УДК 261.039.7:533

Плазмохимическая переработка отходов: численный анализ и эксперимент. Часть 1. Газификация медико-биологических отходов и топливной биомассы^{*}

В.Е. Мессерле¹⁻³, А.Б. Устименко^{1,3}, М.К. Бодыкбаева³

¹Институт проблем горения, Алматы, Казахстан ²Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск ³Казахский Национальный Университет им. аль-Фараби, Алматы, Казахстан

E-mail: ust@physics.kz

Представлены результаты термодинамических расчетов и экспериментальных исследований плазменной переработки медико-биологических отходов и топливной биомассы, включая отходы деревообрабатывающей промышленности и сельского хозяйства, показавшие перспективность использования плазмохимической технологии переработки различных отходов с получением горючего газа и инертного минерального материала. Сопоставление результатов эксперимента и расчетов показало их удовлетворительное согласование. Как в расчетах, так и в экспериментах вредных примесей в продуктах плазменной переработки исследованных отходов обнаружено не было.

Ключевые слова: отходы, плазменная газификация, синтез-газ, термодинамический расчет.

Введение

Проблема переработки и уничтожения твердых и жидких промышленных и бытовых отходов, включая токсичные, остается весьма актуальной [1–7]. Наиболее распространенным методом утилизации указанных отходов, включая твердые бытовые отходы (ТБО) и топливную биомассу (ТБМ), является сжигание с последующим захоронением образующейся золы на специальном полигоне. Метод обладает серьезными недостатками, такими как образование сильно токсичных химических соединений, например,

^{*} Исследования плазменной переработки ТБМ выполнены за счет финансирования МНВО РК (грант № АР14869881), плазменной переработки МБО — за счет финансирования МНВО РК (грант № АР19674754), физико-химические исследования конденсированных продуктов плазменной переработки отходов — за счет финансирования МНВО РК (грант № АР14870548), а физико-химические исследования газообразных продуктов плазменной переработки отходов — за счет финансирования МНВО РК (грант № АР14870548), а физико-химические исследования газообразных продуктов плазменной переработки отходов — за счет финансирования МНВО РК (грант № АР14870548), а физико-химические исследования газообразных продуктов плазменной переработки отходов — за счет финансирования МНВО РК (грант № ВR18574084); разработка схемы плазменного реактора и плазматрона выполнена в рамках государственного задания ИТ СО РАН (номер гос. регистрации 121031800229-1).

диоксинов, фуранов и бенз(а)пирена. Особое место среди опасных ТБО занимают медико-биологические отходы (МБО), в том числе образующиеся при осуществлении медицинских мероприятий для лечения от новой коронавирусной инфекции (COVID-19). МБО включают использованные тканевые материалы, нежелательные микробиологические культуры, ампутированные части тела, медицинские принадлежности, которые могли находиться в контакте с кровью и биологическими жидкостями или с лабораторными отходами, а также способные проникать через кожу острые предметы, включающие потенциально загрязненные использованные иглы, скальпели, ланцеты и другое. Опасность МБО значительно выше, чем большинства химических отходов. Плазменная переработка является наиболее перспективной технологией утилизации вышеуказанных отходов [2-7]. Использование электродуговой плазмы со среднемассовой температурой порядка 5000 - 6000 К и выше позволяет разложить любые органические и неорганические соединения за счет большей интенсификации процесса деструкции по сравнению с другими способами. Это дает возможность успешно проводить в плазме процессы пиролиза, газификации и плавления отходов, что в ряде случаев имеет значительное преимущество перед их сжиганием и хранением на полигонах.

К ТБМ относятся отходы деревообрабатывающей промышленности (ОДП) и образующиеся в агропромышленном комплексе отходы сельского хозяйства (ОСХ). Проблема утилизации ОДП сегодня очень актуальна [8]. Основным процессом утилизации ОДП является их сжигание с получением тепловой энергии. Существует также альтернативный метод — плазменная газификация ОДП с получением горючего газа [9]. Значительную часть ОСХ производят птицефабрики и животноводческие предприятия, в основном в виде птичьего помета и навоза, отрицательно влияющих на окружающую среду. Одним из известных продуктов переработки ОСХ является биогаз, продукты сгорания которого можно использовать для выработки электрической и тепловой энергии. Процесс получения биогаза весьма длительный (до 12 суток), а установки для получения биогаза из OCX характеризуются низкой производительностью (до 100 м³ на одну тонну отходов) [10]. Плазмохимическая переработка ОСХ позволяет интенсифицировать процесс получения топливного газа, состоящего в основном из синтез-газа (СО + H₂), и резко повысить его выход (в 150-200 раз). Это достигается за счет высокой температуры в плазменном реакторе и многократного снижения времени переработки отходов. Синтез-газ можно использовать в качестве рабочего тела высокоэффективных электрогенераторов нового поколения, включая твердооксидные топливные элементы [11].

