2010. Том 51, № 1

Январь – февраль

C. 155 – 161

УДК 548.737:541.632

ЭНЕРГИЯ ВЗАИМОДЕЙСТВИЯ МОЛЕКУЛЯРНЫХ ПАР. II. АНАЛИЗ СУПРАМОЛЕКУЛЯРНОЙ АРХИТЕКТУРЫ КРИСТАЛЛОВ КОМПЛЕКСОВ ПОЛИФТОРАРОМАТИЧЕСКИХ ЕНАМИНОИМИНА И ЕНАМИНОКЕТОНОВ С ДИОКСАНОМ И ПИРИДИНОМ

© 2010 Т.В. Рыбалова*, Ю.В. Гатилов

Учреждение Российской академии наук Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН

Статья поступила 8 июля 2009 г.

Рассчитанные методом DFT (PBE/3z) по экспериментальным кристаллическим координатам атомов энергии взаимодействия молекулярных пар (МП) используются для анализа упаковки кристаллов комплексов енаминоимина и родственных енаминокетонов с диоксаном и пиридином. Другой знак энергий взаимодействия молекул енаминоимина в цепи (комплекс 4) и супермолекуле (комплекс 5) свидетельствует о том, что они удерживаются в наблюдаемом положении посредством межмолекулярного взаимодействия с растворителем. В противоположность этому молекулы енаминокетонов в комплексах 6 и 7 связываются посредством водородной связи N—H...O в димеры, которые, взаимодействуя с молекулами растворителя, образуют цепи (комплекс 6) и супермолекулы (комплекс 7). Дополняя визуально-геометрический подход программ PLATON и MERCURY, энергии взаимодействия МП позволяют более полно и структурированно описывать архитектуру кристалла, более надежно выделять супрамолекулярные мотивы и устанавливать их иерархию.

Ключевые слова: упаковка кристалла, квантово-химические расчеты, водородные связи N—H...O и N—H...N, межмолекулярные взаимодействия $\pi...\pi$, F... π , O... π , N... π , F...H и F...F, полифторароматические соединения.

Описанный в нашей работе [1] метод анализа кристаллической упаковки, основанный на расчете энергии взаимодействия молекулярных пар (МП) ближайших соседей в кристалле, был использован нами в частности для изучения кристаллической упаковки соединений **1—3** [2].

Данная статья посвящена анализу кристаллической упаковки комплексов 4—7 этих соединений с диоксаном и пиридином на основании энергий взаимодействия МП, который представляется нам более сложным из-за большего количества типов МП, благодаря двухкомпонентности состава, и одновременно более интересным из-за разнообразия возможных сокращенных межмолекулярных контактов. Результаты рентгеноструктурного исследования данных комплексов опубликованы ранее в работах [3, 4].

^{*} E-mail: rybalova@nioch.nsc.ru

МЕТОДИЧЕСКАЯ ЧАСТЬ

Расчеты и выделение межмолекулярных контактов проводили так же, как и в предыдущем сообщении [2]. Использовали программу PRIRODA (методом DFT, PBE/3z).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Выделенные в работе [3] ленты молекул в кристаллах комплекса 4 (рис. 2, *a*), так же как и супермолекулы в кристаллах комплекса 5 (см. рис. 2, *в*) оп ределяются МП 1 и 2 (см. табл. 1, 2), энергия которых максимальна среди всех пар молекул ближайших соседей.

Описанные нами ранее [3] π -стекинг-взаимодействия в кристаллах комплексов 4 и 5 между фторированными циклами C4÷C9 соответствуют МП 5, но, согласно расчетам, существует еще и более энергетически выгодное взаимодействие N1... π (C4÷C9) (см. рис. 2, δ и *г*) — соответствующая МП 4 — объединяющее ленты комплекса 4 в 3D, а не 2D [3] архитектуру и супермолекулы комплекса 5 в слои параллельные плоскости (*ab*) (рис. 3), не описанные ранее [3].

