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Random sampling analysis on the molecular surface (RASMS) is used to describe the chemical 
structures of 35 HEPT derivatives as anti-HIV drugs. Here a quantitative structure activity re-
lationship (QSAR) model is built by multiple linear regression (MLR). The estimation stability 
and prediction ability of the model are strictly analyzed by both internal and external valida-
tions. The correlation coefficients of the established MLR model, leave-one-out (LOO) cross-
validation, and predicted values versus experimental ones of external samples were r2 = 0.851, 

2
CVQ  = 0.746, and r2(test) = 0.815 respectively. The satisfactory results show that RASMS can 

express the information related to the biological activity of HEPT derivatives. 
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INTRODUCTION

The non-nucleoside HIV-1 RT inhibitors under investigation are structurally different entities: 
phenylethylthiazolylthiourea (PETT), tetrahydro-imidazo[4,5,1-jk] [1,4]-benzodiazepin-2(1H)-one and 
-thione (TIBO), 1-(2-hydroxyethoxymethyl)-6-(phenylthio)-thymine (HEPT), diarylpyrimidines 
(DAPY) and dipyridodiazepinone (with nevirapine in the market) derivatives. Non-nucleoside reverse 
transcriptase inhibitors (NNRTIs) being one of the two kinds of inhibitors against the HIV-1 reverse 
transcriptase (HIV-1 RT) have attracted more attention due to their high specificity and low toxicity 
[ 1 ]. However, the rapid emergence of resistant HIV viral strains carrying mutation at residues that 
surround the NNRTIs� binding pocket limits the usefulness of NNRTIs. Thus, the design and deve-
lopment of new and more potent mutation-resistant inhibitors is still an arduous task for treatment of 
HIV-1 infected patients [ 2, 3 ]. 

There is a large number of literature reports on the application of computational methods for de-
scribing the activity of biologically active compounds [ 4—8 ]. Quantitative structure activity relation-
ship (QSAR) studies are the most extensively used methods in computational chemistry. An appro-
priate representation of the structural and physicochemical features of chemical agents is an essential 
key to the successful application of QSAR models [ 9—12 ]. QSAR studies play a fundamental role in 
predicting the biological activity of new compounds and identifying ligand-receptor interactions 
[ 13—15 ].The first step in constructing the QSAR models is to find one or more molecular descriptors  
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that represent variation in the structural property of the molecules by a number [ 16 ]. Structural de-
scriptors have been classified into different categories according to different approaches, including 
physiochemical, constitutional, geometrical, topological, and quantum chemical descriptors. 

In this paper, a 3D QSAR method — random sampling analysis on molecular surface (RASMS) 
was proposed. The RASMS method derived from the atomic probe of protein (APP), the pseudo-
receptor accessible surface (PRAS), and the approach to aimed area by random sampling on the mo-
lecular surface (ARSMS) was used to express the drug structures and biological activities with a mul-
tiple linear regression (MLR) model of 35 HEPT derivatives as anti-HIV drugs. The proposed method 
was evaluated by predicting the activities of the derivatives in this paper; the results indicated that it is 
a useful tool for the investigation of drug QSAR. 

PRINCIPLE AND METHODOLOGY 

Probe atoms. Since drug targets are often protein and active peptides, there are eight different 
types of hybrid atoms from the amino acid serving as probes. To characterize these probe atoms, the 
mean charge index (MCI), the van der Waals index (VWI), and the mean hydrophobic index (MHI) 
are used. 

MCI. Average electrical charges of each atom in the amino acid serve as MCIs. Original molecu-
lar structures of twenty natural amino acids are primarily auto-produced using the HyperChem7.5 
(Hypercube, Inc. Gainesville, FL 32601 USA) database and then refined using molecular dynamics. 
The obtained structures are further optimized using Gaussian 98W (Gaussian, Inc., Pittsburgh, PA, 
1998) at the Hartree-Fock level. The analysis of oscillation frequencies of the obtained structures 
demonstrated that there was no imaginary frequency. Ultimately, the amount of the net charge of all 
the atoms is calculated using the single point method with the density functional theory (DFT). 