1. Материалы и методы

В настоящей работе ТБМ представлена ОДП и ОСХ. ОДП состоят из смеси опилок и щепы [8]. Органическая часть ОДП составляет 99,67 %, а минеральная — всего 0,33 %. Высшая теплота сгорания ОДП составляет 18450 кДж/кг [12]. В качестве ОСХ использовался высушенный смешанный навоз крупного рогатого скота, лошадей, овец, коз и свиней (кизяк влажностью 30 %). Органическое вещество ОСХ представляет собой в основном целлюлозу ((C₆H₁₀O₅)_n) с небольшим содержанием органической серы. Органическая часть ОСХ составляет 95,21 %, тогда как минеральная часть — 4,79 %.

Особое место в ТБО из-за их высокой токсичности занимают МБО [13]. В работе [14] было представлено исследование плазменной утилизации костной ткани, являющейся основной трудноутилизируемой составляющей ампутированных частей тела. В настоящей работе исследованы входящие в МБО общие клинические отходы. Их характерный состав, по данным исследований [15, 16], представлен следующим образом (масс. %): бумага и картон — 47 %, пищевые отходы — 21 %, стекло — 12 %, пластмассы — 5 %, железо и его оксиды — 3 %, резина, кожа и другие горючие вещества — 3 %, текстиль — 2 % и известняк — 2 %. Плотность МБО составляет около 1,1 кг/м³, а их осредненная теплота сгорания составляет 14645 кДж/кг.

Для проведения термодинамического анализа плазменной переработки отходов использовалась универсальная программа расчета многокомпонентных гетерогенных систем TERRA, отработанная для высокотемпературных процессов [17]. Программа TERRA обладает собственной базой термодинамических свойств, включающей приблизительно 3000 индивидуальных веществ в интервале температур 300–6000 К.

Цель экспериментов по плазмохимической переработке отходов заключалась в определении интегральных показателей процесса, таких как среднемассовая температура, массовое отношение окислитель/отходы, удельные энергозатраты на процесс, степень газификации углерода, выход и состав газообразных продуктов [7, 18]. Методика определения интегральных показателей процесса переработки отходов базируется на сведении материального и теплового балансов плазменной установки. Для этого во всех узлах экспериментальной плазменной установки определялись материальные и тепловые потоки с использованием приборов измерения электрических параметров, расхода, состава реагентов и продуктов переработки отходов, среднемассовых температур и тепловых потерь.

Экспериментальные исследования газификации МБО проводились на установке, основными элементами которой являются высокоресурсный плазмотрон постоянного тока номинальной мощностью 70 кВт и плазменный реактор производительностью по МБО до 30 кг/час [19–21] (см. рисунок). Помимо реактора 2 с плазмотроном 3, в состав экспериментальной установки входят системы подачи плазмообразующего газа и охлаждающей воды в плазмотрон и реактор, система электроснабжения, система управления плазмотроном, а также система очистки отходящих газов 6. Экспериментальная установка оснащена системой отбора газообразных продуктов газификации МБО 9 для проведения последующего их анализа. Конденсированные продукты процесса газификации накапливались на дне реактора и отбирались для анализа после его отключения.

Реактор для газификации МБО спроектирован в виде куба, футерованного огнеупорным кирпичом толщиной 0,065 м. Размер внутренней стороны куба составляет 0,45 м, реакционный объем реактора — 0,091 м³. Одна из стенок реактора оснащена патрубком

Рисунок. Схема экспериментальной установки для плазменной газификации отходов.

 патрубок для загрузки брикетированных отходов в реактор, 2 — плазменный реактор, 3 — электродуговой плазмотрон постоянного тока, 4 — зона газификации отходов,
б — блок охлаждения отходящих газов, 6 — блок газоочистки с рукавным фильтром,
7 — секция с системой отбора проб и измерения температуры газа,
8 — вытяжной вентилятор, 9 — вентиляционная труба. для загрузки брикетированного МБО в реактор *1*. Стенки реактора снабжены термопарами и смотровыми окнами, позволяющими проводить пирометрические измерения температуры в реакторе. Плазменная установка может перерабатывать до 30 кг/ч МБО или их смеси с твердыми коммунальными отходами.

