УДК 539.374

СИНГУЛЯРНЫЕ РЕШЕНИЯ В ОСЕСИММЕТРИЧНЫХ ТЕЧЕНИЯХ СРЕДЫ, ПОДЧИНЯЮЩЕЙСЯ МОДЕЛИ ДВОЙНОГО СДВИГА

С. Е. Александров

Институт проблем механики РАН, 119526 Москва E-mail: sergeyaleksandrov@yahoo.com

Выполнен асимптотический анализ уравнений осесимметричного течения жесткопластического материала, подчиняющегося модели двойного сдвига, в окрестности поверхностей максимального трения. Показано, что в случаях, когда поверхность трения совпадает с огибающей семейства характеристик, решение является сингулярным. Определен возможный характер поведения сингулярных решений вблизи поверхностей максимального трения. В частности, эквивалентная скорость деформации вблизи поверхности трения стремится к бесконечности обратно пропорционально квадратному корню из расстояния до этой поверхности. Такое поведение эквивалентной скорости деформации также имеет место в классической теории пластичности материалов, условие текучести которых не зависит от среднего напряжения.

Ключевые слова: сингулярность, трение, модель двойного сдвига, пластичность.

Модель двойного сдвига [1] принадлежит к моделям течения жесткопластического несжимаемого материала, условие текучести которого зависит от среднего напряжения. По-видимому, впервые такая модель, включавшая кинематику, была предложена в [2]. Краткий обзор подобных моделей приведен в [3]. Эти модели являются обобщениями классической теории идеального жесткопластического материала и используются для описания движения сыпучих материалов [1, 2], а также деформации некоторых металлических сплавов [4, 5].

В классической теории пластичности могут возникать сингулярные решения вблизи поверхностей максимального трения и поверхностей разрыва скорости [6–8]. Поверхность максимального трения, которая является контактной поверхностью между жестким инструментом и деформируемым материалом, определяется равенством удельных сил трения при скольжении пределу текучести при чистом сдвиге. В случаях, когда система уравнений гиперболическая, поверхность максимального трения совпадает с характеристикой или огибающей семейства характеристик, а сингулярность в решении возникает, если поверхность трения совпадает с огибающей. В этой формулировке закон максимального трения используется в теориях пластичности с условием текучести, зависящим от среднего напряжения [9–12]. Решения частных задач при плоскодеформированном состоянии показывают, что в рамках таких теорий пластичности асимптотическое поведение решений вблизи поверхности максимального трения зависит от модели материала [11]. Характерной особенностью плоских течений материалов, подчиняющихся модели [1], является возможность возникновения сингулярных решений [12], причем их асимптотическое поведение

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 02-01-00419) и фонда "Ведущие научные школы России" (грант № НШ-1849.2003.1).

Рис. 1

вблизи поверхностей максимального трения совпадает с соответствующими решениями, полученными в рамках классической пластичности [7, 8]. В связи с этим представляет интерес выяснить возможность возникновения сингулярных решений при осесимметричных течениях материалов, подчиняющихся модели [1], и, если такие решения существуют, найти их асимптотическое поведение вблизи поверхности трения.

Статические уравнения модели [1] состоят из уравнений равновесия и условия текучести Кулона — Мора. При исследовании осесимметричных течений естественно использовать цилиндрические координаты r, θ , z, в которых проекция скорости $u_{\theta} = 0$, напряжение $\sigma_{\theta\theta}$ является одним из главных напряжений и все производные по θ равны нулю. Без ограничения общности можно положить, что $\sigma_3 = \sigma_{\theta\theta}$, а $\sigma_1 \ge \sigma_2$, где σ_1 , σ_2 , σ_3 — главные напряжения. Так как условие текучести сингулярное, то существует несколько режимов течения. Сечение поверхности текучести плоскостью $\sigma = \text{const} (\sigma = (\sigma_1 + \sigma_2 + \sigma_3)/3$ — среднее напряжение) показано на рис. 1. Наиболее интересные осесимметричные решения, которые встречаются в большинстве задач, соответствуют режимам A и B (рис. 1). Эти режимы будут рассмотрены в данной работе. Условие текучести для них может быть записано в виде

$$\sigma_1(1 + \sin\varphi) = 2c\cos\varphi + \sigma_2(1 - \sin\varphi), \qquad \sigma_2 = \sigma_{\theta\theta} \tag{1}$$

в режиме А и

$$\sigma_1(1 + \sin \varphi) = 2c \cos \varphi + \sigma_2(1 - \sin \varphi), \qquad \sigma_1 = \sigma_{\theta\theta} \tag{2}$$