Молекулы пиридина, принадлежащие супермолекулам комплекса **5** из соседних слоев, располагаются поочередно в межслоевом пространстве (см. рис. 3), связывая между собой слои супермолекул взаимодействиями МП **8**—**10** (см. табл. 2)

Необходимо особо остановиться на МП 3 для комплексов 4 и 5, отражающей взаимодействие ближайших молекул соседей соединения 1 внутри комплексов. Чтобы проиллюстрировать смысл отрицательной энергии взаимодействия в этой молекулярной паре, нами были проведены расчеты с оптимизацией геометрии МП 3 и супермолекулы комплекса 5.

Оптимизированная геометрия МП **3** (рис. 4) принципиально отличается от исходной, в то время как геометрия супермолекулы (см. рис. 2, *в*) при оптимизации практически не меняется, только несколько изменяются ее геометрические параметры в отсутствие кристаллического окружения. Таким образом, энергии взаимодействия молекулярных пар позволяют сделать вывод о том, что в кристаллах комплексов **4** и **5** молекулы соединения **1** удерживаются в наблюдаемом положении благодаря взаимодействию с растворителем, причем, чем сильнее расталкиваются молекулы енминоимина **1**, тем выше энергия взаимодействия его с растворителем (см. табл. 1, 2).

МП 1 в кристаллах комплексов 6 и 7, аналогичная МП 3 в комплексах 4 и 5, напротив, имеет максимальную энергию взаимодействия, и молекулы енаминокетонов 2 и 3 в них связаны

Рис. 1. Нумерация атомов в комплексе **4** (*a*) (в комплексе **5** такая же, исключая растворитель) и в комплексах **6** (*б*) и **7** (*в*)

Рис. 2. Лента молекул (а) в кристалле комплекса 4 и супермолекула (в) в кристаллах комплекса 5 и взаимодействия (π (C4÷C9)... π (C4÷C9) и N1... π (C4÷C9)) молекул соседних лент (δ) и супермолекул (ϵ)

Таблица 1

Энергия взаимодействия	молекулярных пар	о в кристаллах комплекса 4
------------------------	------------------	----------------------------

ΜП	-E	Контакты	Геометрические параметры		
		Вл	енте		
1	5,9	N2—HO1D ⁶	0,91(4)/1,02	2,16(4)/2,077	158(3)
2	3,9	N1—H01D	0,84(3)/1,02	2,21(4)/2,043	164(3)
		C2D—HF1	1,03(5)/1,09	2,52(5)/2,498	160(4)
3	-0,5	N2—HN1	—	2,859/2,791	—
Межленточные					
4	1,9	N1 π (C4÷C9) ^B	3,33	86	65
5	1,4	$\pi(C4\div C9)\ldots\pi(C4\div C9)^{r}$	3,56	3,880	
		C1—F1π(C4÷C9)	2,996(4)	118	38
		F1F4		2,836(3)	
6	1,0	C2D—HF3	0,89(4)/1,09	2,55(4)/2,485	147(4)
7	0,5	C1D—HF6	1,03(5)/1,09	2,64(4)/2,456	139(4)

^а Здесь и далее расстояния в Å, углы в град., энергия в ккал/моль. ^б Во всех таблицах для водородных связей приводятся расстояния D—H и H...A по данным РСА/нормализованные, использованные в квантово-химических расчетах, и углы D-H...A, где D -донор, А — акцептор водорода.

^в Для Х...л-взаимодействий, как и в предыдущей работе [2], — расстояние от атома X до плоскости ароматического цикла или ближайшего атома в цикле, и углы ω и θ [5].

^г Для *п*-стекинг-взаимодействий приводятся расстояния между плоскостями ароматических колец и их центрами.

Таблица 2

ΜП	-Е	Контакт	Геометрические параметры		
	Супермолекула				
1	7,5	N2—HN1P	0,93(3)/1,00	2,14(3)/2,078	162(2)
2	4,1	N1—HN1P	0,82(3)/1,00	2,48(3)/2,290	165(2)
3	-1,5	N2—HN1	0,93(3)/1,00	2,69(3)/2,661	113(2)
Внутрислоевые					
4	1,8	N1π(C4÷C9)	3,341	82	59
5	1,5	C1—F1π(C4÷C9)	3,059(3)	121	38
		F1F4	_	2,850(2)	
		$\pi(C4\div C9)\dots\pi(C4\div C9)$	3,54	3,906	—
6	1,4	С6Р—НF3	0,93/1,09	2,75/2,660	123
7	0,9	C2P—HF6	0,93/1,09	2,63/2,505	143
Межслоевые					
8	1,4	π (пиридин) π (пиридин)	3,823	4,433(3)	
9	1,2	C4P—HF2	0,93/1,09	2,60/2,446	165
10	0,9	С4Р—Н т(пиридин)	3,551	92	69