Экспериментальные исследования газификации ТБМ (ОДП и ОСХ) проводились на этой же установке. Производительность плазменного реактора по ТБМ достигала 50 кг/час.

2. Плазменная газификация МБО

Для определения уровня температур, массового отношения МБО:воздух и электрической мощности устанавливаемого на реактор плазмотрона были выполнены термодинамические расчеты газификации MБО в интервале температур 300-3000 К при давлении 1 атм. Состав исходной технологической смеси как для расчетов, так и для экспериментов выбирался из условия полной газификации углерода отходов и имел следующее соотношение в массовых долях: 1 МБО + 0,4 воздуха. Расчеты показали, что с повышением температуры концентрация синтез-газа увеличивается до максимального значения — 82,6 об. % (CO — 31,7, H_2 — 50,9) при T = 1600 К. При этой температуре концентрация окислителей (СО₂ + H₂O) не превышает 0,13 об. %. Удельная теплота сгорания синтез-газа, полученного при воздушной газификации МБО, составляет 13620 кДж/кг. Этот горючий газ может быть использован в качестве рабочего тела в газотурбинных установках и газовых электрогенераторах. Удельные энергозатраты на процесс переработки МБО возрастают с увеличением температуры во всем диапазоне. При оптимальных температурах переработки МБО (T = 1200 - 1650 K), обеспечивающих полную газификацию углерода МБО и максимальный выход горючего газа, удельные энергозатраты варьируются в приемлемых пределах: 1,4-1,7 кВт·ч/кг. Степень газификации углерода $X_{\rm C}$ определяется по содержанию углерода в твердом остатке и составляет 100 % уже при температуре 1200 К. Это означает, что углерод полностью переходит в газовую фазу с образованием СО при данной температуре.

Полученные в результате расчетов параметры процесса плазменной газификации МБО были использованы при разработке экспериментальной плазменной установки. Процесс плазменной газификации МБО в реакторе (см. рисунок) включал следующие этапы. После запуска плазмотрона 3 и нагрева реактора 2 до температуры внутренней поверхности футеровки 1100 К, измеренной цифровым пирометром через патрубок 1, брикетированный МБО загружался в зону газификации 4 реактора также через патрубок 1. Масса каждого брикета составляла 0,4 кг. МБО газифицировались плазменно-воздушным факелом плазмотрона 3, обеспечивая в объеме реактора среднемассовую температуру до 1700 К. Образующиеся газообразные продукты выводились из реактора в систему охлаждения отходящих газов 5, а конденсированные продукты накапливались на дне реактора. Совмещение зоны тепловыделения от плазмотрона с зоной газификации МБО 4 и зоной шлакообразования способствовало интенсификации переработки отходов. Охлажденные газообразные продукты поступали в блок газоочистки с рукавным фильтром 6, после чего газ через секцию с системой отбора проб и измерения температуры газа 7 направлялся в газоанализатор. Вытяжной вентилятор 8 обеспечивал разрежение в реакторе до 10 мм водяного столба. Известно, что для полного разложения диоксинов газ необходимо выдержать в течение двух секунд при температуре не ниже 1500 К [22]. В плазменном реакторе такая температура обеспечивалась за счет факела плазмотрона 3.

В результате экспериментальных исследований определены режимы работы плазменного реактора, проанализирован состав отходящих газов и образцы извлекаемых из реактора конденсированных продуктов. Газообразные продукты переработки отходов изучались с помощью газового хроматографа «Хроматэк-Газохром-2000». Рентгенофазовый анализ образцов конденсированной фазы проводился на установке ДРОН-3.

В качестве газифицирующего агента использовался плазмообразующий воздух с расходом 12 кг/ч. Плазмотрон работал на мощности 72 кВт. Через 15 минут предварительного нагрева реактора 20 брикетов МБО были последовательно загружены в реактор через патрубок для загрузки брикетированных МБО в реактор *1*. Общая масса брикетов составляла 8 кг. Под действием плазменно-воздушного факела среднемассовая температура в реакторе достигала 1600 К. В результате органическая масса МБО подвергалась газификации, а неорганическая — плавлению с последующим накоплением расплава на дне реактора. Полученный синтез-газ непрерывно выводился из экспериментальной установки через системы его охлаждения и очистки. Шлак удалялся из реактора после выключения плазмотрона и охлаждения реактора.