в режиме *B*. Здесь φ — угол внутреннего трения; *c* — коэффициент сцепления. В компонентах тензора напряжений в цилиндрических координатах σ_{rr} , σ_{zz} , $\sigma_{\theta\theta}$, σ_{rz} уравнения (1) и (2) записываются в виде

$$(\sigma_{rr} + \sigma_{zz})\sin\varphi + [(\sigma_{rr} - \sigma_{zz})^2 + 4\sigma_{rz}^2]^{1/2} = 2c\cos\varphi,$$

$$2\sigma_{\theta\theta} = \sigma_{rr} + \sigma_{zz} - \varepsilon[(\sigma_{rr} - \sigma_{zz})^2 + 4\sigma_{rz}^2]^{1/2},$$
(3)

где $\varepsilon = 1$ в режиме A и $\varepsilon = -1$ в режиме B. Введем угол ψ между осью r и первым главным напряжением, отсчитываемый от оси r против хода часовой стрелки. Тогда условию текучести (3) можно удовлетворить, если положить [1]

$$\sigma_{rr} = -p + q\cos 2\psi, \quad \sigma_{zz} = -p - q\cos 2\psi, \quad \sigma_{rz} = q\sin 2\psi, \quad \sigma_{\theta\theta} = -p - \varepsilon q,$$

$$p = -(\sigma_{rr} + \sigma_{zz})/2, \qquad q = p\sin \varphi + c\cos \varphi.$$
(4)

Рис. 2

Уравнения равновесия имеют вид

$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{\partial \sigma_{rz}}{\partial z} + \frac{\sigma_{rr} - \sigma_{\theta\theta}}{r} = 0, \qquad \frac{\partial \sigma_{rz}}{\partial r} + \frac{\partial \sigma_{zz}}{\partial z} + \frac{\sigma_{rz}}{r} = 0.$$
(5)

Подставляя (4) в (5), можно получить систему уравнений относительно p и ψ . Эта система гиперболическая и углы наклона характеристик к оси r определяются формулами (см., например, [1])

$$\phi = \psi \pm (\varphi/2 + \pi/4). \tag{6}$$

Пусть α — угол наклона к оси r касательной к поверхности трения ω в некоторой точке M этой поверхности (рис. 2). Тогда из определения закона максимального трения следует, что при скольжении $\phi = \alpha$. Из (6) получаем, что на поверхности трения

$$\psi = \alpha - \varphi/2 - \pi/4. \tag{7}$$

Здесь для определенности выбран верхний знак в (6). Второй случай может быть исследован аналогично. Введем локальную ортогональную систему координат x_1, x_3 в точке Mтак, чтобы ось x_1 была направлена по касательной к поверхности трения, а ось x_3 внутрь деформируемого материала (рис. 2). Без ограничения общности инструмент может считаться неподвижным. Тогда вектор скорости u в точке M направлен вдоль оси x_1 . Из (7) следует, что угол $\alpha - \psi$ зависит только от свойств материала, но не от геометрии конкретной задачи.

Подставим (4) в (5) и перейдем к дифференцированию по x_1 и x_3 по формулам

$$\frac{\partial}{\partial r} = \frac{\partial}{\partial x_1} \cos \alpha - \frac{\partial}{\partial x_3} \sin \alpha, \qquad \frac{\partial}{\partial z} = \frac{\partial}{\partial x_1} \sin \alpha + \frac{\partial}{\partial x_3} \cos \alpha.$$
(8)

В результате получим

$$\left[\cos\left(\alpha - 2\psi\right)\sin\varphi - \cos\alpha\right]\frac{\partial p}{\partial x_1} + \left[\sin\alpha - \sin\left(\alpha - 2\psi\right)\sin\varphi\right]\frac{\partial p}{\partial x_3} + 2q\sin\left(\alpha - 2\psi\right)\frac{\partial \psi}{\partial x_1} + 2q\cos\left(\alpha - 2\psi\right)\frac{\partial \psi}{\partial x_3} + \frac{q(\cos 2\psi + \varepsilon)}{r} = 0, \quad (9)$$

$$[\sin(\alpha - 2\psi)\sin\varphi + \sin\alpha] \frac{\partial p}{\partial x_1} + [\cos\alpha + \cos(\alpha - 2\psi)\sin\varphi] \frac{\partial p}{\partial x_3} - 2q\cos(\alpha - 2\psi) \frac{\partial \psi}{\partial x_1} + 2q\sin(\alpha - 2\psi) \frac{\partial \psi}{\partial x_3} - \frac{q\sin 2\psi}{r} = 0.$$

