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Проведено расчетно-экспериментальное исследование образования NOx при горении водорода в

цилиндрической камере сгорания с разработанным микрофакельным горелочным устройством.
Экспериментальные данные получены при различном распределении топлива между основным

и пилотным контурами горелочного устройства. Численное исследование процессов горения и
образования NOx в камере сгорания выполнено для режимов, соответствующих эксперимен-
тальным. Расчеты проводились в стационарной постановке с использованием подхода к моде-
лированию турбулентности RANS. При моделировании горения водорода учитывалась скорость
смешения топлива с воздухом с помощью критерия подобия, связанного с диффузией (турбулент-
ное число Шмидта). Нормальная скорость распространения пламени задавалась в зависимости
от температуры и состава топливовоздушной смеси. Исследовано влияние турбулентного числа
Шмидта на результаты расчета эмиссии оксидов азота.
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ВВЕДЕНИЕ

В настоящее время загрязнение атмосфе-
ры оксидами азота NOx, которые образуются
в камерах сгорания газотурбинных двигателей

и энергетических установок, является серьез-
ной экологической проблемой. Кроме того, в
последние годы актуальным становится вопрос

о снижении выбросов парниковых газов (или
углеродного следа) в целях борьбы с глобаль-
ным изменением климата. И если для реше-
ния вопроса о снижении эмиссии оксидов азо-
та применяются технологии сжигания ультра-
бедных, заранее подготовленных топливовоз-
душных смесей, то для уменьшения углерод-
ного следа необходимо использовать топливо

с меньшим содержанием углерода. Альтерна-
тивным топливом, не содержащим атомов уг-
лерода, является водород. Однако его исполь-
зование в традиционных камерах сгорания с
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горелочными устройствами, обеспечивающими
горение в закрученном потоке, невозможно в
связи с высокой вероятностью проскока пламе-
ни вверх по потоку [1–3], а также в связи с воз-
никновением автоколебаний газа в камере сго-
рания [3–6]. Это вызвано тем, что горение водо-
рода отличается от горения метана из-за боль-
шого различия их физико-химических свойств
(теплотворная способность, скорость химиче-
ских реакций и др.).

Обзор литературных источников [1–3,
7–14] показал, что углеводородные топлива

с добавлением водорода до 30 % по объему

можно сжигать в существующих газотурбин-
ных установках с малоэмиссионными камера-
ми сгорания. При большем содержании водо-
рода в топливе необходим переход к принципи-
ально другой конструкции горелочного устрой-
ства (ГУ). Примером такого устройства явля-
ется так называемое кластерное микрофакель-
ное ГУ [15–19].

Концепция кластерного микрофакельного
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Рис. 1. Концепция кластерного микрофакель-
ного горелочного устройства

ГУ основана на интеграции двух ключевых

технологий: горение с низким уровнем выбро-
сов NOx и горение, устойчивое к проскоку пла-
мени.Кластерное микрофакельное ГУ реализу-
ет преимущества как камеры сгорания с пред-
варительным смешением (низкий уровень вы-
бросов NOx), так и камеры сгорания с диффу-
зионным пламенем (устойчивость к проскоку
пламени). Рис. 1 иллюстрирует эту концепцию.

Низкий уровень выбросов NOx обеспечи-
вается за счет интенсивного смешения топли-
ва с воздухом с помощью системы коаксиаль-
ных струй. Каждая коаксиальная струя состо-
ит из центральной топливной струи, окружен-
ной кольцевым воздушным потоком. Сразу по-
сле выхода коаксиальной струи из отверстия

перфорированной пластины в ней генерируется

высокий уровень турбулентности за счет резко-
го расширения и взаимодействия с соседними

струями. Таким образом обеспечивается быст-
рое смешение топлива с воздухом, что созда-
ет условия для организации процесса горения

с низким содержанием NOx за счет уменьше-
ния объема высокотемпературных зон.

При разработке новых ГУ широко исполь-
зуются методы численного моделирования про-
цессов горения, при этом большинство матема-
тических моделей оптимизированы и провере-
ны для стандартных углеводородных топлив,
например метана. Однако отдельные упроще-
ния, допустимые для расчета горения мета-
на, могут привести к существенным погреш-
ностям при моделировании горения водорода.
Одним из важных критериев является эффек-
тивное число Льюиса Le [20], характеризующее
отношение теплопроводности к коэффициенту

диффузии. Одна из проблем в моделировании

горения водорода состоит в том, что многие
доступные модели либо основаны на выводах,
что Le = 1, как в случае с метаном, либо про-
верены и настроены с использованием экспе-
риментальных данных для топлив, у которых
число Льюиса близко к единице. При моделиро-
вании процесса горения водорода число Лью-
иса отличается от единицы. Исходя из обзо-
ра работ [20–22], число Льюиса для предвари-
тельно перемешанных смесей изменяется от 0.3
до 1 в зависимости от состава смеси, коэффи-
циента избытка топлива, а также самой модели
расчета эффективного числа Льюиса. Вторым
по значимости для моделирования водородосо-
держащих смесей является турбулентное число