Состав газа на выходе из реактора представлен в табл. 1. Суммарная концентрация синтез-газа составила 71,1 об. %, что хорошо согласуется с термодинамическими расчетами. Расчетный выход синтез-газа при температуре 1600 К составил 82,4 об. % (CO — 31,7, H₂ — 50,7). Таким образом, расхождение эксперимента с расчетом по целевому продукту (синтез-газу) не превышало 16 %. Расхождение в концентрациях СО и Н₂ связано с невозможностью достижения термодинамического равновесия в эксперименте. Состав шлака определялся с помощью рентгенофазового анализа. Для оценки содержания остаточного углерода в образцах шлака был использован метод абсорбции и взвешивания. Концентрация углерода в шлаке составляла 2,8 масс. %, что соответствует степени газификации углерода МБО 91,8 %. Расхождение экспериментальной и расчетной степени газификации углерода не превышает 9 %. Несоответствие расчетной и опытной концентраций Fe₃C связано с невозможностью достижения термодинамического равновесия в эксперименте. По данным газового и рентгеноструктурного анализов, вредных примесей в газообразных и конденсированных продуктах плазменной газификации МБО не обнаружено. Удельные энергозатраты на процесс газификации МБО в плазменном реакторе составили 3,3 кВт.ч/кг МБО. В расчетах удельные энергозатраты при температуре 1600 К составляли 2.2 кВт ч/кг МБО. Различие между расчетными и экспериментальными значениями удельных энергозатрат можно объяснить тем, что в термодинамических расчетах минимально возможные энергозатраты в изолированной термодинамической системе определялись без учета обмена теплом и работой с окружающей средой. На практике плазменный реактор и плазмотрон имеют заметные тепловые потери в окружающую среду с охлаждающей водой.

Тепловой и материальный балансы реактора позволили составить энергетический баланс процесса (табл. 2). Основная часть вырабатываемой энергии — это теплота сгорания полученного топливного газа (68 %), в то время как его физическое тепло

Метод	СО, об. %	Н ₂ , об. %	N ₂ , об. %	Fe ₃ C, масс. %	CaSiO ₃ , масс. %	SiO ₂ , масс. %	Fe, масс. %	Х _С , %	<i>Q</i> _{SP} , кВт∙ч/кг
Эксперимент	26,5	44,6	28,9	63,0	21,0	13,0	3,0	91,8	3,3
Расчет	31,7	50,7	15,4	22,4	40,1	28,5	9,0	100	2,2

Сравнение результатов эксперимента и расчета по плазменной переработке МБО

Таблица 1

Таблица 2

Ввод		Вывод		
Поступающая энергия	Значение	Вырабатываемая энергия	Значение	
Электрическая мощность плазмотрона	259,2	Теплота сгорания полученного газа	337,6	
Теплота сгорания МБО	234,3	Физическое тепло полученного газа	92,4	
Физическое тепло	26	Физическое тепло шлака	1,1	
плазмообразующего газа	3,0	Теплопотери	64,8	
Всего	497,1	Всего	495,9	

Энергетический баланс, МДж/ч

составляет 19 %. 52 % поступающей энергии — это электрическая энергия плазмотрона. Процесс плазменной газификации МБО характеризуется высоким общим тепловым КПД (86,5 %). Невязка энергетического баланса не превышает 1 %.

Плазменная газификация МБО показывает более высокую энергоэффективность плазменной технологии по сравнению с обычным сжиганием. При сжигании МБО образуется инертный газ (CO₂, H₂O и N₂) с физической теплотой 145 МДж/ч, в то время как в результате плазменной газификации МБО получается топливный газ с тепловой мощностью 430 МДж/ч. Таким образом, полезная тепловая мощность продуктов плазменной газификации в три раза выше, чем при сжигании МБО.

3. Плазменная газификация топливной биомассы

Для определения интегральных показателей плазмохимической переработки ТБМ (равновесный состав газовой фазы продуктов газификации, степень газификации углерода и удельные энергозатраты на процесс) выполнялись расчеты плазменной газификации ОДП, ОСХ и плазменного пиролиза ОСХ. Расчеты проводились в интервале температур 300–3000 К при давлении 0,1 МПа для следующих технологических смесей (в массовых долях): 1 ОДП + 1 воздуха, 1 ОСХ + 0,25 воздуха (плазменная газификация) и 1 ОСХ + 0,25 азота (плазменный пиролиз). Расчеты плазменной газификации ОДП показали, что максимальная концентрация горючих компонентов синтез-газа достигает 71,6 об. % (СО — 41,9 %, H_2 — 29,7 %) при T = 1600 К. Максимальный выход горючего газа при пиролизе и газификации ОСХ достигает 68,5 об. %.