Разрешим систему (9) относительно производных $\partial p/\partial x_3$ и $\partial \psi/\partial x_3$. Тогда

$$2q[\sin\varphi + \cos(2\alpha - 2\psi)]\frac{\partial\psi}{\partial x_3} - \cos^2\varphi\frac{\partial p}{\partial x_1} + 2q\sin(2\alpha - 2\psi)\frac{\partial\psi}{\partial x_1} + \frac{q}{r}\left[(\varepsilon + \sin\varphi)\cos\alpha + (1 + \varepsilon\sin\varphi)\cos(\alpha - 2\psi)\right] = 0,$$

$$\frac{\partial p}{\partial x_1} - \frac{\partial p}{\partial x_2} - \frac{\partial \psi}{\partial x_1} - \frac{q}{r}\left[(\varepsilon + \sin\varphi)\cos\alpha + (1 + \varepsilon\sin\varphi)\cos(\alpha - 2\psi)\right] = 0,$$
(10)

$$\left[\sin\varphi + \cos\left(2\alpha - 2\psi\right)\right]\frac{\partial p}{\partial x_3} + \sin\left(2\alpha - 2\psi\right)\frac{\partial p}{\partial x_1} - 2q\frac{\partial\psi}{\partial x_1} - \frac{q}{r}\left[\varepsilon\sin(\alpha - 2\psi) + \sin\alpha\right] = 0.$$

Коэффициенты при $\partial p/\partial x_3$ и $\partial \psi/\partial x_3$ в этом уравнении обращаются в нуль при выполнении условия (7), а сами уравнения в случае, если $\partial p/\partial x_3$ и $\partial \psi/\partial x_3$ ограниченны, дают соотношения вдоль характеристик. Предположим, что поверхность трения совпадает с огибающей семейства характеристик. Тогда характеристические соотношения не должны выполняться на поверхности трения и, чтобы удовлетворить уравнениям (10), необходимо положить

$$\left|\frac{\partial p}{\partial x_3}\right| \to \infty, \qquad \left|\frac{\partial \psi}{\partial x_3}\right| \to \infty$$
 (11)

при $\psi \to \alpha - \varphi/2 - \pi/4$ и $x_3 \to 0$. Предположим, что в окрестности поверхности трения

$$\psi = \alpha - \varphi/2 - \pi/4 + Ax_3^\beta. \tag{12}$$

Причем для выполнения второго из условий (11) необходимо, чтобы выполнялось неравенство $\beta < 1$. В то же время ограниченность ψ требует, чтобы $\beta > 0$. Подставляя (12) в первое из уравнений (10), найдем, что первый член этого уравнения имеет порядок $O(x_3^{2\beta-1})$. Так как по предположению этот член не может быть равен нулю (в этом случае получилось бы характеристическое соотношение) и не может стремиться к бесконечности (уравнение (10) не содержит других членов, которые могли бы стремиться к бесконечности при $x_3 \to 0$), то отсюда следует, что $\beta = 1/2$. Тогда для угла ψ в окрестности поверхности трения из (12) получаем зависимость от x_3 в виде

$$\psi = \alpha - \varphi/2 - \pi/4 + Ax_3^{1/2} + o(x_3^{1/2}).$$
(13)

Подставляя (13) во второе уравнение системы (10) и используя такие же рассуждения, получаем выражение

$$p = p_0 + Bx_3^{1/2} + o(x_3^{1/2}).$$
(14)

Величины A, B и p_0 , входящие в (13) и (14), могут зависеть от положения точки M на поверхности трения.

Кинематические уравнения рассматриваемой модели материала имеют вид [1]

$$\frac{\partial u_r}{\partial r} + \frac{\partial u_z}{\partial z} + \frac{u_r}{r} = 0, \tag{15}$$

$$\left(\frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r}\right)\cos 2\psi - \left(\frac{\partial u_r}{\partial r} - \frac{\partial u_z}{\partial z}\right)\sin 2\psi + \\ +\sin\varphi \left(\frac{\partial u_r}{\partial z} - \frac{\partial u_z}{\partial r} + 2u_r\frac{\partial\psi}{\partial r} + 2u_z\frac{\partial\psi}{\partial z} + 2\frac{\partial\psi}{\partial t}\right) = 0.$$
(10)