Шмидта Sct — безразмерный критерий, харак-
теризующий интенсивность турбулентного пе-
реноса количества движения и переноса массы

примеси диффузией. Обзор работ [23–25] пока-
зал, что при моделировании горения водородо-
содержащих смесей требуется уменьшить Sct.
Таким образом, в зависимости от коэффициен-
та избытка воздуха и состава топлива турбу-
лентное число Шмидта варьировалось от 0.2 до
0.5 [23]. Вопросы моделирования камер сгора-
ния и горелочных устройств рассматривались

в работах [2, 3, 6, 7, 9, 10, 26]. Однако в опубли-
кованных исследованиях нет достаточного ко-
личества экспериментальных данных для про-
верки расчетной модели. Для валидации рас-
четной модели турбулентного горения водорода

необходимо получение новых эксперименталь-
ных данных [27–29].

Таким образом, целью настоящей работы

является экспериментальное исследование про-
цессов горения водорода в модельной камере

сгорания с разработанным в Самарском уни-
верситете им. акад. С. П. Королева кластер-
ным микрофакельным ГУ для оценки уровня

эмиссии оксидов азота, а также отработка ме-
тодики численного моделирования горения во-
дорода и валидация разработанной математи-
ческой модели.

ЭКСПЕРИМЕНТАЛЬНАЯ МОДЕЛЬ

Для проведения экспериментов была изго-
товлена установка, обеспечивающая специаль-
ные требования по безопасности при работе

с водородосодержащими топливами. Система
подвода и регулирования расхода водородного

топлива включала в себя пилотный и основной

контуры. Каждый из контуров оснащен элек-
тромагнитным клапаном, регулятором давле-
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Рис. 2. Блок форсунок в сборе

ния и расходомером-регулятором с диапазоном
регулирования Gт = 0.002 ÷ 0.1 г/с для пилот-
ного контура и Gт = 0.092 ÷ 4.6 г/с для основ-
ного контура.

Блок подачи топлива в ГУ (рис. 2) состоит
из 36 струйных форсунок внутреннего диамет-
ра 0.6 мм: для подачи в пилотный контур —
6 центральных форсунок, в основной — 30 фор-
сунок.

Модельная камера сгорания (рис. 3) со-
стоит из крепежных и монтажных фланцев,
кварцевой трубы и кластерного микрофакель-
ного ГУ.

РАСЧЕТНАЯ МОДЕЛЬ

Геометрическая модель камеры сгорания

состоит из трех патрубков для подвода подо-
гретого воздуха, двухканальной системы под-

Рис. 3. Модельная камера сгорания с установленным кластерным микрофакельным ГУ

вода водорода, кластерного микрофакельного
ГУ, через которое подается распределенное по
контурам топливо, кварцевой трубы и выход-
ного участка.

Построение трехмерной геометрической

модели проводилось с помощью CAD систе-
мы Siemens NX v.1992, модель представлена на
рис. 4.

Для моделирования процессов в модельном

отсеке кластерного микрофакельного ГУ бы-
ла сгенерирована сеточная конечно-элементная
модель проточной части со следующими пара-
метрами:

– максимальное значение параметра ско-
шенности — 0.82;

– общее количество элементов — 5 648 617;
– количество призматических элементов в

пограничном слое — 5.
Максимальный размер элемента в расчет-
ной области не превышает 1.7 мм. Конечно-
элементная модель показана на рис. 5.

Расчет проводился по модели турбулент-
ности k−ω SST с моделью горения FGM
(flamelet generated manifold), реализованной

в ANSYS Fluent. По результатам исследова-
ния [30] в качестве кинетического механизма
химических реакций принят механизм горения

Wang 2018 [12]. В качестве топлива исполь-
зовался Н2, состав окислителя: O2 = 21 %,
N2 = 79 %. После моделирования процессов го-
рения был выполнен расчет c использованием
детальной химической кинетики и модели сети

химических реакторов (reactor network model,
RNM) для определения эмиссии NOx (NO +
NO2). Для валидации математической модели
по значениям концентрации NOx все режимные

параметры взяты соответствующими экспери-
ментальным.
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Рис. 4. Геометрическая модель камеры сгорания

Рис. 5. Сеточная модель камеры сгорания

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Проведено расчетно-экспериментальное
исследование влияния распределения топлива

между основным и пилотным контурами

кластерного микрофакельного ГУ на количе-
ство выбросов оксидов азота. Исследования
выполняли при атмосферном давлении и тем-
пературе воздуха на входе в камеру сгорания

673 К. В качестве топлива использовался

водород. Коэффициент избытка воздуха в

модельной камере сгорания выдерживался по-
стоянным — α = 2.65. После проведения цикла
испытаний выявлены некоторые особенности