Экспериментальные исследования газификации ТБМ (ОДП и ОСХ) проводились на установке, приведенной на рисунке, основными элементами которой являются плазмотрон постоянного тока номинальной мощностью 70 кВт и плазменный реактор производительностью по ТБМ до 50 кг/час. В ходе экспериментальных исследований плазменно-воздушной газификации ТБМ при мощности плазмотрона 72.6 кВт (I = 220 A, U = 330 B) расход плазмообразующего воздуха составлял 250 л/мин. Основным условием работы плазменного реактора является возможность нагрева и обработки кусковых или пакетированных материалов высокотемпературным газовым потоком плазмы до температур пиролиза или газификации органической части перерабатываемых отходов, плавления и сбора зольного остатка перерабатываемых ТБМ. Нагрев плазменного реактора и переработка в нем ТБМ происходят непосредственно под воздействием плазменного факела.

После запуска плазмотрона и нагрева внутренней поверхности футеровки донной части реактора до температуры 1215 К (около 15 минут) брикеты ОДП через патрубок для загрузки брикетированных отходов в реактор подаются в зону газификации. Масса каждого брикета составляла 0,33 кг. За 1 час в плазмохимическом реакторе может нагреваться и перерабатываться 152 брикета ОДП.

В результате плазменной газификации ОДП был получен горючий газ. Измеренная температура в донной части реактора составляла 1560 К. Под воздействием плазменновоздушного факела среднемассовая температура в реакторе достигала 1600 К. При этой температуре органическая часть ОДП газифицировалась, а неорганическая часть (шлак и зола) накапливалась на дне реактора и в рукавном фильтре. Продукты газификации непрерывно выводились из установки через системы охлаждения и очистки отходящих газов. Зола удалялась из реактора после выключения плазмотрона и охлаждения реактора. Отключение плазмотрона выполнялось через 25 минут после загрузки первого брикета ОДП. За это время газифицировалось 30 брикетов общей массой 9,9 кг, что соответствовало производительности реактора 23,8 кг/ч при расходе плазмообразующего воздуха 23,6 кг/ч.

По результатам экспериментов по плазменной газификации ОДП были определены рабочие параметры реактора, проведен анализ отходящих газов, отобраны пробы конденсированных продуктов из зоны образования шлака и определено остаточное содержание углерода в шлаке. Газообразные продукты переработки ТБМ анализировались с помощью газового хроматографа «Хроматэк-Газохром-2000». На выходе плазменного реактора был получен следующий состав газа, об. %: СО — 42,0, H₂ — 25,1, N₂ — 32,9. Удельная теплота сгорания газа, образующегося при плазменно-воздушной газификации ОДП, составила 9450 кДж/кг. Суммарная концентрация синтез-газа достигала 67,1 об. %.

После газификации 9,9 кг ОДП из донной части реактора было собрано 0,013 кг шлака. Это количество шлака составляет около 0,2 % от исходной массы ОДП. Остаточная летучая зола (0,1 %) уносилась отходящими газами. Измеренный с помощью объемного расходомера поток отходящих газов равнялся 48,3 кг/ч. Содержание остаточного углерода в пробе шлака составляло 1,13 масс. %, что соответствовало степени газификации углерода ОДП 96,6 %. Анализ на содержание остаточного углерода был выполнен с использованием абсорбционно-гравиметрического метода. Удельные энергозатраты на процесс газификации ОДП в плазмохимическом реакторе по результатам экспериментов составили 1,53 кВт·ч/кг.

При плазменной газификации ОСХ реактор сначала нагревался до температуры внутренней поверхности футеровки его донной части 1415 К, после чего в него через патрубок подавались брикеты ОСХ массой 0,3 кг. За 1 час в плазмохимическом реакторе может нагреваться и перерабатываться 180 брикетов ОСХ. Отметим, что ОСХ газифицируются в воздушном (или азотном при пиролизе) плазменном факеле, обеспечивающем среднемассовую температуру в объеме реактора не ниже 1600 К. Органическая часть ОСХ газифицировалась, а неорганическая часть отходов плавилась. Полученный синтезгаз через системы очистки и охлаждения непрерывно выводился из установки. Расплавленная минеральная часть отходов удалялась из реактора после его остановки и охлаждения.