Здесь u_r , u_z — проекции вектора скорости на оси r и z соответственно; t — время. Введем модуль вектора скорости u и угол γ между осью r и вектором скорости, отсчитываемый от оси против хода часовой стрелки. Тогда

$$u_r = u\cos\gamma, \qquad u_z = u\sin\gamma.$$
 (16)

На поверхности трения при выбранном направлении вектора скорости (см. рис. 2) имеем $\gamma = \alpha + \pi$. Полагаем, что вблизи этой поверхности поведение γ описывается функцией

$$\gamma = \alpha + \pi + C x_3^k,\tag{17}$$

где k — постоянная, а величина C может зависеть от положения точки M на поверхности трения. Подставляя (16) в (15), переходя к дифференцированию по x_1 и x_3 с помощью (8), разрешая полученные уравнения относительно $\partial \gamma / \partial x_3$, $\partial u / \partial x_3$ и используя (13), (17), получим

$$Ax_3^{1/2} \frac{\partial u}{\partial x_3} + \frac{\partial u}{\partial x_1} + O(x_3^k) + O(x_3^{k-1/2}) + O(1) = 0,$$

$$ACukx_3^{k-1/2} + (Ax_3^{1/2} - Cx_3^k) \frac{\partial u}{\partial x_1} + O(x_3^{2k-1/2}) + O(x_3^k) + O(x_3^{1/2}) = 0.$$
(18)

В этих уравнениях члены более высокого порядка отброшены. Учитывая, что u имеет порядок O(1) вблизи поверхности $x_3 = 0$, и сравнивая показатель степени первого члена второго уравнения (18) с показателями степеней других членов, входящих в это уравнение, можно заключить, что k = 1. При таком значении k из первого уравнения системы (18) следует, что последний член этого уравнения можно компенсировать, только если

$$u = u_0 + Dx_3^{1/2} + o(x_3^{1/2}), (19)$$

а уравнение (17) записывается в виде

$$\gamma = \alpha + \pi + Cx_3. \tag{20}$$

Выражения (19), (20) показывают, что сингулярный характер поля скорости в рассматриваемом случае такой же, как в классической теории пластичности [7, 8] и при плоском течении материалов, подчиняющихся модели двойного сдвига [12]. В частности, эквивалентная скорость деформации стремится к бесконечности вблизи поверхности максимального трения обратно пропорционально квадратному корню из расстояния до этой поверхности. Такое поведение эквивалентной скорости деформации позволило ввести концепцию коэффициента интенсивности скорости деформации [8, 12], которая может быть использована для описания процессов, происходящих в тонком слое вблизи поверхности трения [13, 14].

Аналитическое решение, описывающее течение материала, подчиняющегося модели двойного сдвига, через бесконечный конический сходящийся канал и соответствующее режиму A (см. рис. 1), приведено в [1]. На стенках канала предполагался справедливым закон максимального трения. В сферической системе координат ρ , ϑ , θ , определяемой соотношениями $\rho^2 = r^2 + z^2$ и tg $\vartheta = r/z$, поле скорости было получено в виде $u_{\vartheta} = 0$ и

$$u_{\rho} = -V\rho^{-2}h(\vartheta), \qquad (21)$$

где V — постоянная, а функция $h(\vartheta)$ определяется уравнением

$$\frac{dh}{d\vartheta} = -\frac{3h\sin 2\chi}{\cos 2\chi + \sin \varphi}.$$
(22)

В свою очередь, χ также является функцией ϑ и определяется следующим уравнением:

$$\frac{d\chi}{d\vartheta} + 1 = \frac{n\cos^2\varphi\sin\vartheta - (1+\sin\varphi)\sin\varphi[\sin(2\chi+\vartheta) + \sin\vartheta]}{2\sin\vartheta\sin\varphi(\cos 2\chi + \sin\varphi)},\tag{23}$$

где n — постоянная. Физический смысл угла χ — наклон первого главного направления тензора напряжений к оси ρ . На поверхности трения при $\vartheta = \vartheta_0$ имеем

$$\chi = \varphi/2 + \pi/4. \tag{24}$$

Уравнение (23) должно быть решено при краевом условии (24). Из (21), (22) и (24) следует, что производная радиальной скорости по ϑ стремится к бесконечности при приближении к поверхности трения. Следовательно, поле скорости является сингулярным и вблизи поверхности трения эквивалентная скорость деформации, определяемая выражением $\xi_{eq} = \sqrt{2/3} (\xi_{ij} \xi_{ij})^{1/2} (\xi_{ij} -$ компоненты тензора скорости деформации), представляется в виде

$$\xi_{eq} = \frac{1}{\sqrt{3}\rho} \left| \frac{du_{\rho}}{d\vartheta} \right| + \dots$$
(25)

