УДК 532.51

Устойчивость нагреваемой пленки жидкости при наличии термокапиллярного эффекта

С.П. Актершев

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: sergey-aktershev@mail.ru

Исследуется устойчивость течения нагреваемой пленки жидкости при наличии термокапиллярного эффекта. Для описания волн в пленке используется интегральная модель. Результаты линейного анализа устойчивости показывают, что термокапиллярный эффект приводит к расширению области неустойчивости только при небольших значениях числа Пекле Ре, а при больших значениях Ре происходит сужение области неустойчивости. Проведено численное моделирование эволюции волн в пленке на подложке с фиксированной температурой. Результаты численных расчетов хорошо согласуются с линейной теорией устойчивости.

Ключевые слова: неизотермическая пленка жидкости, устойчивость, термокапиллярный эффект, стационарные волны.

Введение

Интенсивное изучение течений пленок вязкой жидкости связано с их широким использованием в технике. В большинстве практически важных случаев течение пленки неустойчиво и на поверхности жидкости развиваются волны, оказывающие сильное влияние на тепломассообмен. В случае неизотермической пленки волны индуцируют на поверхности жидкости градиент температуры. Зависимость поверхностного натяжения от температуры (термокапиллярный эффект) приводит к появлению касательного напряжения, которое воздействует на скорость жидкости. Таким образом, кроме гидродинамической неустойчивости появляется еще один механизм неустойчивости, обусловленный термокапиллярным эффектом. Гидродинамика и теплоперенос оказываются взаимосвязанными процессами, что существенно усложняет теоретический анализ.

Устойчивость неизотермической пленки на подложке с фиксированной температурой довольно полно рассмотрена в работе [1] на основе уравнений типа Орра—Зоммерфельда, полученных из линеаризованных уравнений Навье—Стокса и уравнения энергии. Здесь задача устойчивости неизотермической пленки впервые рассмотрена как задача на собственные значения для комплексной скорости волн, и выделены основные механизмы перекачки энергии потока в растущие возмущения. В работе [2] устойчивость течения и волны в однородно нагреваемой пленке исследовались исходя из интегральной модели. Температура поверхности пленки определялась из эволюционного уравнения, выведенного из усредненного уравнения энергии в предположении линейного профиля температуры. Результаты линейного анализа устойчивости [2] показывают, что диапазон волнового числа неустойчивости вследствие термокапиллярного эффекта расширяется, особенно при малых значениях числа Рейнольдса Re.

Термокапиллярным волнам посвящены работы [3, 4], в которых применяется метод взвешенных остатков с полиномиальным разложением для поля скорости и поля

температуры, разработанный для изотермической пленки [5]. В этих работах для описания течения пленки выведены модели первого и второго порядка по параметру длинноволновости. Модель первого порядка состоит из трех уравнений в частных производных для толщины пленки, расхода и температуры поверхности в предположении линейного профиля температуры. Модель второго порядка довольно громоздка и трудна для анализа, поскольку состоит из 8 уравнений, причем каждое уравнение содержит не менее 20 членов. Результаты исследований [3, 4] также подтверждают, что термокапиллярный эффект приводит к расширению области неустойчивости. Следует отметить, что модель имеет определенные недостатки. В частности, в работе [4] отмечается, что при достаточно больших значениях Ре модель дает нефизические значения температуры в стационарной волне. Эти недостатки частично исправлены в работе [6], в которой рассматривается два типа граничного условия — фиксированная температура подложки и фиксированный тепловой поток. Для описания волн в нагреваемой пленке здесь также применяется метод взвешенных весовых остатков. Усредненное уравнение энергии модифицировано для более адекватного учета теплопереноса при больших значениях числа Пекле. Сравнение температуры поверхности, рассчитанной по усредненному уравнению, с численным моделированием поля температуры в стационарной волне показало хорошее соответствие только для Re ≤ 5. При Re > 6 различие становится довольно заметным и быстро растет с увеличением Re. Описание динамики нагреваемой пленки на основе полиномиального разложения профилей скорости и температуры представляется малоперспективным по следующей причине. С увеличением степени полиномов происходит резкое увеличение числа уравнений, а сами уравнения становятся очень громоздкими. Увеличение степени полиномов, по-видимому, не приводит к быстрому уменьшению погрешности расчета температуры (если сравнивать с численным моделированием). Кроме того, исчезает ценное качество упрощенной модели — простота и возможность аналитического исследования. Теряется преимущество упрощенной модели по сравнению с численным решением уравнений Навье-Стокса.

В настоящей работе на основе интегральной модели исследуется линейная устойчивость пленки на однородно обогреваемой подложке с фиксированной температурой. Проведено численное моделирование эволюции волн в нагреваемой пленке. Результаты численных расчетов сравниваются с теорией устойчивости.

1. Уравнения неизотермического течения пленки

Рассмотрим двумерное течение пленки вязкой жидкости по неограниченной однородно обогреваемой пластине, наклоненной под углом θ к горизонту. Температура пластины фиксирована и равна T_W . Свободная поверхность жидкости контактирует с неподвижным газом, температура которого равна T_g ; теплообмен между жидкостью и газом описывается законом Ньютона с коэффициентом теплообмена b. Плотность ρ , кинематическую вязкость ν , теплопроводность λ , температуропроводность жидкости a считаем постоянными, а поверхностное натяжение — линейно зависящим от температуры: $\sigma = \sigma_0 - \gamma \left(T - T_0\right)$.

Введем декартову систему координат с осью Ox в направлении гравитации и осью Oy по нормали к пластине. Возмущение поверхности пленки считаем длинноволновым и используем погранслойное приближение, полагая $\partial^2/\partial x^2 << \partial^2/\partial y^2$, $\partial h/\partial x << 1$. В принятом приближении течение жидкости описывается системой уравнений:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = g \sin \theta - \frac{1}{\rho} \frac{\partial p}{\partial x} + v \frac{\partial^2 u}{\partial y^2},
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0.$$
(1)

На пластине выполняются условия: u = 0, v = 0, а на поверхности пленки — кинематическое и динамические условия:

$$y = h(x,t): \frac{\partial h}{\partial t} + u_s \frac{\partial h}{\partial x} = v_s, \quad p = p_g - \sigma \partial^2 h / \partial x^2, \quad \mu \partial u / \partial y = \tau_s, \tag{2}$$

здесь $\tau_s = -\gamma \partial T_s / \partial x$ — касательное напряжение, обусловленное термокапиллярным эффектом, T_s — температура поверхности пленки. Давление в жидкости находим из уравнения для поперечной компоненты импульса: $\partial p / \partial y = -\rho g \cos \theta$. С учетом (2) получаем

$$p = p_g + \rho g \cos \theta (h - y) - \sigma \, \partial^2 h / \partial x^2. \tag{2.1}$$

Для дальнейшего упрощения зададим профиль скорости в пленке (неавтомодельный) в виде:

$$u/u_s = (2 - \tau_s h/\mu u_s)\eta + (\tau_s h/\mu u_s - 1)\eta^2,$$
 (3)

здесь $\eta = y/h$, u_s — скорость на поверхности пленки. Из (3) получаем

$$u = \frac{q}{h} \left(3\eta - 3\eta^2 / 2 \right) + \left(3\eta^2 / 4 - \eta / 2 \right) \frac{\tau_s h}{\mu}, \quad \text{где } q = \int_0^h u dy \quad \text{— расход жидкости.}$$
 (4)

С помощью равенств (2)–(4) уравнения (1) известным образом преобразуются в систему уравнений относительно h и q (интегральная модель [7]):

$$\frac{\partial q}{\partial t} + \frac{\partial J}{\partial x} = \frac{3\tau_s}{2\rho} + gh\left(\sin\theta - \cos\theta\frac{\partial h}{\partial x}\right) - \frac{3\nu q}{h^2} + \frac{h\sigma}{\rho}\frac{\partial^3 h}{\partial x^3},$$

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = 0,$$
(5)

здесь $J = \int_{0}^{h} u^2 dy = \frac{6q^2}{5h} + \frac{qh\tau_s}{20\mu} + \frac{\tau_s^2 h^3}{120\mu^2}$. Касательное напряжение τ_s определяется распреде-