VWI. Usually, the van der Waals radii are the radii of isolated atoms. However, the hybrid state 
of actual atoms changes in different chemical microenvironments, so the van der Waals radius changes 
accordingly. In this experiment, the calibrated van der Waals radii were used as probe atom radii (i.e. 
VWI = Ch � RVDW*, with a calibration factor Ch of 1.00 in the case of sp3 hybridization, 0.95 in the 
case of sp2 hybridization, and 0.90 in the case of sp hybridization [ 17, 18 ]). Moreover, the standard 
van der Waals radii of all kinds of atoms were taken from the report of Bondi et al. [ 19 ]. 

MHI. Similarly to MCI, MHI was got from the average hydrophobic interaction of each probe 
atom from a natural amino acid. The atomic solvation parameter (ASP) defined by Pei et al. [ 20, 21 ] 
serves as a hydrophobic measurement. 

PRAS. The concept of PRAS was proposed in this study. If atoms in the biomolecular systems 
such as proteins, nucleic acids, and sugars, which were used as drug targets, reach the surface of the 
drug molecules, then the surface is defined as the pseudo-receptor accessible surface of molecule 
(PRASM). If the hydrogen atom of the eight probe atoms (the receptor probe) rolls on the van der 
Waals surface of the drug molecule, the curved surface, to the center of which the hydrogen atom 
goes, is defined as the hydrogen-pseudo-receptor accessible surface of the molecule (H-PRASM). 
Similarly, the other seven kinds of atoms of the pseudo-receptor probe and their accessible surfaces 
can be calculated (Fig. 1). According to the above calculation method of PRASM, the isolated pseudo-
receptor accessible surfaces of atoms (PRASA) can be defined. Obviously, PRASA is a spherical sur-
face, the radius of which is the sum of the radii of drug atoms plus the radii of the probe atoms 
(Fig. 2). As we can see, some parts of the PRASA of each drug atom may be involved in the formation 
of the PRASM of the drug molecule. 

Atomic types and interactions. The RASMS method was developed with three common non-
bonding interactions of the biological activities, i.e., the electrostatic interaction, the steric interaction, 
and the hydrophobic interaction related with the atomic relative distance and atomic self-properties. 

Electrostatic interaction. The electrostatic interaction field is an important non-bonded interac-
tion which is expressed by the classical Coulomb theorem 
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Fig. 1. Pseudo-receptor accessible surface  
of the molecule 

  
 
 

 
 

Fig. 2. Pseudo-receptor accessible surface  
of the atom 

 
In the previous equation, n is the number of atoms in a drug molecule; rpi is the Euclid distance from 
the probe to the i atom; e is the electrostatic charge unit of 1.6021892�10–19 C; �0 is the dielectric con-
stant in vacuum with a value of 8.85418782�10–12 C2/J �m; Z is the atomic net charges. The entire elec-
trostatic interaction items are calculated with this formula. 

Steric interaction. The steric interaction, which is described by the Lennard—Jones equation 
[ 22 ] here, is defined as the interaction between the dipole and non-dipole fields or the induced dipole 
interaction. 
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Here �pi = (�pp ��ii)1/2 is the potential well of the probe and receptor atoms; 
piR*  = (VWIp + Ch � iR*)/2 is the van der Waals radius with its calibration factor of 1.00 in the sp3 hy-

bridization state, 0.95 in the sp2 hybridization state, and 0.90 in the sp hybridization state. piR*  is the 
calibration collision van der Waals radius of the probe and receptor atoms. Since the Lennard—Jones 
equation is extremely sensitive to distance changes, the lattice points close to the atoms of compounds 
may lead to very large steric interactions. 

Hydrophobic interaction. The hydrophobic interaction notably affects the binding interactions of 
drug molecules. Due to the entropy of systematic changes, such an interaction is difficult to be de-
scribed. The HINT method is used here to express the hydrophobic interaction field. The formula for 
the interatomic hydrophobic interactions in HINT is as follows: 
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In Eq. (3), S is the solvent accessible surface area of the atom (SASA); a is the hydrophobic con-
stant expressed with the atomic solvation parameter (ASP); T is the sign function, indicating the en-
tropy changes resulting from different types of atomic interactions [ 23, 24 ]. 

Implementation process of RASMS. The atoms of organic molecules include H, C, N, P, O, S, F, 
Cl, Br, and I which belong to IA, IVA, VA, VIA, and VIIA in the Periodic Table of Elements. Based 
on the point that �the atoms of similar chemical properties belong to the same category� and according 
to the hybridization states of the atoms, the atoms are furthermore subdivided into ten types for a bet-
ter expression of the microscopic structural features of the molecules. In this paper, electrostatic, 
steric, and hydrophobic potential energies were involved in the formation of 240 interaction terms: 
8�10�3 = 240 interaction items for organic compounds (Fig. 3). 