Во время экспериментов по пиролизу ОСХ в азотной плазме и воздушной газификации мощность плазмотрона составляла 104,1 и 97,1 кВт соответственно. Удельные энергозатраты на процесс переработки ОСХ в плазмохимическом реакторе по результатам экспериментов составили 1,5 и 1,4 кВт·ч/кг при пиролизе и газификации соответственно. Полученный газ интенсивно воспламенялся на воздухе, формируя устойчивый яркий факел. Измеренная водоохлаждаемым зондом с термопарой температура факела составляла 1600 К. Максимальная температура футеровки донной части реактора в процессе переработки ОСХ достигала 1887 К. Отключение плазмотрона выполнялось через 27 минут после загрузки первого брикета ОСХ. За это время газифицировалось 75 брикетов

Мессерле В.Е., Устименко А.Б., Бодыкбаева М.К.

общей массой 22,5 кг, что соответствовало производительности реактора по ОСХ 50 кг/ч. Расход плазмообразующего газа (воздуха или азота) составлял 19,4 кг/ч.

По результатам экспериментальных исследований плазменной воздушной газификации и пиролиза ОСХ определены рабочие параметры плазмохимического реактора, проведен анализ отходящих газов, отобраны пробы конденсированных продуктов из зоны образования шлака и определено остаточное содержание углерода в шлаке. Анализ газа на выходе из реактора показал следующий его состав (об. %): при пиролизе в азотной плазме: СО — 25,9, H_2 — 32,9, CO_2 — 3,5, N_2 — 37,3; при плазменно-воздушной газификации: СО — 32,6, H_2 — 24,1, CO_2 — 5,7, N_2 — 35,8. Удельная теплота сгорания горючего газа, образующегося при пиролизе и плазменно-воздушной газификации ОСХ, составляет 10500 и 10340 кДж/кг соответственно. Суммарная концентрация синтез-газа при пиролизе и плазменно-воздушной газификации ОСХ составляет 58,8 и 56,7 об. % соответственно.

После газификации 22,5 кг ОСХ из донной части плазмохимического реактора было собрано 1,35 кг золы при плазменно-воздушной газификации и 1,3 кг золы при плазменном пиролизе. Это количество золы составляет около 6 % от исходной массы ОСХ. Измеренный с помощью объемного расходомера поток отходящих газов составлял 40,6 кг/ч в обоих случаях.

Таким образом, при выходе синтез-газа около 60 об. % теплота его сгорания превышает 10000 кДж/кг, что может обеспечить эффективность производства электроэнергии из синтез-газа при использовании высокоэффективных электрогенераторов нового поколения, таких как поршневые электрогенераторы и топливные элементы.

Измеренная при плазменно-воздушной газификации ОДП суммарная концентрация синтез-газа достигала 67,1 об. %, что хорошо согласуется с термодинамическими расчетами. Расчетный выход синтез-газа при 1600 К составлял 71,6 об. % (СО — 41,9, Н₂ — 29,7). Следовательно, расхождение между экспериментальными данными и результатами расчетов по выходу целевого продукта (синтез-газа) не превышало 6 %. Расхождение между экспериментальным и расчетным значениями расхода отходящих газов составило 2 %. Расхождение между экспериментальными и расчетными значениями степени газификации углерода не превышало 3,5 %. Удельные энергозатраты на процесс газификации ОДП в плазмохимическом реакторе по результатам экспериментов составили 1,53 кВт.ч/кг, а по данным расчетов — 1,25 кВт.ч/кг. Расхождение между расчетными и экспериментальными значениями удельных энергозатрат на процесс газификации составляет 18 %. Это связано с тем, что при определении расчетных значений удельных энергозатрат не учитывался тепловой КПД плазмотрона и реактора, так как в изолированных термодинамических системах удельные энергозатраты на процесс газификации определяются без учета обмена теплом и работой с окружающей средой. На практике сам плазменный реактор и плазмотрон характеризуются заметными потерями тепла в окружающую среду с охлаждающей водой.

По результатам экспериментальных исследований пиролиза в азотной плазме и плазменно-воздушной газификации ОСХ получен следующий состав газа на выходе из реактора (об. %): CO — 25,9, H₂ — 32,9, CO₂ — 3,5, N₂ — 37,3 и CO — 32,6, H₂ — 24,1, CO₂ — 5,7, N₂ — 35,8 соответственно. Суммарная концентрация синтез-газа при пиролизе и плазменно-воздушной газификации ОСХ составляет 58,8 и 56,7 об. % соответственно, что хорошо согласуется с данными термодинамического расчета. Согласно последнему, при температуре 1500 K, обеспечивающей полную газификацию углерода ОСХ и разложение токсичных соединений фурана, диоксина и бенз(а)пирена, был получен следующий состав горючего газа (об. %): CO — 30,2, H₂ — 38,3, CO₂ — 4,1, N₂ — 13,3, H₂O — 13,6 (плазменный пиролиз) и CO — 29,6, H₂ — 35,6, CO₂ — 5,7, N₂ — 10,6, H₂O — 17,9 (воздушно-плазменная газификация). Выход синтез-газа достигает при пиролизе 68,5 об. % и при газификации — 65,2 об. %. Таким образом, расхождение между экспериментальными и расчетными данными по выходу целевого продукта (синтез-газа) не превышает 16 %.

