2010. Том 51, № 6

Ноябрь – декабрь

C. 1043 – 1051

УДК 548.313:541.19

СТРУКТУРА, МЕХАНИЧЕСКАЯ СТАБИЛЬНОСТЬ И ХИМИЧЕСКАЯ СВЯЗЬ В ОКИСЛАХ ЩЕЛОЧНЫХ МЕТАЛЛОВ

© 2010 Ю.Н. Журавлев*, О.С. Оболонская

Кемеровский государственный университет

Статья поступила 1 февраля 2010 г.

С помощью пакета CRYSTAL06 в базисе ЛКАО в приближении LDA и GGA теории функционала плотности для оксидов, пероксидов, надпероксидов, озонидов лития, натрия, калия и рубидия вычислены параметры кристаллической структуры, упругие постоянные, атомные заряды и распределения деформационной плотности. Установлено хорошее соответствие полученных характеристик с экспериментальными данными и расчетами других авторов. Показано, что условиям механической стабильности отвечают все кристаллы, за исключением надпероксидов натрия, калия, рубидия. Химическая связь между катионом и анионом имеет ионный характер, в анионе — ковалентный π-типа. Отличительной особенностью ее образования является переток заряда из связевой в тороидальную область, ориентированную перпендикулярно линии О—О, с центром на ядре атома кислорода.

Ключевые слова: оксиды, пероксиды, надпероксиды, озониды, упругие постоянные, Малликеновская заселенность, атомные заряды, деформационная плотность, химическая связь.

введение

Кристаллические решетки неорганических перекисных соединений состоят из ионов металлов и молекулярных анионов кислорода O^{2-} , O_2^{2-} , O_2^- и O_3^- . Соответственно по наличию этих групп различают оксиды, пероксиды, надпероксиды и озониды. Все они являются различной силы окислителями, а при слабых термических или химических воздействиях разлагаются с выделением кислорода.

Несмотря на то что физико-химические свойства окислов неплохо изучены [1], все еще недостаточно полных и надежных количественных характеристик, таких как структурные, электронные, колебательные и механические. Высокая термодинамическая лабильность твердых окислов затрудняет их прямое экспериментальное исследование и в этой связи возрастает роль теоретических методов.

Наибольшее число теоретических работ, выполненных различными методами, посвящено исследованию электронного строения и структуры оксидов [2—5]. В частности, в [3] определены области термодинамической стабильности различных кристаллических фаз всех оксидов щелочных металлов как функции давления. В [4] полнофункциональным методом присоединенных плоских волн с локальной (LDA) и градиентной (GGA) аппроксимацией обменно-корреляционного функционала электронной плотности проведено исследование влияния давления на электронный спектр и оптические функции, вычислены объемные модули упругости, их производные и равновесные параметры кристаллической решетки. В рамках теории функционала плотности (DFT) в приближении LDA с учетом самодействия методом псевдопотен-

^{*} E-mail: zhur@kemsu.ru

циала в [5] определены структурные параметры, модули упругости и энергетический спектр электронов в оксидах лития, натрия и калия.

Методами молекулярной динамики в [6] выполнен расчет колебательного спектра и упругих постоянных Li₂O. Структурные исследования окисных соединений, за исключением KO₃ [7] и NaO₃ [8], экспериментальными методами выполнены в 1950—1970 гг. и для пероксида лития перепроверены с помощью теории DFT только в 2005 г. [9]. Механические свойства и равновесная структура этого соединения в приближении LDA методом псевдопотенциала в плосковолновом базисе исследуются в [10].

В нашей работе [11] методом псевдопотенциала в приближении LDA в базисе разложенных по плоским волнам атомных псевдоорбиталей с использованием метода подрешеток [12, 13] проведено изучение химической связи в M_2O_2 (M = Li, Na, K, Rb). В [14] с использованием пакетов CRYSTAL06 [15] и GAMESS [16] в B3LYP [17] гибридной параметризации для M_2O , M_2O_2 , MO_2 , MO_3 (M = Li, Na, K) выполнены вычисления полной энергии, зонной структуры, распределения полной и парциальной плотности электронных состояний, которые сопоставляются с экспериментальными данными по фотоэлектронной спектроскопии и применяются для анализа процессов их образования и термического разложения.