лением температуры в пленке, поэтому для замыкания системы уравнений (5) необходимо привлечь уравнение энергии. В погранслойном приближении уравнение энергии и граничные условия имеют вид

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = a \frac{\partial^2 T}{\partial y^2}; \quad -\lambda \frac{\partial T}{\partial y}\Big|_{y=h} = b(T_s - T_g), \quad T\Big|_{y=0} = T_W.$$

В уравнении энергии удобнее вместо координаты y использовать переменную $\eta = y/h$. При таком переходе производные преобразуются по формулам

$$\left(\frac{\partial}{\partial t}\right)_{x,y} = \left(\frac{\partial}{\partial t}\right)_{x,\eta} - \frac{\eta}{h} \frac{\partial h}{\partial t} \frac{\partial}{\partial \eta}, \quad \left(\frac{\partial}{\partial x}\right)_{y} = \left(\frac{\partial}{\partial x}\right)_{\eta} - \frac{\eta}{h} \frac{\partial h}{\partial x} \frac{\partial}{\partial \eta}, \quad \frac{\partial}{\partial y} = \frac{1}{h} \frac{\partial}{\partial \eta}, \quad \frac{\partial^{2}}{\partial y^{2}} = \frac{1}{h^{2}} \frac{\partial^{2}}{\partial \eta^{2}},$$

а уравнение энергии примет вид

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + \frac{V}{h} \frac{\partial T}{\partial \eta} = \frac{a}{h^2} \frac{\partial^2 T}{\partial \eta^2}, \text{ где } V = v + \eta \left(-\frac{\partial h}{\partial t} - u \frac{\partial h}{\partial x} \right). \tag{6}$$

Из (4) нетрудно найти функцию тока ψ и поперечную компоненту скорости v:

$$\psi = \int_{0}^{y} u \, dy = \frac{q}{2} \left(3\eta^{2} - \eta^{3} \right) + \frac{\tau_{s} h^{2}}{4\mu} \left(\eta^{3} - \eta^{2} \right),$$

$$v = -\frac{\partial \psi}{\partial x} = \frac{\partial q}{\partial x} \left(\frac{\eta^3 - 3\eta^2}{2} \right) + \frac{3q}{h} \frac{\partial h}{\partial x} \left(\eta^2 - \frac{\eta^3}{2} \right) - \left(\eta^3 - \eta^2 \right) \frac{\partial}{\partial x} \left(\frac{\tau_s h^2}{4\mu} \right) + \left(3\eta^3 - 2\eta^2 \right) \frac{\tau_s h}{4\mu} \frac{\partial h}{\partial x}.$$

Используя (4), получаем
$$V = -\frac{\partial h}{\partial t} \left(\eta - \frac{3\eta^2}{2} + \frac{\eta^3}{2} \right) - \left(\eta^3 - \eta^2 \right) \frac{\partial}{\partial x} \left(\frac{\tau_s h^2}{4\mu} \right).$$

В случае невозмущенного течения пленка имеет постоянную толщину h_0 , а все производные в уравнениях (5), (6) равны нулю. При этом температура является линейной функцией координаты y: $T = T_W - b(T_W - T_g)y/(\lambda + bh_0)$.

Выберем в качестве масштаба расстояния h_0 и введем масштаб скорости $u_m = gh_0^2/3\nu$, масштаб времени $t_m = h_0/u_m$, масштаб расхода $q_m = h_0u_m$, масштаб температуры $T_m = T_W - T_g$. Перейдем к безразмерным переменным x/h_0 , h/h_0 , q/q_m , t/t_m , u/u_m , v/u_m , $(T-T_g)/T_m$, оставив для всех величин прежние буквенные обозначения. В безразмерных переменных уравнения (5) и уравнение (6) с граничными условиями примут вид:

$$\frac{\partial q}{\partial t} + \frac{\partial J}{\partial x} = \frac{3}{\text{Re}_m} \left(h \left(\sin \theta - \cos \theta \frac{\partial h}{\partial x} \right) - \frac{\text{Ma}}{2} \frac{\partial T_s}{\partial x} - \frac{q}{h^2} \right) + \text{Weh} \frac{\partial^3 h}{\partial x^3},$$

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = 0,$$
(7)

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + \frac{V}{h} \frac{\partial T}{\partial n} = \frac{1}{h^2 \text{Pe}} \frac{\partial^2 T}{\partial n^2},$$
 (8)

$$\partial T/\partial \eta \Big|_{\eta=1} + \operatorname{Bi}hT_s = 0, \quad T\Big|_{\eta=0} = 1.$$
 (9)

Здесь

$$V = -\frac{\partial h}{\partial t} \left(\eta - \frac{3\eta^2}{2} + \frac{\eta^3}{2} \right) - \frac{\text{Ma}}{4} \left(\eta^2 - \eta^3 \right) \frac{\partial}{\partial x} \left(h^2 \frac{\partial T_s}{\partial x} \right), \tag{10}$$

$$u = \frac{q}{h} \left(3\eta - \frac{3\eta^2}{2} \right) - \frac{\text{Ma}}{4} \left(3\eta^2 - 2\eta \right) h \frac{\partial T_s}{\partial x}, \quad J = \frac{6q^2}{5h} - \frac{\text{Ma}qh}{20} \frac{\partial T_s}{\partial x} + \frac{\text{Ma}^2 h^3}{120} \left(\frac{\partial T_s}{\partial x} \right)^2.$$

Течение нагреваемой пленки определяется следующими безразмерными критериями: $\mathrm{We} = \left(3Fi/\mathrm{Re}_m^5\right)^{1/3}$ — число Вебера, $\mathrm{Ma} = \gamma T_m / \mu u_m$ — число Марангони, $\mathrm{Bi} = bh_0 / \lambda$ — число Био, $\mathrm{Pe} = \mathrm{Re}_m$ Pr — число Пекле. Критерий $\mathrm{Re}_m = gh_0^3 / 3\nu^2$ характеризует толщину невозмущенной пленки и связан с числом Рейнольдса пленки Re соотношением $\mathrm{Re} = \mathrm{Re}_m \sin \theta$. Поскольку $h_0 \sim \mathrm{Re}_m^{1/3}$, $u_m \sim \mathrm{Re}_m^{2/3}$, то $\mathrm{Bi} = \mathrm{Bi}^* \cdot \mathrm{Re}_m^{1/3}$, $\mathrm{Ma} = \mathrm{Ma}^* / \mathrm{Re}_m^{2/3}$. Безразмерные комплексы Bi^* и Ma^* определяются только свойствами жидкости и условием нагрева: $\mathrm{Bi}^* = b \left(3\nu^2/g\right)^{1/3} / \lambda$, $\mathrm{Ma}^* = \gamma \left(3/g\nu\right)^{2/3} (T_W - T_g) / \mu$. Невозмущенному течению пленки соответствует тривиальное решение h = 1, $q = q_0 \equiv \sin \theta$. При этом профиль температуры в пленке $T_0(\eta) = 1 - \eta \mathrm{Bi} / (1 + \mathrm{Bi})$ и температура поверхности $T_{s0} = 1/(1 + \mathrm{Bi})$ не зависят от координаты x.

2. Анализ устойчивости неизотермического течения

Для анализа устойчивости течения необходимо задать малое возмущение поверхности пленки H(x,t) и рассмотреть развитие этого возмущения во времени. Вследствие

термокапиллярного эффекта поле скорости и поле температуры жидкости оказываются взаимосвязанными, поэтому возмущения течения необходимо рассматривать совместно с возмущением температуры $\tilde{T}(x,t,\eta)$, которое определяется из уравнения энергии (8).