Абсорбционно-гравиметрическим методом в работе также определялось содержание углерода в образце шлака, составившее 2,1 % при пиролизе и 2,99 % при газификации ОСХ, что для этих случаев соответствует степени газификации углерода ОСХ 91,3 и 87 %. Максимальное расхождение между опытными и расчетными значениями степени газификации углерода не превышает 13 %. Удельные энергозатраты на пиролиз и газификацию ОСХ в плазмохимическом реакторе по результатам экспериментов составили 1,5 и 1,4 кВт·ч/кг рабочего тела соответственно, в то время как расчетные значения удельных энергозатрат при температуре 1500 К составили для них 1,33 и 1,28 кВт·ч/кг. Расхождение между экспериментальными и расчетными данными по удельным энергозатратам на процессы плазменного пиролиза и газификации не превышает 11 %.

Заключение

В рамках настоящей работы проведены термодинамические расчеты и экспериментальные исследования плазменной переработки различных промышленных и бытовых отходов (медико-биологические отходы, топливная биомасса), показавшие перспективность использования плазмохимической переработки отходов с получением горючего газа и инертного минерального материала.

В процессе плазменно-воздушной газификации МБО при оптимальной температуре 1600 К получен синтез-газ с концентрацией 71,1 об. % (H₂ — 44,6, CO — 26,5) и твердый инертный остаток светло-серого цвета. Сравнение процессов плазменной газификации и обычного сжигания МБО показывает более высокую энергоэффективность плазменной технологии. В результате плазменной газификации МБО получается горючий газ с тепловой мощностью 430 МДж/ч. При сжигании МБО образуется инертный газ (CO₂, H₂O и N₂) с физической теплотой 145 МДж/ч. Таким образом, полезная тепловая мощность продуктов плазменной газификации в три раза выше, чем при сжигании МБО.

При плазменно-воздушной газификации ТБМ при оптимальных температурах 1600 К (ОДП) и 1500 К (ОСХ) получен синтез-газ с концентрацией 67,1 об. % ($H_2 - 25,1$, CO - 42,0) и 56,7 об. % ($H_2 - 24,1$, CO - 32,6) и твердый инертный остаток светло-серого цвета. При номинальной производительности плазмохимического реактора по ТБМ 50 кг/ч удельные энергозатраты на процесс составили 1,53 кВт·ч/кг. Теплота сгорания полученного из ТБМ горючего газа превышает 10000 кДж/кг, что может обеспечить эффективных электрогенераторов нового поколения, таких как поршневые электрогенераторы и топливные элементы. Сравнение основных интегральных показателей процесса плазменной переработки ТБМ показало удовлетворительное согласование расчетных и экспериментальных данных, их расхождение не превышает 24 %.

По результатам расчетов и экспериментальным данным вредных примесей в продуктах плазменного пиролиза и воздушной газификации исследованных отходов обнаружено не было, что подтверждает экологическую эффективность плазменной технологии переработки отходов. Сравнение основных интегральных показателей процесса плазменной переработки МБО и ТБМ продемонстрировало удовлетворительное согласование расчетных и экспериментальных данных, что подтверждает правомерность предложенной технологии плазменной переработки отходов и использования универсальной программы TERRA для её расчета.