В настоящей работе на основе DFT проводится исследование кристаллической структуры, ее механической стабильности, зарядов атомов и распределения деформационной электронной плотности в оксидах, пероксидах, надоксидах и озонидах лития, натрия, калия, рубидия.

МЕТОД РАСЧЕТА

Первопринципные вычисления электронной структуры окислов выполнены комплексом программ CRYSTAL06 [15] на основе DFT в приближении локальной плотности с Dirac-Slater обменом [18] и Perdew-Zunger корреляцией [19] (LDA PZ) и градиентном приближении к обмену и корреляции в варианте, предложенном Perdew и Wang в [20, 21] (PWGGA). Волновые функции выбирали в виде предложенных в [22] наборов линейной комбинации атомноцентрированных гауссовых орбиталей. Для выбора оптимального сочетания метода расчета и базисного набора использовали процедуру оптимизации геометрии кристаллических решеток по условиям минимума полной энергии и сил, действующих на атомы, с последующим сопоставлением с известными экспериментальными данными. Для лития применяли базисы Li_61-1G (Li₂O), Li_6-11G (Li₂O), Li_5-11G* (LiO₂, LiO₃); для натрия — Na_8-511G; для калия — K_86-511G и для рубидия — Rb_SC_HAYWSC-31 (Rb₂O), Rb_SC_schoenes (Rb₂O₂, RbO₃). Для атомов кислорода: O_8-411G* (M₂O, M = Li, Na, K), O_8-411d1 [24] (K₂O₂), O_6-31d1 [25] (Rb₂O₂, NaO₃), O_8-411d11G (MO₂, M = Li, Na, K, Rb), O_631d1 [26] (LiO₃, RbO₃).

Известно [1], что надперекись натрия парамагнитна, и это обусловлено наличием однозарядного иона кислорода, эффективный магнитный момент которого равен 2,07 µ_B, что отвечает структуре с одним неспаренным электроном. Аналогичными свойствами обладают другие надперекиси и озонид калия, поэтому для них расчеты выполнены в варианте с неограниченной открытой электронной оболочкой.

Одним из факторов стабильности кристаллической структуры является реакция на деформации, которую можно оценить по значениям упругих постоянных и модулей упругости. Упругие постоянные C_{ijkl} получают при разложении в ряд Тейлора полной энергии кристалла $E(V, \varepsilon)$ по малой величине деформации ε

$$E(V,\varepsilon) = E_0 + \frac{V_0}{2} \sum C_{ijkl} \varepsilon_{ij} \varepsilon_{kl}, \qquad (1)$$

где $E(V_0)$ — полная энергия недеформируемого кристалла с объемом ячейки V_0 ; $\varepsilon_{ij}(i,j = x, y, z)$ — тензор деформации. Упругие постоянные определяются как вторые производные от энергии по соответствующим деформациям

$$C_{ijkl} = \frac{1}{V_0} \frac{\partial^2 E(V, \varepsilon)}{\partial \varepsilon_{ij} \partial \varepsilon_{kl}} \bigg|_{\varepsilon = 0}.$$
(2)

Поскольку тензор деформации симметричен, то в обозначениях Фойгта $C_{ijkl} = C_{JK}$, где индексы *ij* связаны с индексами J таким образом: $11 \leftrightarrow 1$, $22 \leftrightarrow 2$, $33 \leftrightarrow 3$, $23 \leftrightarrow 4$, $31 \leftrightarrow 5$, $12 \leftrightarrow 6$.