Algorithm. Based on APP, PRAS, and ARSMS, 240 descriptors were produced with a self-made 
descriptor calculation software Sampling-tool.EXE, an applied program written in the C language by 
the staff of the laboratory. The Sampling-tool.EXE was used to generate 240 descriptors for each mole-
cule. The Cartesian coordinates and the Mulliken charges of the atoms need to be input into Sam- 
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Fig. 3. 240 types of interactions of the drug molecules according  
to the RASMS method 

 
pling-tool.EXE after the geometry optimization when using the program. Then the molecular surface 
sampling density is set and the probe type is selected. 

RESULTS AND DISCUSSION 

Selection and partition of the data. The data set implemented in this work consists of 35 HEPT 
derivatives. The structures and experimental data of these derivatives (Table 1) were obtained from the 
literature [ 25 ]. EC50 is the effective concentration of the HEPT derivatives required to achieve 50 % 
protection of MT-4 cells against the cytopathic effect of the virus, and pEC50 is used for the calculation 
in this paper (pEC50 = –logEC50 = logl/EC50). In order to prove the validity and stability of the model, 
the whole data set was divided into two groups: a training set and a testing set. The training set was 
used for establishing the QSAR model and the testing set was used to examine the validity of the de-
veloped model. Therefore, 7 out of 35 molecules, labeled with notation a in Table 1, were randomly 
selected as the testing set. To choose a suitable method for the geometry optimization in the QSAR 
study, 35 molecules were firstly auto-constructed using Chemoffice 8.0 and then optimized at the AM1 
level with the MOPAC (the semi-empirical quantum chemical software in Chem3D). Then the net 
electric charges of the atoms were calculated in the single point form by the Mulliken methods. 

Descriptor generation. After the aforementioned two items were input correspondingly in forms 
of the Cartesian coordinates and the net electric charge, the Sampling-tool.EXE software was used to 
generate 240 descriptors for each HEPT derivative compound. The ultimate vectors for the 28 training 
compounds involved 240 items. The RASMS method may lead to some information overlap among 
these different descriptors. To solve the aforementioned problems, two approaches were adopted: 
SMR in the SPSS 16.0 software was employed to select the variables; MLR was applied to construct 
the model according to the values of the Fisher prominent test with SMR. 22 significant variables were 
selected out of 240 items using the SPSS 16.0 software. 

MLR modeling and analysis. It is important to examine the estimation ability and prediction 
power of a QSAR model. In recent years, the statistical parameter correlation coefficient ( 2

CVQ ) and 
the leave-one-out cross-validation (LOOCV) coefficient have been used as means of indicating the 
predictive ability of a model. Generally, many researchers consider a high 2

CVQ  value as an indicator or 
even as the ultimate proof of the high predictive power of a QSAR model [ 26 ]. However, the recent 
study of Tropsha and his co-workers shows there is no evident relationship between the 2

CVQ  value and 
the actual predictive power of a QSAR model, so an external validation is required. Recently, a novel 
method to further refine the predictive ability of the developed QSAR models was introduced by Roy 
et al. [ 27—30 ]. It is based on an alternative group of metrics ( 2

mr  metrics) for the determination of the 
proximity between the observed and predicted activity. The 2

mr  metrics are calculated based on the cor-
relation of the observed and predicted response data with and without the intercept and also by inter-
changing the axes. Squared correlation coefficient values between the observed (Y axis) and predicted  
 



J. TONG, X. ZHAO, L. ZHONG, J. CHANG  918 

   T a b l e  1  

Structures and pEC50 activity of 35 HEPT derivatives as anti-HIV drugs 

 
No. X Y Z R pEC50 (exp) 

  1 O Me CH2OCH2CH2OMe H 5.06 
  2 O Me CH2OMe H 5.68 
  3 O Me CH2OMe H 6.48 
  4 O Me CH2OC3H7 H 5.44 

   5a O Me CH2OC4H9 H 5.33 
  6 O Me CH2OCH2C6H5 H 7.06 
  7 S C2H5 CH2OC2H5 H 7.59 
  8 S C2H5 CH2OC2H5 3,5-Me2 8.36 
  9 S C2H5 CH2OC2H5 3,5-Cl2 7.89 

