0.5 мин	a = 4.771; b = 5.725; c = 4.980; $\beta = 90.579$	1030±60	0.37±0.01	111.47	4.95	2.76	119.18	12.7	12.9
3.8	$M_{\kappa}:M_{\mu\nu} = 4:80;$ $Z_{\mu\nu} = 0.60;$ $\tau_a = 2.5$ мин	a = 4.771; b = 5.724; c = 4.974; $\beta = 90.596$	323±20	0.38±0.02	70.38	15.78	2.91	89.07	25.0	27.3
3.9	$M_{\kappa}:M_{\mu}=1:20;$ $Z_{\mu}=0.15;$ $\tau_{a}=1.0$ мин	a = 4.769; b = 5.718; c = 4.975; $\beta = 90.391$	426±20	0.45±0.02	33.66	11.96	4.08	49.70	45.4	38.8

1	2	3	4	5	6	7	8	9	10	11
	-	a = 4.772		5		,			10	
2 1 0	$M_{\kappa}:M_{\mu}=1:20;$	b = 5.722;	000100	0.47.0.00	04.00	17.05	4 4 7	106.20	10.2	22.6
3.10	$L_{\rm III} = 0.15;$	c = 4.977;	299±20	0.47±0.02	84.80	17.05	4.45	106.30	19.3	22.6
	т _а −1.3 МИН	$\beta = 90.432$								
	$M_{\rm w}: M_{\rm w} = 1.20$	a = 4.760;								
3.11	$Z_{\rm m} = 0.15;$	b = 5.725;	301±20	0.52 ± 0.02	16.83	16.93	5.44	39.20	30.9	46.9
	τ _a =2.0 мин	c = 4.9/0; $\beta = 00.601$				_		_	-	
		p = 90.001 a = 4.766								
	$M_{\kappa}:M_{\mu}=1:80;$	a = 4.700, b = 5.721								
3.12	$Z_{\rm m} = 0.60;$	c = 4.970:	232±15	0.35 ± 0.02	1.09	21.93	2.47	25.49	63.2	45.5
	τ _a =1.0 мин	$\beta = 90.255$								
	$M \cdot M = 1 \cdot 20$	a = 4.759;								
3 1 3	$Z_{\rm m} = 0.60$	<i>b</i> = 5.726;	200+15	0.33 ± 0.02	6 56	25 44	2 19	34 19	58.9	53.1
5.15	∠ _ш 0.00, τ₀=15мин	c = 4.974;	200±13	0.55 ± 0.02	0.50	23.44	2.19	57.17	50.7	55.1
		$\beta = 90.49$								
	$M_{\rm K}:M_{\rm III} = 1:80;$	a = 4.766; b = 5.719;								
3.14	$Z_{\rm III} = 0.00,$	b = 5.718, c = 4.075	178±10	0.42 ± 0.02	15.52	28.58	3.55	47.65	48.8	58.9
	t _a -∠.0 мин	c = 4.973, $\beta = 90.20$								
	Низко	сортный вол	ьфрамит	овый концент	npam (N	IA в "ма	кром"	режиме	2)	L
	$M_{\kappa}:M_{B}:M_{III} =$	a = 4.768:					T 2111		/	
4.1	= 1:1:20;	b = 5.719;	967100	0.2610.01	17 15	0.70	216	50.20	206	21.2
	$Z_{\rm m} = 0.15;$	c = 4.969;	86/±90	0.36 ± 0.01	47.43	0.78	2.10	50.39	28.6	31.2
	$\tau_a = 0.5$ мин	$\beta = 90.496$								
	$M_{\rm K}:M_{\rm B}:M_{\rm HI}=$	a = 4.760;								
4.2	= 1:1:20;	b = 5.722;	618±100	0.33±0.03	57.49	3.14	1.74	62.37	41.0	33.1
	$Z_{\rm III} = 0.15;$	c = 4.9/3;		0.55±0.05				,		
	$\tau_a = 2.5$ МИН М ·М ·М –	p = 90.419								
	$1 \times 1_{\rm K} \cdot 1 \times 1_{\rm B} \cdot 1 \times 1_{\rm HI} = 1 \cdot 3 \cdot 20$	u = 4.770; h = 5.772.								
4.3	$Z_{\rm m} = 0.15$	c = 4.969	646±50	0.30 ± 0.01	18.91	2.79	1.36	23.06	25.1	27.0
	$\tau_a = 0.5$ мин	$\beta = 90.329$								
	$M_{\kappa}:M_{B}:M_{III} =$	a = 4.766;								
1 1	= 1:3:20;	b = 5.722;	820-1200	0 25-1 0 04	2 1 1	0.00	2.01	5 10	16.9	126
4.4	$Z_{\rm III} = 0.15;$	c = 4.976;	039±200	0.33±0.04	2.11	0.98	2.01	5.10	10.8	12.0
	$\tau_a = 2.5$ мин	$\beta = 90.341$								
	$M_{\kappa}:M_{B}:M_{III} =$	a = 4.767;								
4.5	= 1:1:80;	b = 5.720;	521±100	0.33±0.03	42.46	4.68	1.74	48.88	31.2	33.0
	$\Sigma_{\rm m} = 0.60;$	c = 4.9/0; $\rho = 00.470$		'						
	$\tau_a = 0.5 \text{ MUH}$ M·M·M –	p = 90.4/9 a = 4.752								
	$= 1 \cdot 1 \cdot 80$	u = 4.752, h = 5.720.								
4.6	$Z_{\rm m} = 0.60^{\circ}$	c = 4.963	296±50	0.39 ± 0.04	176.44	12.10	2.61	191.15	38.5	37.8
	т _а =2.5 мин	$\beta = 90.310$								
	$M_{\kappa}:M_{B}:M_{III} =$	a = 4.758:					<u> </u>			
17	= 1:3:80;	b = 5.719;	500 - 100	0.2210.02	100 02	256	1 6 1	114.00	21.4	25.0
4./	$Z_{\rm III} = 0.60;$	c = 4.969;	588±100	0.32±0.03	108.92	3.56	1.61	114.09	31.4	35.0
	$\tau_a = 0.5$ мин	$\beta = 90.352$								