Энергия взаимодействия молекулярных пар в кристаллах молекулярного комплекса 5

между собой водородной связью N—H...O. Хотя геометрические параметры водородной связи с диоксаном (МП 2) в молекулярном комплексе 6 свидетельствуют о более сильной связи, чем между молекулами енаминокетона 2 (МП 1), энергия взаимодействия МП 1 выше, что, вероятно, обусловлено числом водородных связей. В данном случае логичнее говорить о димерах енаминокетона 2, связанных между собой в цепи (рис. 5, *a*) взаимодействием с молекулами диоксана в противоположность трактовке работы [4], основанной лишь на геометрических критериях.

Кристаллические структуры комплексов **4** и **6** аналогичны как наличием молекулярных лент [3, 4], хотя и с другой топологией водородного связывания, так и способом их связывания в 3D-архитектуру, с той разницей, что вместо взаимодействия $N...\pi(C4+C9)$ (**4**) в кристаллах комплекса **6** ту же роль играет C=O... $\pi(C4+C9)$ -взаимодействие (см. рис. 5, δ), соотношение энергий МП **4** и **5** для этих комплексов также носит одинаковый характер (см. табл. 1 и 3).

Поскольку в МП 1 и 2 комплекса 7 мы имеем водородные связи разных типов (табл. 4), сравнивать их по геометрическим параметрам представляется довольно затруднительным, расчеты же показали, что энергии МП 1 и 2 одинаковы, что также противоречит работе [4]. Таким

- Рис. 3 (слева). Межслоевые взаимодействия в кристаллах комплекса 5
- *Рис. 4 (справа).* Расчетная геометрия МП **3** из кристаллов комплекса **5**

Рис. 5. Ленты молекул (*a*) и взаимодействия C2=O1...π(C4÷C9) и π(C4÷C9)...π(C4÷C9) (*б*) между лентами в кристаллах комплекса **6**

Таблица З

Энергия взаимодействия молекулярных пар в кристаллах молекулярного комплекса 6

МΠ	-E	Контакт	Геометрические параметры			
	Димер					
1	7,6	N1—HO1	0,88(3)/1,02	2,32(3)/2,221	134(3)	
		Ле	ента			
2	6,4	N1—HO1D	0,86(4)/1,02	2,00(4)/1,859	161(3)	
3	0,1	C2D—HF2	0,97/1,09	2,76/2,649	153	
	Межленточные					
4	2,3	C2=O1π(C4÷C9)	3,360	84	64	
5	1,6	$\pi(C4C9)\pi(C4\div C9)$	3,493	3,855		
		C1—F2π(C4÷C9)	3,123(4)	124	40	
		F2F4		2,841(3)		
6	0,8	C2D—HF3	0,97/1,09	2,72/2,620	147	
7	0,5	C6D—HF6	0,97/1,09	2,45/2,338	168	
8	0,4	F5F5	—	2,906(3)		

Таблица 4

Энергия взаимодействия молекулярных пар в кристаллах молекулярного комплекса 7

ΜП	-E	Контакт	Геометрические параметры			
Супермолекула						
1	9,8	N1—H01	0,91(3)/1,02	2,23(3)/2,107	150(3)	
2	9,8	N1—HN1P	1,07(4)/1,02	1,84(4)/1,892	173(3)	
		C2P—HF2	0,97(4)/1,09	2,54(4)/2,425	134(3)	
3	0,2	С6Р—НF9	0,97(6)/1,09	2,61(5)/2,431	166(5)	
Стопки						
4	3,6	C2=O1π(C4÷C9)	3,113(4)	109	62	
5	1,6	C7—F6π(пиридин)	3,216	74	53	
Межстопочные						
6	1,0	C4P—HF3	1,03(7)/1,09	2,58(6)/2,559	122	
7	0,3	C11—F9 <i>т</i> (пиридин)	3,441	81	25	
8	1,0	C6—F5…π(C4÷C9)	3,126	83	42	