Возмущение температуры жидкости при волновом течении пленки

Положим $h=1+H(x,t), T(t,x,\eta)=T_0(\eta)+\tilde{T}(x,t,\eta),$ где $H<<1, \tilde{T}<< T_0(\eta)$ и линеаризуем уравнение (8) относительно малых возмущений H, \tilde{T} :

$$\frac{\partial \tilde{T}}{\partial t} + u_0 \frac{\partial \tilde{T}}{\partial x} - \tilde{V} \frac{\text{Bi}}{1 + \text{Bi}} = \frac{1}{\text{Pe}} \frac{\partial^2 \tilde{T}}{\partial \eta^2},\tag{11}$$

здесь $u_0=q_0(3\eta-3\eta^2/2)$ — невозмущенный профиль скорости. Линеаризованный член (10) $\tilde{V}=-\Big(\eta-1,5\eta^2+0,5\eta^3\Big)\partial H/\partial t-0,25{\rm Ma}\Big(\eta^2-\eta^3\Big)\partial^2\tilde{T}_s/\partial x^2$ имеет первый порядок малости, поэтому для $\partial T/\partial \eta$ взято невозмущенное значение $\partial T_0/\partial \eta=-{\rm Bi}/(1+{\rm Bi})$. Граничные условия для возмущения температуры имеют вид:

$$\partial \tilde{T} / \partial \eta \Big|_{n=1} + \operatorname{Bi} \tilde{T}_s = -H \operatorname{Bi} / (1 + \operatorname{Bi}), \quad \tilde{T} \Big|_{n=0} = 0.$$

Будем рассматривать волны вблизи границы устойчивости, когда возмущение поверхности пленки представляет собой стационарно бегущую волну малой амплитуды. Представим возмущение поверхности пленки H и возмущение температуры жидкости \tilde{T} в комплексной форме:

$$\widehat{H}(x,t) = H_a e^{ik(x-ct)}, \quad \widehat{T}(x,\eta,t) = \widehat{\Phi}(\eta) \widehat{H} \text{Bi}/(1+\text{Bi}), \tag{12}$$

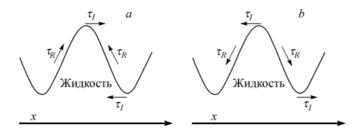
здесь H_a , k, c — вещественные амплитуда, волновое число и фазовая скорость волны, $\widehat{\Phi}(\eta) = \Phi_R + i\Phi_I$ — комплекснозначная функция координаты η . Для бегущей волны реальное возмущение поверхности $H(x,t) = H_a \cos k(x-ct)$. Соответствующее комплексное представление $\widehat{H} = H_a e^{ik(x-ct)} = H - (i/k)\partial H/\partial x$. Реальное возмущение температуры есть вещественная часть выражения $\widehat{\Phi}(\eta)\widehat{H}$ Ві/(1+Bi), т. е. $\widehat{T}(x,\eta,t) = \left(\Phi_R H + (\Phi_I/k)\partial H/\partial x\right)$ Ві/(1+Bi). Здесь $\Phi_R(\eta)$ и $\Phi_I(\eta)$ — части профиля температуры, для которых колебания в бегущей волне совпадают по фазе с H(x,t) и $\partial H/\partial x$. Возмущение температуры на поверхности пленки запишем как $\widehat{T}_s = -\widehat{E}\widehat{H}$, где $\widehat{E} = -\widehat{\Phi}(1)$ Ві/(1+Bi). Физически реальная величина \widehat{T}_s есть вещественная часть выражения $\left(-\widehat{E}\widehat{H}\right)$:

$$\tilde{T}_{s} = -E_{R}H - (E_{I}/k)\partial H/\partial x. \tag{13}$$

Из (13) получаем касательное напряжение на поверхности пленки:

$$\tau_s = -\operatorname{Ma}\partial \tilde{T}_s / \partial x = \operatorname{Ma}\left(E_R \partial H / \partial x + (E_I / k)\partial^2 H / \partial x^2\right) = \tau_R \partial H / \partial x + \tau_I H.$$

Здесь компонента $\tau_R = \mathrm{Ma} E_R$ действует на "склонах холма"; компонента $\tau_I = -\mathrm{Ma} E_I k$ действует на "вершине холма" и на "дне впадины" (рис. 1, a, b). В случае $E_R > 0$, $E_I < 0$ обе компоненты усиливают деформацию поверхности пленки, а в случае $E_R < 0$,



Puc. 1. Касательное напряжение на поверхности нагреваемой пленки при $E_I > 0$, $E_a < 0$ (*a*); $E_I < 0$, $E_a > 0$ (*b*).

 $E_I > 0$ стабилизируют пленку. Для иной комбинации знаков E_R , E_I может быть как стабилизирующий, так и дестабилизирующий эффект.

Подставляя (12) в уравнение (11), получаем для $\hat{\Phi}(\eta)$ уравнение

$$\hat{\Phi}'' = i\varepsilon \Big((u_0 - c)\hat{\Phi} - c(\eta - 1, 5\eta^2 + 0, 5\eta^3) + iM\hat{\Phi}(1)(\eta^2 - \eta^3) \Big). \tag{14}$$

Здесь введены обозначения $\varepsilon = k \text{Pe}, \ M = k \text{MaBi}/4(1+\text{Bi}).$ Граничные условия для (14) имеют вид:

$$\hat{\Phi}'(1) + \text{Bi}\hat{\Phi}(1) = -1, \ \hat{\Phi}(0) = 0.$$
 (15)

Имея решение уравнения (14) для произвольных значений k и c, мы получаем $E_R = -\Phi_R(1) \mathrm{Bi}/(1+\mathrm{Bi}), \ E_I = -\Phi_I(1) \mathrm{Bi}/(1+\mathrm{Bi})$ и находим \tilde{T}_s из (13).

Рассмотрим сначала асимптотику $\varepsilon \to 0$. В этом случае $\hat{\Phi}'' = 0$. Используя (15), находим $\hat{\Phi}|_{\varepsilon \to 0} \equiv \Phi_0 = -\eta/(1+\mathrm{Bi})$. Таким образом, в предельном случае $k\mathrm{Pe} \to 0$ функция $\hat{\Phi}(\eta)$ вещественная. Колебания температуры поверхности пленки совпадает по фазе с H(x,t); минимум получается на "вершине холма", максимум — во "впадине". В общем случае ищем решение в виде $\hat{\Phi} = \Phi_0 + i\varepsilon \hat{\Psi}$. Преобразуя (14) с учетом последнего, получаем

$$\widehat{\Psi}'' = i\varepsilon \left(-c + 3q_0\eta - 1, 5q_0\eta^2\right)\widehat{\Psi} + d_1\eta + d_2\eta^2 + d_3\eta^3 - \varepsilon M\widehat{\Psi}(1)\left(\eta^2 - \eta^3\right), \tag{16}$$

где $d_1 = -c \text{Bi}/(1 + \text{Bi})$, $d_2 = 1.5c - (3q_0 + iM)/(1 + \text{Bi})$, $d_3 = (1.5q_0 + iM)/(1 + \text{Bi}) - 0.5c$. Для уравнения (16) граничное условие на стенке — $\hat{\Psi}(0) = 0$, на поверхности пленки —

$$\widehat{\Psi}'(1) + \operatorname{Bi}\widehat{\Psi}(1) = 0. \tag{17}$$

Приближенное решение уравнения (16)

Разложим $\hat{\Psi}''(\eta)$ в ряд Тейлора в точке $\eta = 0$:

$$\widehat{\Psi}''(\eta) = a_0 + a_1 \eta + a_2 \eta^2 + \dots$$
 (18)

Интегрируя этот ряд дважды с учетом условия $\hat{\Psi}(0) = 0$, получаем

$$\widehat{\Psi}'(\eta) = \widehat{\Psi}'(0) + a_0 \eta + a_1 \eta^2 / 2 + a_2 \eta^3 / 3 + \dots,$$

$$\widehat{\Psi}(\eta) = \widehat{\Psi}'(0) \eta + a_0 \eta^2 / 2 + a_1 \eta^3 / 6 + a_2 \eta^4 / 12 + \dots$$
(19)

Ряд (19) начинается с члена первой степени η , поэтому в правой части (16) отсутствует член нулевой степени. Следовательно, в левой части (16) тоже отсутствует нулевая

степень, т. е. $a_0=0$. Подставляя (19) и (18) в (16) и приравнивая коэффициенты перед одинаковыми степенями η в обеих частях уравнения, получаем рекуррентные соотношения

$$a_{1} = d_{1} - i\varepsilon c \hat{\Psi}'(0), \quad a_{2} = d_{2} + i\varepsilon 3q_{0} \hat{\Psi}'(0) - \varepsilon M \hat{\Psi}(1),$$

$$a_{3} = d_{3} - i\varepsilon \left(ca_{1} / 6 + 1, 5q_{0} \hat{\Psi}'(0)\right) + \varepsilon M \hat{\Psi}(1),$$

$$a_{m} = i\varepsilon \left(-\frac{ca_{m-2}}{m(m-1)} + \frac{3q_{0}a_{m-3}}{(m-1)(m-2)} - \frac{1, 5q_{0}a_{m-4}}{(m-2)(m-3)}\right), \quad m \ge 4.$$
(20)