Продолжение табл. 2.

Продолжение табл. 2.

1	2	3	4	5	6	7	8	9	10	11	
1.9	$M_{\kappa}:M_{B}:M_{III} =$ = 1:3:80;	a = 4.754; b = 5.718;	211+60	0.40+0.04	122.02	11.27	2 77	147.07	29.6	27.7	
4.8	$Z_{\rm III} = 0.60;$	c = 4.970;	311±00	0.40±0.04	155.05	11.2/	2.11	14/.0/	38.0	37.7	
	t _a =2.5 мин [р=0.576] Шеелитовый кониентрат										
0	Исходный	a = 5.224;			şeninpun	1					
5.0		c = 11.361	806±5	0.007±0.005							
5.1	$M_{\kappa}:M_{III} = 1:20;$ $Z_{III} = 0.15;$ $\tau_a = 0.5$ мин	a = 5.239; c = 11.361	643±4	0.033±0.006	168.22	1.63	0.03	169.88	14.2	18.1	
5.2	$M_{\kappa}:M_{III} = 1:20;$ $Z_{III} = 0.15;$ $\tau_a = 2.5$ мин	a = 5.224; c = 11.306	174±2	0.183±0.015	141.62	23.41	0.68	165.71	27.3	24.4	
5.3	$M_{\kappa}:M_{III} = 1:80;$ $Z_{III} = 0.60;$ $\tau_a = 0.5$ мин	a = 5.228; c = 11.327	366±3	0.204±0.005	42.93	7.75	0.83	51.51	27.5	25.6	
5.4	$M_{\kappa}:M_{III} = 1:80;$ $Z_{III} = 0.60;$ $\tau_a = 2.5$ мин	a = 5.324; c = 11.338	144±1	0.321±0.016	52.65	29.63	2.05	84.33	32.6	37.2	
5.5	$M_{\kappa}:M_{III} = 4:20;$ $Z_{III} = 0.15;$ $\tau_a = 0.5$ мин	a = 5.239; c = 11.361	683±4	0±0.006	168.22	1.16	0	169.38	14.3	18.0	
5.6	$M_{\kappa}:M_{III} = 4:20;$ $Z_{III} = 0.15;$ $\tau_a = 2.5$ мин	a = 5.239; c = 11.359	409±3	0.109±0.005	163.03	6.26	0.24	169.53	27.30	19.22	
5.7	$M_{\kappa}:M_{III} = 4:80;$ $Z_{III} = 0.60;$ $\tau_a = 0.5$ мин	a = 5.245; c = 11.374	590±4	0.044±0.005	269.36	2.38	0.04	271.77	7.6	8.3	
5.8	$M_{\kappa}:M_{III} = 4:80;$ $Z_{III} = 0.60;$ $\tau_a = 2.5$ мин	a = 5.243; c = 11.367	362±3	0.150±0.005	228.70	7.95	0.45	237.09	13.4	12.0	
			Лопар	ритовый кон	центран	n					
6.0	Исходный	<i>a</i> =5.494; <i>c</i> =7.783	>5000	0.10						-	
6.1	$M_{\kappa}:M_{m} = 1:20,$ $Z_{m} = 0.15;$ $\tau_{a} = 0.5$ мин	<i>a</i> = 5.495; c = 7.772	3510± ±100	0.11	17.46	0.90	0.02	18.38	48.8	49.9	