Рис. 6. Супермолекула (*a*) и стопка супермолекул (б) в кристалле комплекса 7 енаминокетона 3 с пиридином

образом, в данном случае мы наблюдаем супермолекулу — центросимметричный димер (рис. 6, *a*), в котором взаимодействие молекул енаминокетона **3** между собой и с молекулами растворителя энергетически равноценно.

В остальном архитектура кристалла комплекса 7 отличается от таковой для комплекса 5. Супермолекулы уложены в стопки со сдвигом, протяженные вдоль оси *b* (см. рис. 6, δ), параллельные димеры в которой связаны парным взаимодействием C10=O1… π (C4÷C9) молекул енаминокетона 3 (МП 4) и взаимодействием C7—F6... π (пиридин) (МП 5) молекул енаминокетона 3 с молекулами пиридина соседней супермолекулы. Отметим, что стопочный мотив не был выделен в работе [4], тогда как энергия взаимодействия МП 4 заметно выше, чем МП 6—8, описывающих взаимодействие стопок, образующее 3D-архитектуру кристалла. Взаимодействие ПС—F… π (МП 8) непараллельных супермолекул соседних стопок (угол между плоскостями C1÷C9 равен 43°) образует паркетный мотив в проекции вдоль оси *a* (рис. 7).

выводы

Таким образом, использование для анализа кристаллической структуры не только геометрических, таких как длины Ван-дер-ваальсовых контактов, но и энергетических характеристик — энергий взаимодействия молекулярных пар в кристалле, позволяет более точно выстроить иерархию структурных ансамблей (супермолекул, цепочек, слоев, трехмерных каркасов), помогает более обоснованно выделять общие черты и различия супрамолекулярной архитектуры близких по составу кристаллов и обусловливающие их взаимодействия. При анализе супрамолекулярной архитектуры кристаллов молекулярных комплексов **5**—7 можно выделить следующие закономерности.

1. Энергии взаимодействия молекулярных пар понижаются при переходе от структурных элементов меньшей размерности к элементам большей размерности. Так, в цепочках (лентах) и супермолекулах они выше, чем в стопках; в стопках выше, чем в слоях; и, наконец, межслое-

Рис. 7. Паркетный мотив в проекции вдоль оси *а* в кристалле комплекса 7

вые взаимодействия молекулярных пар наиболее слабые, и их энергии часто весьма незначительны (~0,3—0,5 ккал/моль).

2. В случае трехмерных сеток взаимодействий невозможно ранжировать по величине энергии взаимодействия внутрислоевых и межслоевых молекулярных пар.

3. Рассчитанные нами энергии взаимодействия молекулярных пар, связанных водородными связями N—H…O и N—H…N, лежат в интервале ~4,0—10,0 ккал/моль, это молекулярные пары, входящие в состав 0D- и 1D-ансамблей — димеров (супермолекул) и цепей (лент). Энергия взаимодействия МП в слоях (2D) не выше 5 ккал/моль, а межслоевых МП и в 3D-ансамблях — ниже ~2 ккал/моль.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 09-03-00361).

СПИСОК ЛИТЕРАТУРЫ

- 1. Рыбалова Т.В., Багрянская И.Ю. // Журн. структур. химии. 2009. 50, № 4. С. 774 786.
- 2. Рыбалова Т.В., Гатилов Ю.В. // Там же. 2010. 51, № 1. С. 211 217.
- 3. Рыбалова Т.В., Карпов В.М., Платонов В.Е., Гатилов Ю.В. // Там же. 2007. **48**, № 2. С. 318 324.
- 4. Рыбалова Т.В., Карпов В.М., Гатилов Ю.В., Шакиров М.М. // Там же. 2008. **49**, № 3. С. 520 527.
- 5. Prasana M.D., Row T.N. Guru // Cryst. Eng. 2000. 3. P. 135 154.