Если будут известны $\hat{\Psi}'(0)$ и $\hat{\Psi}(1)$, то все a_m вычисляются из (20) и тем самым будет известен ряд (19). Считая, что ряд сходится, отбросим слагаемые после $a_n\eta^{n+2}$. Соотношения (20) дают n линейных уравнений для (n+2) неизвестных $a_1, a_2, \dots a_n, \hat{\Psi}'(0), \hat{\Psi}(1)$. Еще одно уравнение получаем, подставляя в (19) $\eta = 1$:

$$\widehat{\Psi}(1) = \widehat{\Psi}'(0) + a_1 / 6 + a_2 / 12 + \dots + a_n / (n+1)(n+2). \tag{21}$$

Недостающее уравнение дает граничное условие (17), которое можно преобразовать следующим образом:

$$\widehat{\Psi}'(0) + a_1 \beta_1 / 6 + a_2 \beta_2 / 12 + \dots + a_n \beta_n / (n+1)(n+2) = 0,$$

$$\beta_m = (m+2+\text{Bi}) / (1+\text{Bi}). \tag{22}$$

Введем для удобства обозначения $\hat{X} \equiv \hat{\Psi}'(0)$, $\hat{Y} \equiv \hat{\Psi}(1)$ и запишем (21) и (22) в виде

где

$$\widehat{F}(\widehat{X},\widehat{Y}) \equiv \widehat{X} - \widehat{Y} + \sum_{m=1}^{n} \frac{a_m}{(m+1)(m+2)} = 0, \quad \widehat{G}(\widehat{X},\widehat{Y}) \equiv \widehat{X} + \sum_{m=1}^{n} \frac{a_m \beta_m}{(m+1)(m+2)} = 0, \quad (23)$$

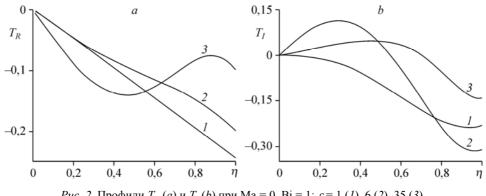
здесь $a_1=d_1-i\varepsilon c\hat{X},$ $a_2=d_2-\varepsilon \left(M\hat{Y}-i3q_0\hat{X}\right),$ $a_3=d_3-i\varepsilon cd_1/6+\varepsilon M\hat{Y}$ — $\varepsilon(c^2\varepsilon/6+i3q_0/2)\hat{X},$ остальные a_m определяются рекуррентной формулой (20). Отметим, что все коэффициенты a_m линейно зависят от $(\hat{X},\hat{Y}),$ следовательно, \hat{F} и \hat{G} — линейные функции переменных $(\hat{X},\hat{Y}),$ т. е. $\hat{F}(\hat{X},\hat{Y})=A_F\hat{X}+B_F\hat{Y}+D_F,$ $\hat{G}(\hat{X},\hat{Y})=A_G\hat{X}+B_G\hat{Y}+D_G.$ Чтобы найти константы $A_F,$ $A_G,$ $B_F,$ $B_G,$ $D_F,$ $D_G,$ зададим $(\hat{X},\hat{Y})=(0,0).$ Вычислив из (20) коэффициенты a_m , найдем $\hat{F}(0,0)=D_F$ и $\hat{G}(0,0)=D_G.$ Задавая $(\hat{X},\hat{Y})=(1,0)$ и $(\hat{X},\hat{Y})=(0,1),$ находим $\hat{F}(1,0),$ $\hat{G}(1,0),$ $\hat{F}(0,1),$ $\hat{G}(0,1).$ Получаем $A_F=\hat{F}(1,0)-\hat{F}(0,0),$ $B_F=\hat{F}(0,1)-\hat{F}(0,0),$ $A_G=\hat{G}(1,0)-\hat{G}(0,0),$ $B_G=\hat{G}(0,1)-\hat{G}(0,0).$ Таким образом, решение уравнений (23) будет иметь вид $\hat{X}=\left(D_GB_F-D_FB_G\right)/\left(A_FB_G-A_GB_F\right),$ $\hat{Y}=(A_GD_F-A_FD_G)/(A_FB_G-A_GB_F).$ Отсюда находим

$$E_R = (1/(1+Bi) + kPeY_I)Bi/(1+Bi), E_I/k = -PeY_RBi/(1+Bi).$$
 (24)

Вычислив все a_m , находим также профиль возмущения температуры

$$\tilde{T}(x,\eta,t) = \tilde{T}_R H + \tilde{T}_I \partial H / \partial x,$$
 (25)

Здесь $\tilde{T}_R = -\left(\eta/(1+\mathrm{Bi}) + k\mathrm{Pe}\Psi_I(\eta)\right)\mathrm{Bi}/(1+\mathrm{Bi}), \ \tilde{T}_I = \mathrm{Pe}\Psi_R(\eta)\mathrm{Bi}/(1+\mathrm{Bi}).$



Puc. 2. Профили $T_R(a)$ и $T_I(b)$ при Ma = 0, Bi = 1; ε = 1 (1), 6 (2), 35 (3).

Рассмотрим решение уравнения (16) в асимптотике $k \to 0$. При $\varepsilon = 0$ имеем: $a_m = d_m$ при m = 1, 2, 3; $a_m = 0$, при $m \ge 4$. Уравнения (23) в этом случае принимают вид:

$$\hat{X} - \hat{Y} + d_1/6 + d_2/12 + d_3/20 = 0$$
, $\hat{X} + d_1\beta_1/6 + d_2\beta_2/12 + d_3\beta_3/20 = 0$.

Находим $\hat{Y} = -(d_1/3 + d_2/4 + d_3/5)/(1 + Bi) = -(c(33 - 7Bi)/120 - 9q_0/20)/(1 + Bi)^2$.

Тогда

$$E_R |_{k \to 0} \equiv E_{R,0} = \text{Bi}/(1 + \text{Bi})^2,$$

$$E_I|_{k\to 0} \equiv E_{I,0} = k \text{Pe}((33-7\text{Bi})c/120-9q_0/20)\text{Bi}/(1+\text{Bi})^2$$
. (26)

Тестовые расчеты показали, что ряд (19) быстро сходится, и при n > 25 результаты расчетов практически не зависят от количества слагаемых n.

Ha puc. 2 показаны профили $\tilde{T}_R(\eta)$, $\tilde{T}_I(\eta)$, рассчитанные при Ma = 0, Bi = 1, $c=3q_0$ и различных значениях параметра ε . При $\varepsilon \leq 1$ профиль $\tilde{T}_R(\eta)$ близок к линейному, но отличие возрастает с увеличением ε . Профиль $\tilde{T}_I(\eta)$ существенно отличается от линейного при всех значениях ε . Поскольку $\partial H/\partial x \sim kH$, то при $k \to 0$ второе слагаемое в (25) мало. Таким образом, профиль возмущения температуры в бегущей волне можно считать линейным только при kPe <<1. С увеличением значений kPe такое упрощение становится неправомерным.