6.2	$M_{\kappa}:M_{m} = 1:20,$ $Z_{m} = 0.15;$ $\tau_{a} = 2.5$ мин	a = 5.484; c = 7.777	633±30	0.28	73.40	4.98	0.78	79.16	67.1	66.8	
6.3	$M_{\kappa}:M_{III} = 1:80;$ $Z_{III} = 0.60;$ $\tau_a = 0.5$ мин	a = 5.495; c = 7.782	1093±60	0.14	3.98	2.88	0.11	6.97	55.7	40.7	
6.4	$M_{\kappa}:M_{III} = 1:80;$ $Z_{III} = 0.60;$ $\tau_a = 2.5$ мин	a = 5.486; c = 7.771	381±20	0.39	74.11	8.28	1.61	84.00	71.3	70.3	
6.5	$M_{\kappa}:M_{III} = \overline{4:20};$ $Z_{III} = 0.15;$ $\tau_a = 0.5$ мин	a = 5.497; c = 7.773	2099± ±160	0.10	3.19	1.50	0	4.69	35.7	29.3	

1	2	3	4	5	6	7	8	9	10	11
6.6	$M_{\kappa}:M_{III} = 4:20;$ $Z_{III} = 0.15;$ $\tau_a = 2.5$ мин	a = 5.493; c = 7.780	1571±80	0.14	12.49	2.01	0.11	14.61	53.8	49.4
6.7	$M_{\kappa}:M_{III} = 4:80;$ $Z_{III} = 0.60;$ $\tau_a = 0.5$ мин	a = 5.494; c = 7.777	1157±65	0.12	12.85	2.73	0.05	15.63	41.9	51.9
6.8	$M_{\kappa}:M_{III} = 4:80;$ $Z_{III} = 0.60;$ $\tau_a = 2.5$ мин	a = 5.493; c = 7.776	857±50	0.17	21.01	3.68	0.21	24.90	54.8	59.3

Окончание табл. 2.

П р и м е ч а н и е. М_к:М_ш — соотношение масс концентрата и шаров в барабане; М_к:М_в:М_ш — соотношение масс концентрата, воды и шаров в барабане мельницы; Z_ш — степень заполнения барабана мельницы шарами;

Для расчета приняты следующие значения:

— для стандартного вольфрамитового концентрата фаза вольфрамита имеет $E_{\text{реш}} = 29536.97$ кДж/моль (определена методом Ферсмана при допущении, что вольфрамит — координационный оксид), $E_{\text{пов}} = 1.97$ Дж/м² [5], $E_{\text{ко}} = 309.86$ ГПа [5], $V_{mol} = 43.20$ см³/моль. При расчете $E_{\text{реш}}$, $E_{\text{пов}}$, $E_{\text{ко}}$, V_{mol} учтено, что содержание гюбнерита в вольфрамите низкосортного концентрата составляет 67 % (определено по кристаллохимическому параметру *a* [6]);