  10a S C2H5 CH2CHMe2 H 6.66 
 11 S C2H5 CH2OC6H11 H 5.80 
 12 S C2H5 CH2OCH2C6H11 H 6.46 
 13 S C2H5 CH2OCH2C6H5 H 8.11 
 14 S C2H5 CH2OCH2C6H5 3,5-Me2 8.16 

  15a S C2H5 CH2OCH2C6H4-4-Me H 7.11 
 16 S C2H5 CH2OCH2C6H4-4-Cl H 7.92 
 17 S C2H5 CH2OCH2CH2C6H5 H 7.04 
 18 S CHMe2 CH2OC2H5 H 7.85 
 19 S CHMe2 CH2OCH2C6H5 H 8.17 

  20a S Cy-C3H5 CH2OC2H5 H 7.02 
 21 O C2H5 CH2OC2H5 H 7.72 
 22 O C2H5 CH2OC2H5 3,5-Me2 8.27 
 23 O C2H5 CH2OC2H5 3,5-Cl2 8.13 
 24 O C2H5 CH2OCHMe2 H 6.47 

  25a O C2H5 CH2OC6H11 H 5.40 
 26 O C2H5 CH2OCH2C6H11 H 6.35 
 27 O C2H5 CH2OCH2C6H5 H 8.23 
 28 O C2H5 CH2OCH2C6H5 3,5-Me2 8.50 
 29 O C2H5 CH2OCH2CH2C6H5 H 7.02 

  30a O CHMe2 CH2OC2H5 H 7.92 
 31 O CHMe2 CH2OCH2C6H5 H 8.57 
 32 O Cy-C3H5 CH2OC2H5 H 7.00 
 33 O Me C2H5 H 5.66 
 34 O Me C4H9 H 5.92 

  35a O Me CH2OCH2CH2OH H 5.16 
 

 

 

a Chosen as the testing set. 
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(X axis) values of the compounds with the intercept (r2) and without the intercept ( 2
0r ) are calculated 

for the determination of 2
mr . A change in the axes gives the 2

0r�  value; the 2
mr�  metric is calculated based 

on the 2
0r�  value. The k and k� parameters indicate the slopes in the former and later cases, respectively. 

Presently two different variants of this parameter ( 2
mr  and � 2

mr ) are calculated for both training (inter-
nal validation) and testing (external validation) sets in addition to the total dataset (overall validation). 
The r2, 2

mr , 2
mr� , 2

0r , 2
0r� , k, and k' values are calculated as the following equations: 

 
2 22
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 2 2 2 2
0(1 ),mr r r r� � � �  (5) 

 2 2 2 2
0(1 ),mr r r r� �� � � �  (6) 

 2 2 2
0 obs pred obs obs1 ( ) ( ) ,r Y k Y Y Y	 
� � � � �� �� �  (7) 

 2 2 2
0 obs pred obs obs1 ( ) ( ) ,r Y k Y Y Y	 
� �� � � � �� �� �  (8) 

 2
obs pred pred( ) ( ) ,k Y Y Y� �� �  (9) 

 2
obs pred obs( ) ( ) .k Y Y Y� � �� �  (10) 

Here, r2 and 2
0r�  are the squared correlation coefficient values between the observed and predicted ac-

tivity data; Yobs and Ypred are the observed and predicted response data, while predY  and predY  refer to the 
mean values of the observed and predicted responses, respectively. We may also note here the related 
tests for the QSAR model validation suggested by Tropsha stating the following criteria for models to 
be considered acceptable: 
 2

CVQ  > 0.5, (11) 

 r2(test) > 0.6, (12) 
 (r2 – r0

2) / r2 < 0.1, (13) 
 0.85 � k � 1.15 or 0.85 � k' � 1.15. (14) 

When implementing the above method, the internal and external correlation coefficients should 
be considered together as a whole in order to achieve the good stability and fine predictability. The 
first 10 stepwise regression results of SMR with r2 and 2

CVQ  of the MLR model of 35 HEPT deriva-
tives were shown in Table 2. The first seven parameters were chosen to build the model; the stepwise 
multiple regression equation is shown below 
 pEC50 = 14.709 – 0.379H5-5 – 910.993E8-1 – 39.610E2-1 – 76.168H6-3 + (15) 