Температура поверхности пленки из усредненного уравнения энергии

В работах [2, 3, 6] использовано усредненное уравнение энергии. Следуя этому принципу, умножим уравнение (8) на η и проинтегрируем по η :

$$\int_{0}^{1} \frac{\partial T}{\partial t} \eta d\eta + \int_{0}^{1} \frac{\partial T}{\partial x} u \eta d\eta + \frac{1}{h} \int_{0}^{1} \frac{\partial T}{\partial \eta} V \eta d\eta = \frac{1 - T_{s} (1 + \text{Bi}h)}{h^{2} \text{Pe}}.$$
 (27)

В правой части выполнено интегрирование по частям с учетом граничных условий (9). Если подставить в (27) профиль температуры, выраженный через T_s , и провести интегрирование, мы получим эволюционное уравнение для T_s . Очевидно, что адекватность полученного уравнения зависит от того, насколько заданный профиль соответствует реальности. В работах [2, 3] взят линейный профиль

$$T(t, x, \eta) = 1 + \eta(T_s - 1).$$
 (28)

Подставим (28) в (27) и, полагая h=1+H, $T_s=1/(1+\mathrm{Bi})+\tilde{T_s}$, линеаризуем уравнение относительно H, $\tilde{T_s}$. Во втором интеграле необходимо брать невозмущенный профиль скорости $u_0=q_0(3\eta-1,5\eta^2)$, а в третьем интеграле необходимо брать невозмущенное значение $dT_0/d\eta=-\mathrm{Bi}/(1+\mathrm{Bi})$. В результате получаем:

$$\int_{0}^{1} \frac{\partial T}{\partial t} \eta d\eta = \frac{\partial \tilde{T}_{s}}{\partial t} \int_{0}^{1} \eta d\eta, \quad \int_{0}^{1} \frac{\partial T}{\partial x} u \eta d\eta = q_{0} \frac{\partial \tilde{T}_{s}}{\partial x} \int_{0}^{1} \left(3\eta - 1, 5\eta^{2}\right) \eta d\eta,$$

$$\int_{0}^{1} \frac{\partial T}{\partial \eta} V \eta d\eta = \frac{\text{Bi}}{1 + \text{Bi}} \frac{\partial H}{\partial t} \int_{0}^{1} \left(\eta - 1, 5\eta^{2} + 0, 5\eta^{3}\right) \eta d\eta + \frac{\text{MaBi}}{4(1 + \text{Bi})} \frac{\partial^{2} \tilde{T}_{s}}{\partial x^{2}} \int_{0}^{1} \left(\eta^{2} - \eta^{3}\right) \eta d\eta.$$

Вычислив интегралы, запишем линеаризованное уравнение (27) в виде

$$\frac{1}{3}\frac{\partial \tilde{T}_s}{\partial t} + \frac{9q_0}{20}\frac{\partial \tilde{T}_s}{\partial x} + \frac{\text{MaBi}}{80(1+\text{Bi})}\frac{\partial^2 \tilde{T}_s}{\partial x^2} + \frac{(1+\text{Bi})\tilde{T}_s}{\text{Pe}} = -\frac{\text{Bi}}{(1+\text{Bi})}\left(\frac{7}{120}\frac{\partial H}{\partial t} + \frac{H}{\text{Pe}}\right). \tag{29}$$

Если сравнить (29) с линеаризованным уравнением энергии из работ [2,3], то единственным отличием будет наличие в левой части (29) члена $\partial^2 \tilde{T}_s / \partial x^2$. Формально этот член должен быть отброшен в погранслойном приближении. Он, однако, оставлен, т. к. коэффициент перед ним, пропорциональный Ма, может быть большим.

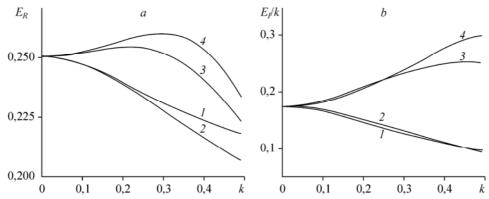
Из уравнения (14) профиль возмущения температуры получается линейным только в асимптотике $k\text{Pe} \to 0$. В связи с этим интересно сравнить значения E_R и E_I/k , рассчитанные исходя из линейного профиля (т. е. из (29)) с формулами (24). Подставляя $\hat{H}(x,t) = H_a e^{ik(x-ct)}$, $\hat{T}_s = -\hat{E}\hat{H}$ в уравнение (29), получаем:

 $\left(i\varepsilon\left(9q_0/20-c/3\right)+1+\mathrm{Bi}-\varepsilon M/20\right)\widehat{E}=\left(1-i\varepsilon7c/120\right)\mathrm{Bi}/(1+\mathrm{Bi})$. Отделяя вещественную и мнимую части \widehat{E} , находим

$$E_{R} = \frac{\text{Bi}}{1 + \text{Bi}} \frac{1 + \text{Bi} - \varepsilon M / 20 + \varepsilon^{2} (c / 3 - 9q_{0} / 20) 7c / 120}{(1 + \text{Bi} - \varepsilon M / 20)^{2} + \varepsilon^{2} (9q_{0} / 20 - c / 3)^{2}},$$

$$\frac{E_{I}}{k} = \frac{\text{BiPe}}{1 + \text{Bi}} \frac{(1 + \text{Bi} - \varepsilon M / 20)(-7c / 120) + c / 3 - 9q_{0} / 20}{(1 + \text{Bi} - \varepsilon M / 20)^{2} + \varepsilon^{2} (9q_{0} / 20 - c / 3)^{2}}.$$
(30)

На рис. З a, b показаны значения E_R и E_I/k , рассчитанные из уравнения (14), в сравнении с (30) при Pe=7, Bi=1. Оба подхода дают одинаковые значения в асимптотике



Puc.~3.~ Значения $E_R~(a)$ и $E_I/k~(b)$ при Pe=7,~Bi=1;~ по уравнению (14) — I,~3,~ по формулам (30) — 2,~4;~ Ма = 0 (I,~2), 100 (I,~4).

 $k \to 0$, но с увеличением k различие растет. Отношение E_I/E_R определяет фазовый сдвиг $\tilde{T}_s(x,t)$ относительно H(x,t). Из рис. 3 видно, что с ростом k значения E_I/k при $\mathrm{Ma}=0$ уменьшаются, а при $\mathrm{Ma}>0$ растут. Это означает, что термокапиллярный эффект увеличивает фазовый сдвиг между \tilde{T}_s и H.

Дисперсионные соотношения

Положим h=1+H, $q=q_0+Q$, $T_s=T_{s0}+\tilde{T}_s$ и линеаризуем уравнения (7):

$$\frac{\partial Q}{\partial t} - \frac{6q_0^2}{5} \frac{\partial H}{\partial x} + \frac{12q_0}{5} \frac{\partial Q}{\partial x} - \frac{q_0 \text{Ma}}{20} \frac{\partial^2 \tilde{T}_s}{\partial x^2} =$$

$$= \frac{3}{\text{Re}_m} \left(3q_0 H - Q - \frac{\text{Ma}}{2} \frac{\partial \tilde{T}_s}{\partial x} - \cos \theta \frac{\partial H}{\partial x} \right) + \text{We} \frac{\partial^3 H}{\partial x^3}, \quad \frac{\partial H}{\partial t} + \frac{\partial Q}{\partial x} = 0.$$
(31)

Уравнения (31) вместе с (13) составляют замкнутую систему линейных уравнений относительно малых возмущений H, Q, \tilde{T}_s . Сведем эту систему к одному уравнению для возмущения поверхности пленки. Дифференцируя первое уравнение (31) по x, а второе по t, исключаем $\partial^2 Q/\partial x \partial t$; затем с помощью второго уравнения (31) исключаем $\partial Q/\partial x$. В результате получаем уравнение, содержащее H и \tilde{T}_s :

$$\frac{\partial^{2} H}{\partial t^{2}} + \left(\frac{6q_{0}^{2}}{5} - \frac{3\cos\theta}{\text{Re}_{m}}\right) \frac{\partial^{2} H}{\partial x^{2}} + \frac{12q_{0}}{5} \frac{\partial^{2} H}{\partial x \partial t} + \frac{3}{\text{Re}_{m}} \left(\frac{\partial H}{\partial t} + 3q_{0} \frac{\partial H}{\partial x}\right) + \text{We} \frac{\partial^{4} H}{\partial x^{4}} = \\
= \text{Ma} \left(\frac{3}{2 \text{Re}_{m}} \frac{\partial^{2} \tilde{T}_{s}}{\partial x^{2}} - \frac{q_{0}}{20} \frac{\partial^{3} \tilde{T}_{s}}{\partial x^{3}}\right).$$

Подставляя в вышеприведенное выражение равенство (13), получаем для H(x, t) двухволновое уравнение:

$$\left(\frac{\partial}{\partial t} + c_1 \frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} + c_2 \frac{\partial}{\partial x}\right) H + \frac{3}{\text{Re}_m} \left(\frac{\partial H}{\partial t} + 3q_0 \frac{\partial H}{\partial x}\right) - \text{Ma} F \frac{\partial^3 H}{\partial x^3} + \text{We}_M \frac{\partial^4 H}{\partial x^4} = 0, \quad (32)$$

здесь
$$c_{1,2}=1,2q_0\pm\sqrt{1,44q_0^2-\delta_M}$$
, $F=0,05q_0E_R-1,5E_I/k\,\mathrm{Re}_m$, $\mathrm{We}_M=\mathrm{We}-0,05q_0\mathrm{Ma}E_I/k$, $\delta_M=1,2q_0^2-3\cos\theta/\mathrm{Re}_m+1,5E_R\mathrm{Ma}/\mathrm{Re}_m$.