В кубических кристаллах тензор упругих постоянных имеет 3 независимые компоненты, в гексагональных — 5, тетрагональных — 6 и орторомбических — 9. Это означает, что необходимо провести расчеты $E(V, \varepsilon)$ в кубических кристаллах при трех различных деформациях, которые мы задавали в форме, предложенной в [27]. Для гексагональных кристаллов тензор деформации определялся так же, как и в [28], тетрагональных — [29] и в орторомбических — [30]. Объемный модуль упругости B_0 вычисляли по формуле (2), где тензор деформации имел диагональный вид. Энергетическую зависимость (1) интерполировали полиномом второй степени.

Упругие свойства тесно связаны с характером межатомных взаимодействий и, следовательно, химической связью в кристаллах. Для исследования химической связи мы использовали величины эффективных зарядов атомов, определенных как разность полных заселенностей электронных оболочек, рассчитанных по схеме Малликена, и зарядов их ядер. Наглядное представление имеет также распределение в актуальных кристаллографических плоскостях электронного заряда или его деформационной диаграммы $\Delta \rho(r)$, полученной вычитанием из кристаллической плотности невзаимодействующих атомов, помещенных в те же кристаллические позиции.

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

Кристаллическая структура окислов отличается разнообразием. К низкосимметричному, моноклинному типу с пространственной группой C_{2h}^5 относится RbO₃ [30]. Большинство кристаллов имеет орторомбическую структуру с простой NaO₂ (D_{2h}^{12} , [31]), гранецентрированной K₂O₂ (D_{2h}^{18} , [32]) и объемно-центрированной Rb₂O₂ (D_{2h}^{25} , [33]), NaO₃ ($C_{2\nu}^{20}$, [8]) типами решетки. KO₂ (D_{4h}^{17} , [31]) и KO₃ (D_{4h}^{17} , [7]) относятся к тетрагональной, а Li₂O₂ (C_{3h}^1 , [32]) и Na₂O₂ (D_{3h}^3 , [34]) — к гексагональной сингонии. Оксиды имеют структуру антифлюорита с ГЦК решеткой [35].

Известно [1], что надпероксид лития имеет ромбическую структуру с параметрами a = 5,91, b = 4,94, c = 4,38 Å, надпероксид рубидия — тетрагональную с a = 4,215 и c = 7,0 Å, однако достоверных сведений о координатах атомов в элементарной ячейке нет. Озонид лития в чистом виде пока не обнаружен, и о его структуре нет предположений. В наших расчетах LiO₂ рассматривали в симметрии D_{2h}^{12} , RbO₂ — D_{4h}^{17} , a LiO₃ — $C_{2\nu}^{20}$.

В табл. 1 приведены расчетные значения параметров кристаллических решеток окислов металлов, полученные методом PWGGA (LDA PZ для Rb_2O_2) с полной оптимизацией их геометрии. Сопоставление с имеющимися экспериментальными данными (указаны в скобках) показывает, что отклонения в объемах элементарных ячеек не превышают 7 %. Так, в Li_2O_2 отклонение от экспериментального значения объема [33] составило 2,7 %, рассчитанного в [10] — 1,2 %. LDA приводит к большим занижениям объемов, вплоть до 18 %.

Рассчитаны координаты атомов в элементарной ячейке: в Li₂O₂ Li — (1/3, -1/3, 1/4), O — (0, 0, 0), (1/3, -1/3, 0.8539) (в [33] 0,1497); в Na₂O₂ Na — (-0,3000, 0, -1/2), (0,3665, 0, 0); O — (0, 0, 0,1758), (1/3, -1/3, 0.3215); в K₂O₂ K — (1/4, 0.1554, 1/4), O — (0, 0,0896, 0.9275); в Rb₂O₂ Rb — (0, 0,2606, 0), O — (0, 0, 0.3643) (экспериментальные значения соответственно (0, 1/4, 0), (0, 0, 0.374)). В надпероксидах атомы металла занимают позиции в узлах решетки (0, 0, 0), a атомы O: (0,1330, 0.4156, 0) (LiO₂), (0,1243, 0.4256, 0) (NaO₂), (0, 0, 0.4003) (KO₂), (0, 0, 0.4057)