+ 0.016H8-2 + 2.773S5-3 – 5.063S7-5. 
In Eq.(15), E, S, and H represent the electrostatic, steric, and hydrophobic interactions respec-

tively. E8-1 represents the electrostatic interactions of the eighth kind of the probes and the first kind of 
the drug atoms, S5-3 represents the steric interactions of the fifth kind of the probes and the third kind 
of the drug atoms, H5-5 represents the hydrophobic interactions of the fifth kind of the probes and the 
fifth kind of the drug atoms, and so forth. Some parameters such as 2

mr , 2
0r , and k were calculated at the 

web http://aptsoftware.co.in/rmsquare/ and http://203.200.173.43:8080/rmsquare/. The input data re-
quire the observed and predicted response values either imported from a csv file (saved in *.csv for-
mat) or given manually for the calculation. The output data provide the values of 2

mr  and � 2
mr  metrics  
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T a b l e  2  

Comparison between various kinds of parameters of the first 10 steps of the QSAR models  
of 35 HEPT derivatives 

Internal parameters External parameters Overall  
parameters Tropsha parameters No. of 

variables 
r2 2

CVQ  2
mr (LOO) r2(test) 2

0r  2
mr  2

mr  k k� (r2 – 2
0r )/r2 

1 0.531 0.466 0.447 0.761 0.546 0.408 0.375 0.858 1.150 0.283 
2 0.644 0.585 0.484 0.459 0.614 0.457 0.393 0.851 1.164 0.005 
3 0.636 0.525 0.495 0.780 0.641 0.489 0.391 0.841 1.179 1.179 
4 0.662 0.532 0.494 0.787 0.653 0.499 0.410 0.848 1.169 0.847 
5 0.776 0.676 0.643 0.661 0.657 0.617 0.499 0.840 1.181 0.063 
6 0.830 0.743 0.710 0.780 0.771 0.706 0.606 0.851 1.169 0.012 
7 0.851 0.746 0.706 0.815 0.776 0.654 0.640 0.866 1.148 0.048 
8 0.867 0.751 0.713 0.822 0.775 0.642 0.634 0.860 1.156 0.058 
9 0.876 0.740 0.692 0.652 0.622 0.539 0.564 0.846 1.171 0.046 

10 0.889 0.749 0.694 0.574 0.562 0.509 0.557 0.846 1.169 0.022 
 

T a b l e  3  

Comparison between the QSAR models of the RASMS method and the literature 

No. Methods Activity types Model No. samples Outlier No. descriptors r2 2
CVQ  

1 Hansch [ 25 ] EC50 MLR 33 2 4 0.842 0.783 
2 RASMS EC50 MLR 35 0 7 0.851 0.746 

 
for the respective set of compounds. The calculation of 2

mr  metrics involves the determination of val-
ues of the r2, 2

0r , and k parameters together with the information of the intercept of the regression line 

correlating the observed and predicted activity data. The calculated r2, 2
CVQ , 2

mr (LOO), r2(test), 2
0r , 2

mr  

(external), 2
mr  (overall), k, k', and (r2 – r0

2)/r2 are 0.851, 0.746, 0.706, 0.815, 0.776, 0.654, 0.640, 0.866, 
1.148, and 0.048, respectively. Therefore, it is confirmed that the RASMS QSAR models are stable 
and generalized. The comparison between the QSAR models of the RASMS method and the literature 
is shown in Table 3. It is shown that the result of the RASMS method is better than the literature one. 
Fig. 4 presents a plot of the observed values versus the calculated ones; it is shown that the results are 
relatively close to the predicted values. 

CONCLUSIONS 

In this paper, all the descriptors involve classic 
electrostatic, steric, and hydrophobic interactions. The 
built model has a favorable stability and good predic-
tive ability. It illustrates that the RASMS method is an 
effective description methodology for the characteriza-
tion of complex interactions of drug molecules. It is 
suggested that the RASMS method behaves quite well 
in the representation of both molecular structures and  
 

Fig. 4. Plots of the observed and calculated values of 35  
               HEPT derivatives with the RASMS method 
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biological activities for the HEPT derivatives. It can be anticipated that the approach might hold a high 
potential to become a useful tool in the research of the QSAR of HEPT derivatives. 
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