Для изотермической пленки двухволновое уравнение было получено в работе [8]. Наличие термокапиллярного эффекта приводит к появлению в (32) члена $\partial^3 H/\partial x^3$. Кроме того, в коэффициентах δ_M и We $_M$ появляются дополнительные слагаемые, пропорциональные Ма.

Для того, чтобы получить дисперсионные зависимости c(k), $\beta(k)$, представим волнистую поверхность пленки в виде $\hat{H} = H_a \mathrm{e}^{\mathrm{i}k(x-ct)+\beta\cdot t}$, где β — вещественный временной инкремент волны. Подставляя это в (32), получаем дисперсионное уравнение

$$(\beta + ik(c_1 - c))(\beta + ik(c_2 - c)) + 3(\beta + ik(3q_0 - c))/\operatorname{Re}_m + ik^3\operatorname{MaF} + \operatorname{We}_M k^4 = 0.$$

Отделяя вещественную и мнимую части, получаем систему уравнений для β и c:

$$2\beta (1, 2q_0 - c) + 3(3q_0 - c) / \operatorname{Re}_m + \operatorname{Ma}Fk^2 = 0,$$

$$\beta^2 + \beta \operatorname{Re}_m / 3 - k^2 (c^2 - 2, 4q_0c + \delta_M) + \operatorname{We}_M k^4 = 0.$$

Преобразуем ее относительно неизвестных $X_{\beta} = \beta \operatorname{Re}_m/3 + 1/2$ и $Y_c = c - 1, 2q_0$:

$$X_{\beta}Y_{c} = A/2, \quad X_{\beta}^{2} = \xi(Y_{c}^{2} - B) + 1/4,$$
 (33)

здесь $\xi = \left(k\operatorname{Re}_m/3\right)^2$, $A = 1,8q_0 + \operatorname{Ma}\operatorname{Re}_m k^2 F/3$, $B = 0,24q_0^2 + 3\cos\theta/\operatorname{Re}_m + \operatorname{We}k^2 - \operatorname{Ma}N$, $N = 1,5E_R/\operatorname{Re}_m + 0,05q_0E_Ik$. Систему (33) легко свести к одному уравнению относительно X_β либо относительно Y_c . Исключая Y_c , получаем для $Z = X_\beta^2$ квадратное уравнение: $Z^2 - Z(0,25-B\xi) - 0,25A^2\xi = 0$. Отсюда находим

$$Z = 0.5 \left(0.25 - B\xi + \sqrt{(0.25 - B\xi)^2 + A^2 \xi} \right), \quad \beta = 3 \left(-0.5 \pm \sqrt{Z} \right) / \operatorname{Re}_m,$$

$$c = 1.2q_0 \pm A / 2\sqrt{Z}.$$
(34)

Знаки + и – в (34) соответствуют двум различным модам. Первая мода (знак +) может давать неустойчивость, а вторая — всегда затухающая. При Ma = 0 коэффициенты A и B не зависят от c, и (34) дает аналитические зависимости $\beta(k)$ и c(k). При Ma > 0 уравнение (34) решалось численно методом итераций.

Нейтральная кривая

В координатах (Re_m,k) область неустойчивости ограничена снизу прямой k=0, сверху — нейтральной кривой, задаваемой условием $\beta=0$. Из (33) следует, что нейтральная кривая $k_{\mathrm{neut}}(\mathrm{Re}_m)$ задается уравнением $A^2=B$, т. е.:

$$(1.8q_0 + \text{Ma Re}_m k_{\text{neut}}^2 F/3)^2 = 0.24q_0^2 + 3\cos\theta / \text{Re}_m + \text{We}k_{\text{neut}}^2 - \text{Ma}N.$$
 (35)

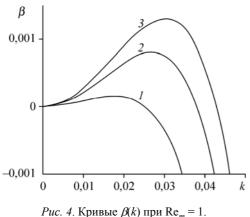
Рассмотрим асимптотику $k_{\rm neut} \to 0$ и отбросим в выражении (35) члены более высокого порядка, чем $k_{\rm neut}^2$. Предельные при $k \to 0$ значения F и N находим с помощью равенств (26):

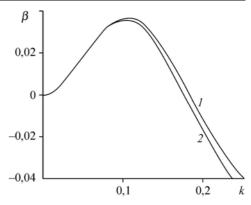
$$F_0 = q_0 (0.05 - 1.5P) \text{Bi} / (1 + \text{Bi})^2$$
, $N_0 = (1.5 / \text{Re}_m + 0.05q_0^2 k^2 \text{Re}_m P) \text{Bi} / (1 + \text{Bi})^2$,

здесь $P = \Pr((33 - 7\text{Bi})c/120q_0 - 9/20)$. С учетом $c\big|_{k\to 0} = 3q_0$, получаем $P = \Pr(15 - 7\text{Bi})/40$. В асимптотике $k_{\text{neut}} \to 0$ уравнение нейтральной кривой принимает вид:

$$3\left(q_0^2 - \frac{\cos\theta}{\text{Re}_m}\right) + \frac{1,5\text{MaBi}}{\text{Re}_m(1+\text{Bi})^2} = k_{\text{neut}}^2 \left(\text{We} + \frac{q_0^2\text{BiMa}\,\text{Re}_m}{\left(1+\text{Bi}\right)^2} \left(1,75P - 0,06\right)\right). \tag{36}$$

Рассмотрим выражение (36) для вертикальной пленки при $\mathrm{Re}_m \to 0$. В случае $\mathrm{Ma} = 0$ имеем известный результат $k_{\mathrm{neut}} = \sqrt{3/\mathrm{We}} = \mathrm{Re}_m^{5/6} \sqrt{(9/\mathrm{Fi})^{1/3}}$. В случае $\mathrm{Ma} > 0$ в левой части уравнения (36) доминирует второе слагаемое, т. к. $\mathrm{MaBi}/\mathrm{Re}_m = \mathrm{Ma}^*\mathrm{Bi}^*/\mathrm{Re}_m^{4/3} \to \infty$, а в правой части доминирует первое слагаемое, т. к. $\mathrm{We} = (3\mathrm{Fi})^{1/3}/\mathrm{Re}_m^{5/3} \to \infty$. Отсюда зависимость $k_{\mathrm{neut}}(\mathrm{Re}_m)$ имеет вид $k_{\mathrm{neut}} = \mathrm{Re}_m^{1/6} \sqrt{1,5\mathrm{Ma}^*\mathrm{Bi}^*/(3\mathrm{Fi})^{1/3}}$. Здесь $k_{\mathrm{neut}} \sim \mathrm{Re}_m^{1/6}$, поэтому при $\mathrm{Re}_m <<1$ нейтральная кривая идет выше, чем в случае $\mathrm{Ma} = 0$, когда $k_{\mathrm{neut}} \sim \mathrm{Re}_m^{5/6}$. Таким образом, при малых Re_m термокапиллярный эффект приводит к расширению области неустойчивости. В общем случае произвольных Re_m уравнение (35) решалось численно.





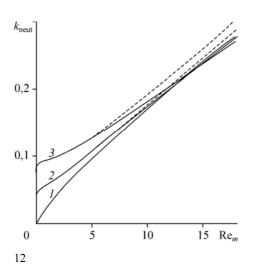
Puc. 4. Кривые $\beta(k)$ при $\text{Re}_m = 1$. $\text{Ma}^* = 0$ (1), 10 (2), 15 (3).

Puc. 5. Кривые $\beta(k)$ при $\text{Re}_m = 10$, $\text{Ma}^* = 50$. По формулам (24) — l, (30) — 2.