конструкции: низкий уровень шума, высокое
тепловое излучение и плавный пуск при роз-
жиге. Розжиг проводился с использованием

основного контура в пониженном режиме по

перепаду давления ∆p ≈ 1 %.
Горелка обеспечивает устойчивость к про-

скоку пламени за счет следующих трех фак-
торов: короткая секция предварительного сме-
шения; топливная струя, окруженная воздуш-
ным потоком; отрыв пламени. Короткая сек-
ция предварительного смешения в воздушном

отверстии снижает риск проскока пламени, по-
скольку она служит пространством, свободным

от точек фиксации пламени; кроме того, вре-
мя пребывания в ней топливно-воздушной сме-
си меньше времени задержки воспламенения.
Топливная струя, окруженная кольцевым воз-
душным потоком, снижает риск проскока пла-
мени, поскольку обеспечивает выход топливно-
воздушной смеси за пределы диапазона вос-
пламенения в воздушном отверстии и тем са-
мым предотвращает распространение пламе-
ни вверх по потоку. Отрыв пламени снижает
риск проскока пламени, поскольку он стабиль-
но удерживается в точке, удаленной от ГУ.

Концентрацию оксидов азота определяли

методом отбора проб продуктов сгорания с по-
следующим химическим анализом. Результаты
экспериментов сравнивали со значениями, рас-
считанными по модели RNM при различных

значениях Sct (рис. 6).
Согласно экспериментальным данным

наименьшее количество выбросов оксида

азота наблюдается при подаче 20 % топлива

через пилотный контур, так как в данном

Рис. 6. Сравнение экспериментальных значе-
ний эмиссии оксидов азота с расчетными зна-
чениями при различном заданном турбулент-
ном числе Шмидта
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Рис. 7. Поля распределения температуры газа
в режиме подачи топлива в пилотный контур

50 % при значениях Sct = 0.7 (а), 0.45 (б),
0.2 (в)

случае достигается наиболее равномерное

распределение температуры в объеме жаровой

трубы. Расчетные линии качественно в целом
согласуются с результатами экспериментов.
Относительно количественного совпадения

можно сказать следующее. При Sct = 0.2
расчеты дают заниженный по сравнению

с экспериментом результат, что в данном

случае связано с наиболее быстрым переме-
шиванием топлива с воздухом по сравнению

с остальными вариантами. Расчеты при

Sct = 0.7 завышают значение эмиссии NOx
только в случае неравномерного распределения

топлива (50 % топлива в пилотный контур).
Наилучшее количественное согласование

получено в расчете при Sct = 0.45.
Для анализа различий по концентрации

NOx при различных значениях Sct рассмотрим
распределения температуры газа в продольном

сечении модельной камеры сгорания (рис. 7).
Из рисунка видно, что из-за преимущественно
диффузионного типа горения, реализованного
в модельной камере сгорания, значение Sct су-
щественно влияет на смешение водорода с воз-
духом, что, в свою очередь, влияет на распре-
деление температуры газа и, соответственно,
на количество образуемых оксидов NOx. Од-
нако при равномерном распределении топлива

(рис. 8) число Шмидта Sct в меньшей степе-
ни влияет на образование локальных высоко-

Рис. 8. Поля распределения температуры газа
в режиме подачи топлива в пилотный контур

20 % при значениях Sct = 0.7 (а), 0.45 (б),
0.2 (в)

температурных зон, а значения эмиссии NOx
в данном случае сопоставимы с погрешностью

ее экспериментального определения.

ЗАКЛЮЧЕНИЕ

В результате проведенного численно-
экспериментального исследования процессов

горения водорода и образования оксидов азота в

камере сгорания с установленным кластерным

микрофакельным горелочным устройством

получены следующие результаты.
1. Эксперименты, выполненные при раз-

личном распределении топлива между конту-
рами, показали, что наименьшее количество
выбросов NOx достигается при подаче 20 %
топлива в пилотную зону, что подтверждают
и результаты расчетов.

2. Численное исследование влияния турбу-
лентного числа Шмидта на рабочий процесс в

модельной камере сгорания показало, что зо-
на высоких температур при числе Sct = 0.7 в
несколько раз больше, чем при Sct = 0.2. Это
особенно заметно в случае неравномерной пода-
чи топлива между основным и дежурным кон-
турами.

3. Расчетные значения эмиссии NOx при

Sct = 0.7 завышены относительно эксперимен-
тальных данных, а при Sct = 0.2 — наоборот,
сильно занижены. Наиболее близкие к экспери-
ментальным данным значения NOx получены
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при Sct = 0.45.
Таким образом, при организации горе-

ния подобного типа используемое при расчетах

число Шмидта оказывает существенное вли-
яние как на положение фронта пламени, так
и на количественную оценку эмиссии оксидов

азота. Эти особенности необходимо учитывать
при проектировании горелочных устройств по-
хожей конструкции для сжигания водородного

топлива.
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