Подставляя (21) в (25) с учетом (22) и разлагая числитель и знаменатель полученного выражения в ряд по χ вблизи точки $\chi = \varphi/2 + \pi/4$, получим

$$\xi_{eq} = \frac{\sqrt{3Vh_0}}{2\rho^3(\varphi/2 + \pi/4 - \chi)} + o\left[\left(\frac{\varphi}{2} + \frac{\pi}{4} - \chi\right)^{-1}\right],\tag{26}$$

где h_0 — значение h на поверхности трения. Вблизи поверхности трения решение уравнения (23) при краевом условии (24) представимо в виде

$$\left(\chi - \frac{\varphi}{2} - \frac{\pi}{4}\right)^2 = \frac{n\cos^2\varphi\sin\vartheta_0 - (1+\sin\varphi)\sin\varphi[\cos\left(\varphi + \vartheta_0\right) + \sin\vartheta_0]}{\sin\vartheta_0\sin2\varphi}\,(\vartheta_0 - \vartheta). \tag{27}$$

Подставляя (27) в (26), можно убедиться, что

$$\xi_{eq} = E(\rho) / [\rho(\vartheta_0 - \vartheta)]^{1/2} + o[(\vartheta_0 - \vartheta)^{-1/2}].$$
(28)

Здесь E зависит от ρ и от параметров процесса и материала и является коэффициентом интенсивности скорости деформации [8, 12]. Соотношение (28) показывает, что поведение поля скорости в рассмотренной частной задаче соответствует общему представлению поля скорости (19).

ЛИТЕРАТУРА

- 1. Spencer A. J. M. Deformation of ideal granular materials // Mechanics of solids. The Rodney Hill 60th anniversary volume. Oxford: Pergamon Press, 1982. P. 607–652.
- 2. Ишлинский А. Ю. О плоском движении песка // Укр. мат. журн. 1954. Т. 6, № 4. С. 430–441.
- Ostrowska-Maciejewska J., Harris D. Three-dimensional constitutive equations for rigid/perfectly plastic granular materials // Math. Proc. Cambr. Philos. Soc. 1990. V. 108. P. 153–169.
- Spitzig W. A., Sober R. J., Richmond O. The effect of hydrostatic pressure on the deformation behavior of maraging and HY-80 steels and its implications for plasticity theory // Metallurgical Trans. 1976. V. 7A, N 11. P. 1703–1710.
- Kao A. S., Kuhn H. A., Spitzig W. A., Richmond O. Influence of superimposed hydrostatic pressure on bending fracture and formability of a low carbon steel containing globular sulfides // Trans. ASME. J. Engng Mater. Technol. 1990. V. 112, N 1. P. 26–30.
- Соколовский В. В. Об уравнениях пластического течения в пограничном слое // Прикл. математика и механика. 1956. Т. 20, вып. 3. С. 328–334.

- 7. Александров С. Е. О разрывных полях скоростей при произвольной деформации идеального жесткопластического тела // Докл. РАН. 1992. Т. 324, № 4. С. 769–771.
- Alexandrov S., Richmond O. Singular plastic flow fields near surfaces of maximum friction stress // Intern. J. Non-Linear Mech. 2001. V. 36, N 1. P. 1–11.
- Pemberton C. S. Flow of imponderable granular materials in wedge-shaped channels // J. Mech. Phys. Solids. 1965. V. 13. P. 351–360.
- Marshall E. A. The compression of a slab of ideal soil between rough plates // Acta Mech. 1967. V. 3. P. 82–92.
- 11. Alexandrov S. Comparison of double-shearing and coaxial models of pressure-dependent plastic flow at frictional boundaries // Trans. ASME. J. Appl. Mech. 2003. V. 70, N 2. P. 212–219.
- 12. Александров С. Е., Лямина Е. А. Сингулярные решения при плоском пластическом течении материалов, чувствительных к среднему напряжению // Докл. РАН. 2002. Т. 383, № 4. С. 492–495.
- Alexandrov S. Interrelation between constitutive laws and fracture criteria in the vicinity of friction surfaces // Physical aspects of fracture. Dordrecht: Kluwer, 2001. P. 179–190.
- Александров С. Е., Гольдштейн Р. В., Лямина Е. А. Развитие концепции коэффициента интенсивности скорости деформации в теории пластичности // Докл. РАН. 2003. Т. 389, № 2. С. 180–183.

Поступила в редакцию 22/XII 2004 г.