Результаты расчетов дисперсионных зависимостей

На рис. 4–6 приведены результаты расчетов неустойчивой моды для вертикальной пленки воды ($\Pr = 7$, $\operatorname{Fi}^{1/3} = 3270$) при $\operatorname{Bi}^* = 1$. На рис. 4 показаны кривые $\beta(k)$ для $\operatorname{Re}_m = 1$ и различных значений Ma^* . С увеличением Ma^* область неустойчивости расширяется, а максимальное значение инкремента растет. Отметим, что для параметров рис. 4 значения β , рассчитанные по (24) и (30), практически совпадают в области неустойчивости, где $k\operatorname{Pe} \leq 0,3$. Сравнение кривых $\beta(k)$, рассчитанных по (24) и (30), показано на рис. 5 для $\operatorname{Re}_m = 10$ и $\operatorname{Ma}^* = 100$. Здесь различие между кривыми довольно заметное, поскольку в области неустойчивости $k\operatorname{Pe} \sim 10$.

На рис. 6 приведены нейтральные кривые для различных значений Ma^* . Как видно из рисунка, при $\mathrm{Re}_m > 13$ нейтральные кривые для $\mathrm{Ma}^* > 0$ лежат ниже, чем для $\mathrm{Ma}^* = 100$. Таким образом, при достаточно больших Re_m термокапиллярный эффект стабилизирует пленку. Этот, казалось бы, парадоксальный эффект объясняется наличием фазового сдвига между колебанием поверхности пленки и колебанием температуры поверхности. С увеличением значений Pe и Ma фазовый сдвиг растет, при этом касательное напряже-



ние направлено так, чтобы уменьшить деформацию поверхности пленки. Для сравнения на рис. 6 показаны результаты расчетов по формулам (30). Из рисунка видно, что усредненное уравнение для температуры поверхности пленки дает завышенные значения $k_{\rm neut}$. Это завышение, незначительное при $k{\rm Re} \le 1$, становится существенным с увеличением параметров ${\rm Re}_m$ и ${\rm Ma}^*$.

Puc.~6.~ Нейтральные кривые для различных значений ${\rm Ma}^*.$

 $^{{\}rm Ma}^* = 0 \ (1), \ 30 \ (2), \ 100 \ (3), \ {\rm штриховые} \ {\rm линии} \ —$ расчет по формуле (30).

3. Численное моделирование волн в нагреваемой пленке

Было проведено численное моделирование эволюции волн с пространственным периодом l, который использован в качестве масштаба по оси x. Масштаб времени выбран $t_m = h_0 l / \mathrm{Re}_m \, \nu$, остальные масштабы такие же, как в разделе 1. Волновые режимы течения пленки получены решением уравнений (7,8) конечноразностным методом. Для этого на участке счета 0 < x < 1 задавались распределения h(x,0) и q(x,0) в виде волны малой амплитуды H_a , наложенной на невозмущенное течение: $h(x,0) = 1 + H_a \cos 2\pi x$, $q(x,0) = q_0 + H_a \left(\cos 2\pi x - \left(\beta / 2\pi \right) \sin 2\pi x \right)$, здесь β и c — инкремент и фазовая скорость волны, рассчитанные из дисперсионных соотношений. На границах x=0, x=1 ставились условия периодичности:

$$h(0,t) = h(1,t), \ \ q(0,t) = q(1,t), \ \ \partial q / \partial x \big|_{x=0} = \partial q / \partial x \big|_{x=1}, \ \ \partial^3 h / \partial x^3 \big|_{x=0} = \partial^3 h / \partial x^3 \big|_{x=1}.$$

Если значение волнового числа $k=2\pi h_0/l$ принадлежало области неустойчивости, начальное возмущение нарастало и эволюционировало в стационарно бегущую волну, в обратном случае возмущение затухало.

По координате x задавалась равномерная сетка с узлами $x_j = j/N_x$, $j = 0, 1, 2...N_x$ и уравнения (7) записывались в разностном виде по неявной схеме:

$$\frac{\overline{q}_{j} - q_{j}}{\Delta t} = -\overline{\left(\frac{\partial J}{\partial x}\right)_{j}} + \frac{3}{\operatorname{Re}_{m}} \left(\overline{h}_{j} \left(\chi \sin \theta - \cos \theta \overline{\left(\frac{\partial h}{\partial x}\right)_{j}}\right) - \frac{\chi \overline{q}_{j}}{\overline{h}_{j}^{2}} - \frac{\operatorname{Ma}}{2} \overline{\left(\frac{\partial T_{s}}{\partial x}\right)_{j}}\right) + \frac{\overline{h}_{j} \operatorname{We}}{\chi^{2}} \overline{\left(\frac{\partial^{3} h}{\partial x^{3}}\right)_{j}}, \quad \overline{\frac{h}{j} - h_{j}} = -\overline{\left(\frac{\partial q}{\partial x}\right)_{j}}.$$
(37)

Здесь чертой сверху обозначены значения на новом временном слое, без черты — на старом временном слое, $\chi=l/h_0$ — отношение масштабов по осям x и y. Производные по координате x апроксимировались центральными разностями. Значения \overline{q}_j , \overline{h}_j вычислялись по схеме (37) методом итераций, для начала итераций брались значения на старом временном слое. Итерации сходятся, если шаг по времени достаточно мал и удовлетворяет условию Куранта $c\Delta t/\Delta x < 1$. На каждом шаге скорость волны c вычислялась из соотношения c0 установлении стационарной волны свидетельствовали следующие факты: 1) значения c1 и c1 во всех узлах периодически зависят от времени, 2) значения c3 уначения c4 и c6 установлений зависимостью c7 в роцессе дальнейшего счета величина c8 и меняется.

Для уравнения (8) по координате η задавалась равномерная сетка с узлами $\eta_m = m/N_y, \ m=0,\ 1,\ 2\dots N_y.$ Левая часть (8) представляет собой субстанциальную производную dT/dt вдоль траектории $dx/dt=u,\ d\eta/dt=W/h,\$ поэтому разностное уравнение записывалось в виде $\left(\overline{T}_{j,m}-T_{j,m}^P\right)/\Delta t=\chi\left(\overline{T}_{j,m+1}-2\overline{T}_{j,m}+\overline{T}_{j,m-1}\right)/\operatorname{Pe}h_j^2\Delta\eta^2$ и решалось методом прогонки с использованием граничных условий (9). Здесь $T_{j,m}^P$ — температура в точке P, из которой траектория приходит в узел (j,m) на новом временном слое. Значение $T_{j,m}^P$ вычислялось из разложения в ряд Тейлора в окрестности узла (j,m): $T_{j,m}^P = T_{j,m} - \left(\partial T/\partial x\right)_{j,m} u_{j,m} \Delta t - \left(\partial T/\partial \eta\right)_{j,m} W_{j,m} \Delta t/h_j$. Производные $\left(\partial T/\partial x\right)_{j,m},\ \left(\partial T/\partial \eta\right)_{j,m}$ аппроксимировались разностями против потока. На границах $x=0,\ x=1$

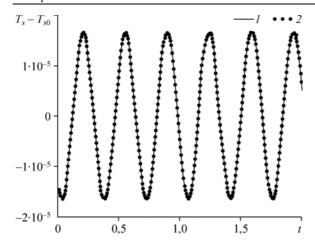


Рис. 7. 1 — возмущение температуры поверхности пленки при l=4,285 мм, Ма $^*=100$, Re $_m=17$; 2 — расчет по формуле (13).

ставилось условие периодичности $\overline{T}_{0,m}=\overline{T}_{Nx,m}, m=0,1,2...N_y$. Начальное распределение температуры в пленке задавалось в виде $T=T_0(\eta)+\widetilde{T}(x,\eta,0),$ где $\widetilde{T}(x,\eta,0)$ определялось из равенства (25).