— для низкосортного вольфрамитового концентрата фаза вольфрамита имеет $E_{\text{реш}} = 29616.26$ кДж/моль (определена методом Ферсмана при допущении, что вольфрамит — координационный оксид), $E_{\text{пов}} = 2.04$ Дж/м² [5], $E_{\text{ю}} = 322.83$ ГПа [5], $V_{mol} = 41.56$ см³/моль. При расчете $E_{\text{реш}}$, $E_{\text{пов}}$, $E_{\text{ю}}$, V_{mol} учтено, что содержание гюбнерита в вольфрамите низкосортного концентрата составляет 30 % (определено по кристаллохимическому параметру *a* [6]);

— *для шеелитового концентрата* фаза шеелита имеет $E_{\text{реш}} = 29251.95$ кДж/моль (определена методом Ферсмана при допущении, что шеелит — координационный оксид), $E_{\text{пов}} = 1.74$ Дж/м² [5], $E_{\text{ю}} = 266.82$ ГПа [5], $V_{mol} = 49.66$ см³/моль;

— для лопаритового концентрата фаза лопарита имеет $E_{\text{реш}} = 16675.5$ кДж/моль (определена методом Ферсмана при допущении, что лопарит — координационный оксид), $E_{\text{пов}} = 1.39$ Дж/м² [5], $E_{\text{ю}} = 199.26$ ГПа [5], $V_{mol} = 37.91$ см³/моль.

Установлено, что для лопарита, обладающего меньшей энергией кристаллической решетки (16675.5 кДж/моль) из рассматриваемых минералов, и вольфрамита низкосортного вольфрамитового концентрата, активированного в "мокром" режиме, в линейной зависимости $\Delta E_{\Sigma} = f(\Delta E_d)$ угловой коэффициент k равен 1.09; 1.07 и минимальный свободный член (c) 1.381; 1.860 соответственно. Тогда как для шеелита и вольфрамитов, активированных в "сухом" режиме, значения $k \approx 0.91-0.93$, а c составляет 23.328, 13.309 и 22.413 соответственно. Вероятно, это связано с различием в способности минералов аккумулировать дефекты при механоактивации. Так, для лопарита, шеелита, вольфрамита стандартного и вольфрамита низкосортного концентратов эффективная энергия разрушения составляет (в Дж/м²): 11.88; 15.90; 18.84 и 19.25 соответственно [5], т. е. минералы с большей энергией кристаллической решетки аккумулируют дефектов больше, но это справедливо только для "сухого" режима МА. Однако различие в значениях с для вольфрамитов стандартного концентратов требует дополнительных исследований.

Рис. 1. Зависимость изменения ΔE_{Σ} от ΔE_d для фазы: *а* — шеелита ("сухая" МА); *б* — вольфрамита стандартного концентрата ("сухая" МА); *в* — вольфрамита низкосортного концентрата ("сухая" МА); *г* — вольфрамита низкосортного концентрата ("мокрая" МА); *д* — лопарита ("сухая" МА)

При МА в "мокром" режиме минералы со значительной энергией решетки ведут себя как минералы с малой энергией кристаллической решетки, т. е. аккумулируют энергию в виде дефектов структуры в меньших количествах. Это связано с влиянием эффекта Ребиндера при МА в "мокром" режиме, в результате чего запасенная энергия расходуется в основном на измельчение обрабатываемого материала [7]. Сопоставление гранулометрических составов лопаритового и низкосортного вольфрамитового концентратов после 0.5 и 2.5 мин МА подтвердило предположение (рис. 2).

Так, фракционный состав низкосортного вольфрамитового концентрата с увеличением продолжительности МА меняется незначительно (рис. 2a), тогда как для лопарита характерно увеличение количества мелких фракций в несколько раз (рис. 2δ). Энергии кристаллических решеток фаз низкосортного вольфрамитового концентрата вольфрамита $E_{\text{pem}} = 29616.26$ кДж/моль и основной породы сидерита $E_{\text{pem}} = 21129.98$ кДж/моль значительно превышают энергию кристаллической решетки лопарита.