Таблица 1

М	M ₂ O	M_2O_2	MO ₂	MO ₃
Li	<i>a</i> 4,620 (4,619) <i>V</i> ₀ 24,649 (24,636) O—O 3,267 (3,266) O—Li 2,000 (2,000)	a 3,164 (3,142) c 7,724 (7,65) V ₀ 66,95 (65,40) O—O 1,605 (1,561) O—Li1 2,147 (2,14) O—Li2 1,995 (1,98)	<i>a</i> 3,992 <i>b</i> 4,877 <i>c</i> 2,961 <i>V</i> ₀ 57,661 O—O 1,344 O—Li 2,096	<i>a</i> 3,053 <i>b</i> 4,931 <i>c</i> 5,197 <i>V</i> ₀ 39,13 O1—O23 1,377 O1—Li 2,556 O23—Li 2,155
Na	<i>a</i> 5,503 (5,55) V_0 41,65 (42,74) O—O 3,891 (3,924) O—Na 2,383 (2,403)	$\begin{array}{cccc} a & 6,208 & (6,220) \\ c & 4,517 & (4,470) \\ V_0 & 150,74 & (149,77) \\ O1-O1 & 1,588 & (1,490) \\ O2-O2 & 1,613 & (1,490) \\ O1-Na1 & 2,369 & (2,273) \\ O1-Na2 & 2,410 & (2,395) \\ O2-Na1 & 2,324 & (2,392) \\ O2-Na2 & 2,451 & (2,478) \\ \end{array}$	<i>a</i> 4,292 (4,332) <i>b</i> 5,540 (5,540) <i>c</i> 3,447 (3,364) <i>V</i> ₀ 81,95 (80,73) O—O 1,349 (1,310) O—Na 2,396 (2,365)	$\begin{array}{c} a 3,426 \ (3,507) \\ b 5,285 \ (5,270) \\ c 5,667 \ (5,770) \\ V_0 51,32 \ (53,32) \\ O1-O23 1,367 \ (1,353) \\ O1-Na 2,812 \ (2,867) \\ O23-Na 2,379 \ (2,425) \end{array}$
K	<i>a</i> 6,327 (6,436) <i>V</i> ₀ 63,328 (66,648) O—O 4,474 (4,551) O—K 2,740 (2,787)	a 6,762 (6,733) b 6,989 (6,996) c 6,361 (6,474) V_0 150,32 (152,48) O—O 1,557 (1,541) O—K 2,658 (2,685)	a 3,899 (4,030) c 6,797 (6,697) V_0 51,67 (54,38) O—O 1,355 (1,306) O—K 2,721 (2,696)	$\begin{array}{c} a 8,640 \ (8,6231) \\ c 7,064 \ (7,1279) \\ V_0 263,70 \ (265,01) \\ O1-O23 1,373 \ (1,345) \\ O1-K1 3,196 \ (3,215) \\ O1-K2 3,550 \ (3,551) \\ O23-K1 2,833 \ (2,850) \\ O23-K2 2,849 \ (2,862) \end{array}$
Rb	<i>a</i> 6,896 (6,74) <i>V</i> ₀ 81,98 (76,55) O—O 4,876 (4,766) O—Rb 2,986 (2,919)	a 4,280 (4,201) b 7,076 (7,075) c 5,821 (5,983) V ₀ 88,14 (88,91) O—O 1,580 (1,508) O—Rb 2,810 (2,848)	a 4,200 c 7,205 V ₀ 63,547 O—O 1,360 O—Rb 2,923	$\begin{array}{c} a & 6,720 \ (6,441) \\ b & 5,875 \ (6,030) \\ c & 9,034 \ (8,746) \\ \beta & 124,8 \ (122,3) \\ V_0 & 292,83 \ (287,13) \\ O1-O2 & 1,393 \ (1,346) \\ O1-O3 & 1,380 \ (1,334) \\ O1-Rb & 3,356 \ (3,058) \\ O2-Rb & 2,821 \ (2,920) \\ O3-Rb & 2,950 \ (2,967) \end{array}$

Рассчитанные (в скобках экспериментальные) постоянные решетки a, b, c (Å), объем V₀ (Å³), межатомные расстояния (Å) в окислах щелочных металлов, углы (град.)