Результаты расчетов эволюции волн

На рис. 7–11 приведены результаты расчетов для вертикальной пленки воды ($\Pr=7$, $\Pr^{1/3}=3270$) при $\Pr^*=1$. Расчеты показали, что эволюция волн хорошо согласуется с результатами анализа устойчивости. Если $k < k_{\text{neut}}$, то начальное возмущение нарастает, в обратном случае затухает. Рис. 7 и 8 демонстрируют эволюцию начального возмущения с длиной волны l=4,285 мм и амплитудой $H_a=10^{-4}$ при $\Pr^*=100$. На рис. 7 показана зависимость температуры поверхности пленки от времени при $p_a=100$ 0. Там же приведено сравнение с выражением (13). Значения $p_a=100$ 1 и $p_a=100$ 2 показаны профили возмущения температуры, рассчитанные при $p_a=100$ 3 на различные моменты времени, в сравнении с рассчитанными по уравнению (25). Как видно из графиков, результаты численного моделирования хорошо согласуются с решением уравнения (14).

Эволюция начального возмущения с длиной волны l=15 мм и амплитудой $H_a=0,05$ представлена на рис. 9 в виде зависимости от времени толщины пленки при x=0, $\mathrm{Re}_m=18$. Значение $k=7,546\cdot 10^{-2}$ существенно меньше чем k_{neut} , поэтому начальное возмущение быстро эволюционирует в стационарно бегущую волну. Отметим,

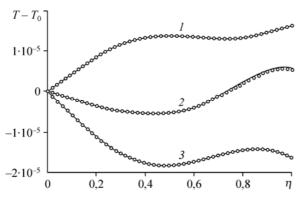
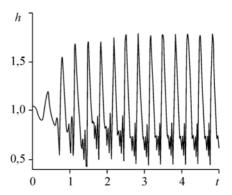


Рис. 8. Профиль возмущения температуры на различные моменты времени (сплошные линии) при l=4,285 мм, $\mathrm{Ma}^*=100,\,\mathrm{Rem}=17.$

t = 1,25 (1), 1,75 (2), 2 (3); о — расчет по формуле (25).



Puc. 9. Эволюция возмущения с длиной волны l=15 мм при $\mathrm{Ma}^*=100$, $\mathrm{Re}_m=18$.

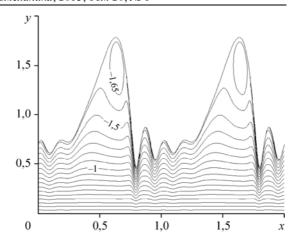
Puc. 10. Линии тока в системе отсчета, связанной с волной.

$$l = 15 \text{ MM}, \text{ Ma}^* = 100, \text{ Re}_m = 24,55.$$

что из условия периодичности и второго уравнения (7) следует, что средняя толщина пленки $\langle h \rangle = \left(\int\limits_0^l h dx\right)/l$

не зависит от времени. Средний расход $\langle q \rangle = \left(\int\limits_0^l q dx\right)/l$ изменяется в про-

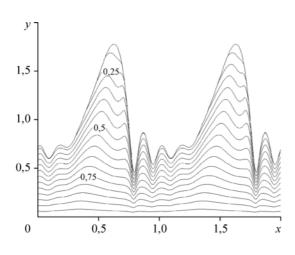
цессе эволюции волны, причем установившийся расход отличается от на-



чального значения q_0 . В частности, для параметров рис. 9 установившееся значение числа Рейнольдса $\mathrm{Re}=24,55$. На рис. 10 показаны профиль стационарной волны h(x) и линии тока в системе отсчета, связанной с волной. Из рисунка видно, что вблизи гребня волны имеется зона циркуляции. Соответствующее распределение температуры показано на рис. 11. Изотермы имеют максимумы на переднем и на заднем склонах холма. Рис. 10 и 11 свидетельствуют о том, что для $\mathrm{Re}\sim20$ конвекция дает существенный вклад в теплоперенос как в продольном, так и в поперечном направлениях. Отметим, что линейный профиль температуры (28) подразумевает чисто кондуктивный механизм теплопереноса и не учитывает конвективного переноса. Эволюционное уравнение для температуры поверхности пленки с профилем (28), очевидно, применимо только при $\mathrm{Pe}\leq1$.

Заключение

В рамках интегральной модели проведен линейный анализ устойчивости неизотермического течения пленки в случае заданной температуры подложки. Из уравнения энергии выведено уравнение (14) для возмущения профиля температуры и получено его решение для произвольных значений параметра kPe. Анализ устойчивости, основанный на уравнении (14), показал, что усредненное уравнение энергии с линейным профилем температуры неадекватно описывает температуру поверхности пленки при больших значениях kPe. Расчеты дисперсионных зависимостей показали, что термокапиллярный эф-



фект не всегда приводит к расширению области неустойчивости. При больших значениях Ре происходит сужение области неустойчивости. Этот эффект объясняется увеличением фазового сдвига температуры поверхности относительно деформации поверхности пленки. Расчеты эволюции волн хорошо согласуются с результатами анализа устойчивости.

Puc. 11. Распределение температуры в стационарной волне. l = 15 мм, ${\rm Ma}^* = 100$, ${\rm Re} = 24,55$.

Список обозначений

q — расход жидкости в пленке,
$q_0 = \sin \theta$ — невозмущенный расход,
Q — возмущение расхода,
u, v — компоненты скорости,
T— температура,
T_W — температура пластины,
T_{σ} — температура газа,
t — время,
x, y — координаты.

Греческие символы

β — инкремент волны,	σ — поверхностное натяжение,
γ — производная $d\sigma/dT$,	θ — угол наклона пластины к горизонту,
$\varepsilon = k$ Pe — параметр,	v— кинематическая вязкость жидкости,
λ — теплопроводность жидкости,	ho— плотность жидкости,
μ — динамическая вязкость жидкости,	$\eta = y/h$ — безразмерная координата,
	τ — касательное напряжение.

Безразмерные комплексы

	$Fi = \sigma^3/\rho^3 g v^4 пленочное число,$
$Bi = b(3v^2/g)^{1/3}/\lambda,$	We = $(3Fi/Re_m^5)^{1/3}$ — число Вебера,
${ m Re}=q/\nu$ — число Рейнольдса, ${ m Re}_m=\ gh_0^3 \Big/3 \nu^2$, ${ m Pr}=\nu/a$ — число Прандтля,	$Ma = \gamma T_m / \mu u_m$ — число Марангони, $M = k MaBi/4(1 + Bi)$, $Ma^* = \gamma (3/g \nu)^{2/3} (T_W - T_g) / \mu$,
11 //a mesto ripangens,	$Pe = Re_m Pr$ — число Пекле.

Индексы

s—на поверхности пленки, m — масштабные величины, 0 — невозмущенное течение.

Список литературы

- Goussis D.A., Kelly R.E. Surface wave and termocapillary instabilities in a liquid film flow // J. Fluid Mech. 1991.
 Vol. 223, P. 24–45.
- 2. Kalliadasis S., Demekhin E.A., Ruyer-Quil C., Velerade M.G. Termocapillary instability and wave formation on a film falling down a uniformly heated plane // J. Fluid Mech. 2003. Vol. 492. P. 303–338.
- 3. Ruyer-Quil C., Scheid B., Kalliadasis S., Velerade M.G., Zeytonian R.Kh. Termocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation // J. Fluid Mech. 2005. Vol. 538. P. 199–222.
- **4.** Scheid B., Ruyer-Quil C., Kalliadasis S., Velerade M.G., Zeytonian R.Kh. Termocapillary long waves in a liquid film flow. Part 2. Linear stability and nonlinear waves // J. Fluid Mech. 2005. Vol. 538. P. 223–244.
- 5. Ruyer-Quil C., Manneville P. Further accuracy and convergence results on the modeling of flows down inclined planes by weighed-residual approximations // Phys. Fluids. 2002. Vol. 14, No. 1. P. 170–183.
- Trevelyan M.J., Scheid B., Ruyer-Quil C., Kalliadasis S. Heated falling films // J. Fluid Mech. 2007. Vol. 592. P. 295–334.
- Шкадов В.Я. К теории волновых течений тонкого слоя вязкой жидкости // Изв. АН СССР. МЖГ. 1968. № 2. С. 20–25.
- 8. Alekseenko S.V., Nakoryakov V.E. Instability of a liquid film moving under the effect of gravity and gas flow // Int. J. Heat Mass Transfer. 1995. Vol. 38. P. 2127–2134.

Статья поступила в редакцию 11 января 2011 г.