Рис. 2. Изменение гранулометрического состава низкосортного вольфрамитового (*a*) и лопаритового (б) концентратов после МА в течение 0.5 и 2.5 мин

МА применяли для интенсификации низкотемпературного (*t* ≤ 99°C) щелочного выщелачивания стандартного и низкосортного вольфрамитовых концентратов, низкотемпературного содового выщелачивания шеелитового концентрата и низкотемпературного азотнокислотного выщелачивания лопаритового концентрата.

Кинетические исследования выщелачивания исходных концентратов и механически активированных образцов проводили согласно методике [8]. На основании экспериментальных данных построены кинетические зависимости степени выщелачивания (α) от времени (τ), по начальным участкам кинетических кривых рассчитаны зависимости $\ln(d\alpha/d\tau)$ от $1/T_i \cdot 10^{-3}$ ([9–11], рис. 3) и определены количества энергии, усвоенные минералами редких металлов, по изменению энергии активации процессов выщелачивания исходного и активированного материала ($\Delta E_a = E_a - E_a^*$) (см. табл. 2).

Рис. 3. Зависимость $\ln(d\alpha/d\tau)$ от $1/T_i \cdot 10^{-3}$ для исходного концентрата и механически активированного при различных режимах: *а* — шеелитовый; *б* — лопаритовый

Исследование зависимостей $\Delta E_{\Sigma} / \Delta E_a$ от ΔE_d для рассматриваемых материалов выявило линейную зависимость для лопарита и вольфрамита низкосортного концентрата (МА в "мокром" режиме), а для всех остальных образцов экспоненциальную зависимость (рис. 4).

На основании полученных результатов предложены зависимости для оценки изменения энергии активации по результатам РСА для предварительно активированных минералов редких металлов. Так, для:

• шеелита:
$$\Delta E_a = \frac{\Delta E_{\Sigma}}{1.1877 \exp(0.0123\Delta E_d)};$$
 (7)

- вольфрамита стандартного концентрата: $\Delta E_a = \frac{\Delta E_{\Sigma}}{0.2984 \exp(0.0224\Delta E_d)};$ (8)
- вольфрамита низкосортного концентрата после МА в "сухом" режиме:

$$\Delta E_a = \frac{\Delta E_{\Sigma}}{0.54547 \exp(0.0254\Delta E_d)}; \tag{9}$$

• вольфрамита низкосортного концентрата после МА в "мокром" режиме:

$$\Delta E_a = \frac{\Delta E_{\Sigma}}{0.0267\Delta E_d + 0.3483}; \tag{10}$$

• лопарита: $\Delta E_a = \frac{\Delta E_{\Sigma}}{0.0146\Delta E_d + 0.1133}$ (11)

В табл. 2 приведены результаты расчета ΔE_a^{eq7-11} по уравнениям (7)–(11). Между экспериментальными и расчетными значениями изменения энергии активации наблюдается корреляция.

Рис. 4. Зависимость изменения $\Delta E_{\Sigma} / \Delta E_a$ от ΔE_d для фазы: *a* — шеелита ("сухая" MA); *б* — вольфрамита стандартного концентрата ("сухая" MA); *в* — вольфрамита низкосортного концентрата ("сухая" MA); *г* — вольфрамита низкосортного концентрата ("мокрая" MA); *д* — лопарита ("сухая" MA)

На рис. 5 приведены поверхности отклика изменения энергии активации процессов выщелачивания редких металлов (ΔE_a) от структурных изменений в минералах редких металлов на основании данных PCA (ΔE_d и ($\Delta E_s + \Delta E_{\varepsilon}$)).