Список литературы

- Davidson G. Waste management practices: literature review. Dalhousie University, Office of Sustainability, 2011. 59 p.
- Heberlein J., Murphy A.B. Topical review: Thermal plasma waste treatment // J. of Physics D: Applied Physics. 2008. Vol. 41, No. 5. P. 053001-1–053001-20.
- Messerle V.E., Mosse A.L., Ustimenko A.B. Processing of biomedical waste in plasma gasifier // Waste Management, 2018. Vol. 79. P. 791–799.
- 4. Mourão R., Marquesi A.R., Gorbunov A.V., Filho G.P., Halinouski A.A., Otani C. Thermochemical assessment of gasification process efficiency of biofuels industry waste with different plasma oxidants // IEEE Transactions Plasma Sci. 2015. Vol. 43, No. 10. P. 3760–3767.
- Surov A.V., Popov S.D., Popov V.E., Subbotin D.I., Serba E.O., Spodobin V.A., Nakonechny G.V., Pavlov A.V. Multi-gas AC plasma torches for gasification of organic substances // Fuel. 2017. Vol. 203. P. 1007–1014.
- 6. Аньшаков А.С., Фалеев В.А., Даниленко А.А., Урбах Э.К., Урбах А.Э. Исследование плазменной газификации углеродсодержащих техногенных отходов // Теплофизика и аэромеханика. 2007. Т. 14, № 4. С. 639–650.
- 7. Мессерле В.Е., Моссэ А.Л., Устименко А.Б. Плазменная газификация углеродсодержащих отходов: термодинамический анализ и эксперимент // Теплофизика и аэромеханика. 2016. Т. 23, № 4. С. 637–644.
- 8. Graedel T.E., Allenby B.R. Industrial Ecology. Prentice Hall, 2003. 363 p.
- 9. Братцев А.Н., Кузнецов В.А., Попов В.Е., Уфимцев А.А. Плазменная газификация биомассы на примере отходов древесины // Теплофизика высоких температур. 2011. Т. 45, № 2. С. 251–255.
- 10. Кононов В.Н. Установка получения биогаза из отходов животноводства // Русская община. 2010. Режим доступа: http://www.rusobschina.ru/2010-11-08-09-03-43/2632-2013-08-18-15-37-19
- 11. Galvita V., Messerle V.E., Ustimenko A.B. Hydrogen production by coal plasma gasification for fuel cell technology // Intern. J. of Hydrogen Energy. 2007. Vol. 32, No. 16. P. 3899–3906.
- Demirbaş A., Demirbaş A.H. Estimating the calorific values of lignocellulosic fuels // Energy Exploration & Exploitation. 2004. Vol. 22, No. 2. P. 135–143.
- Rusakov N.V., Shcherbo A.P., Mironenko O.V. Medical waste management: ideology, hygiene and the environment // Ekologiya Cheloveka (Human Ecology). 2018. Vol. 25, No. 7. P. 4–10.
- Мессерле В.Е., Моссэ А.Л., Никончук А.Н., Устименко А.Б. Плазмохимическая переработка медикобиологических отходов // Инж.-физ. журнал. 2015. Т. 88, № 6. С. 1420–1424.
- 15. Моссэ А.Л., Савчин В.В. Плазменные технологии и устройства для переработки отходов. Минск: Беларуская навука, 2015. 411 с.
- 16. Byun Y., Cho M., Hwang S.M., Chung J. Thermal plasma gasification of municipal solid waste (MSW) // Gasification for Practical Applications / Ed. Dr. Yongseung Yun, 2012. P. 183–210.
- Gorokhovski M., Karpenko E.I., Lockwood F.C., Messerle V.E., Trusov B.G., Ustimenko A.B. Plasma technologies for solid fuels: experiment and theory // J. of the Energy Institute. 2005. Vol. 78, No. 4. P. 157–171.
- Messerle V.E., Ustimenko A.B. Solid fuel plasma gasification // Advanced Combustion and Aerothermal Technologies. NATO Sci. for Peace and Security Series C: Environmental Security / Eds. Syred N., Khalatov A.C. Dordrecht: Springer, 2007. P. 141–156.
- 19. Голыш В.И., Карпенко Е.И., Лукьященко В.Г., Мессерле В.Е., Устименко А.Б., Ушанов В.Ж. Высокоресурсный электродуговой плазмотрон // Химия высоких энергий. 2009. Т. 43, № 4. С. 371–376.
- Messerle V.E., Mosse A.L., Ustimenko A.B. Municipal solid waste plasma processing: thermodynamic computation and experiment // IEEE Transactions on Plasma Science. 2016. Vol. 44, No. 12. P. 3017–3022.
- 21. Пат. КZ 34093. Способ плазмотермической переработки медико-биологических и других отходов и устройство для его осуществления / Мессерле В.Е., Моссэ А.Л., Устименко А.Б., Савчин В.В., 27.12.2019; Бюл. № 52.
- 22. Zhdanok S.A., Mosse A.L. Plasma methods for toxic wastes processing // Plasma Assisted Decontamination of Biological and Chemical. Agents. NATO Sci. for Peace and Security Series A: Chemistry and Biology / Eds. Güçeri S., Fridman A., Gibson K., Haas C. Dordrecht: Springer, 2008. P. 143–149.

Статья поступила в редакцию 13 декабря 2021 г., после переработки — 6 декабря 2022 г., принята к публикации 8 декабря 2022 г.