Видно, что для лопарита и вольфрамита низкосортного концентрата, активированного в "мокром" режиме, зависимости ΔE_a от ΔE_d и ($\Delta E_s + \Delta E_{\varepsilon}$) на значительном участке поверхности асимптотически приближаются к значению ΔE_a , равному 71 и 38 кДж/моль соответственно. Причем приближение к асимптоте происходит в случае лопарита при $\Delta E_d > 70$ кДж/моль, а для вольфрамита низкосортного концентрата, активированного в "мокром" режиме, при $\Delta E_d > 100$ кДж/моль. Для остальных образцов, активированных в "сухом" режиме, зависимости ΔE_a от ΔE_d и ($\Delta E_s + \Delta E_{\varepsilon}$) носят экстремальный характер. Максимальное изменение энергии активации для шеелита ~ 29 кДж/моль достигается при $\Delta E_d = 70$ кДж/моль. Вольфрамит стандартного концентрата характеризуется максимальным изменением ~ 70 кДж/моль, которое достигается при $\Delta E_d = 30$ кДж/моль, тогда как для вольфрамита низкосортного концентрата рассматриваемые величины составляют соответственно ~ 45 и 15 кДж/моль.

Рис. 5. Поверхности отклика изменения энергии активации процесса выщелачивания (ΔE_a) от структурных изменений в минерале на основании данных РСА (ΔE_d и ($\Delta E_s + \Delta E_\varepsilon$)) после МА для: *а* — шеелита ("сухая" МА); *б* — вольфрамита стандартного концентрата ("сухая" МА); *в* — вольфрамита низкосортного концентрата ("сухая" МА); *г* — вольфрамита низкосортного концентрата ("сухая" МА); *с* — вольфрамита низкосортного концентрата ("сухая" МА)

выводы

Показана возможность расчета изменения энергии активации процессов выщелачивания вольфрамитовых, лопаритового и шеелитового концентратов по данным рентгеноструктурного анализа. Контроль за энергетическим состоянием материала после механоактивации с целью управления гидрометаллургическими процессами позволит снизить расход реагентов и энергии, интенсифицировать разработку и внедрение новых технологических процессов, а также совершенствовать существующие.

СПИСОК ЛИТЕРАТУРЫ

- 1. Зеликман А. Н., Вольдман Г. М., Ермилов А. Г. Исследование влияния механического активирования на разложение циркона спеканием с карбонатом кальция: науч. тр. МИСиС. М.: Металлургия, 1979. № 117.
- 2. Вольдман Г. М., Зеликман А. Н., Ермилов А. Г. Оценка степени воздействия при механическом активировании материалов // Изв. вузов. Цв. металлургия. 1979. № 4.
- 3. Ермилов А. Г., Сафонов В. В., Дорошко Л. Ф. и др. Оценка доли запасенной при предварительной механической активации энергии с помощью рентгенографии // Изв. вузов. Цв. металлургия. 2002. № 3.
- **4.** Шелехов Е. В., Свиридова Т. А. Программы для рентгеновского анализа поликристаллов // МиТОМ. 2000. № 8.
- 5. Зуев В. В., Аксенова Г. А., Мочалов Н. А. и др. Исследование величин удельных энергий кристаллических решеток минералов и неорганических кристаллов для оценки их свойств // Обогащение руд. 1999. № 1-2.
- 6. Максимюк И. Е. Кассетериты и вольфрамиты / под ред. С. А. Юшко. М.: Недра, 1973.
- 7. Медведев А. С. Выщелачивание и его способы интенсификации. М.: МИСиС, 2005.
- **8.** Вольдман Г. М., Зеликман А. Н. Теория гидрометаллургических процессов. М.: Металлургия, 1993.
- 9. Богатырева Е. В., Ермилов А. Г., Подшибякина К. В. Оценка доли запасенной энергии при механоактивации вольфрамитового концентрата // Неорг. материалы. — 2009. — Т. 45. — № 11.
- **10.** Богатырева Е. В., Ермилов А. Г., Свиридова Т. А., Савина О. С., Подшибякина К. В. Влияние продолжительности механоактивации на реакционную способность вольфрамитовых концентратов // Неорг. материалы. 2011. Т. 47. № 6.
- **11. Богатырева Е. В., Ермилов А. Г.** Оценка эффективности механоактивации лопаритового концентрата // Неорг. материалы. 2011. Т. 47. № 9.

Поступила в редакцию 27/XII 2012