(RbO₂). В гипотетическом LiO₃ атом лития занимает позицию (0, 0, 0,5139), а атомы кислорода (0, 0, 0,0221), (0, 0,2303, 0,8721). В озониде натрия координаты атомов: Na (0, 0, 0,5096), О — (0, 0, 0,1339), (0, 0,2144, 0,8786), озониде калия — K (0, 1/2, 1/4), (0, 0, 1/4), О — (0,2820, 0,2180, 0), (0,2512, 0,0621, 0); озониде рубидия: Rb (0,2207, 0,2472, 0,0925), О — (0,2863, 0,7804, 0,4146), (0,3156, 0,7487, 0,0790), (0,1028, 0,9310, 0,3023).

В пероксиде натрия атомы кислорода и натрия объединяются в две подрешетки каждые — в табл. 1 обозначены как O1, O2 и Na1, Na2. Молекулярные ионы образуются в каждой подрешетке, и расстояния между ними составляют примерно 2,9 Å. Каждый атом кислорода O1 (O2)

окружают по три атома натрия из каждой подрешетки Na1 и Na2, тогда как каждый атом Na1 — четыре атома кислорода O2 на расстоянии 2,324 Å и два атома O1 на расстоянии 2,369 Å.

МЕХАНИЧЕСКАЯ СТАБИЛЬНОСТЬ

Одним из факторов стабильности кристаллической структуры является ее реакция на деформацию, которую можно оценить по значениям упругих постоянных и модулей упругости. В табл. 2 для всех окислов щелочных металлов приведены объемные модули упругости B_0 и упругие постоянные C_{ii} .

Объемный модуль B_0 измерен экспериментально только для оксида лития, и он равен 89 ГПа. Рассчитанные в [5] B_0 составляют для Li₂O 88, Na₂O 62 и K₂O 30 ГПа, а в [4] для LDA (GGA)-приближений получены значения: Li₂O — 101,4 (80,25), Na₂O — 57,79 (47,11), K₂O — 38,92 (26,29), Rb₂O — 34,50 (22,73) ГПа. Величина модуля для Li₂O₂ по данным [10] составляет 98,0 ГПа. Упругие постоянные C_{ij} ранее вычислены только для оксида и пероксида лития. В Li₂O по данным [6] (в скобках — эксперимент): $C_{11} = 213$ (202,0), $C_{12} = 56$ (21,5), $C_{44} = 52$ (58,7) ГПа, $C_{11} - C_{12} = 157$ (180,5) ГПа. В Li₂O₂ [10] C_{11} , C_{12} , C_{13} , C_{33} , C_{44} равны 207,3, 33,8, 21,5, 358,1, 46,4 ГПа соответственно. Как видно из табл. 2, определенные нами объемные модули упругости и упругие постоянные разумно коррелируют с данными, полученными другими авторами.

Условия механической стабильности кристаллов [36] приводятся для всех типов симметрии в [37]. Для кубических кристаллов это $(C_{11} - C_{12}) > 0$, $C_{11} > 0$, $C_{44} > 0$, $(C_{11} + 2C_{12}) > 0$; гексагональных — $C_{44} > 0$, $C_{11} > |C_{12}|$, $(C_{11} + C_{12})C_{33} > 2C_{13}^2$; тетрагональных — $(C_{11} - C_{12}) > 0$, $(C_{11} + C_{33} - 2C_{13}) > 0$, $C_{11} > 0$, $C_{33} > 0$, $C_{44} > 0$, $C_{66} > 0$, $(2C_{11} + C_{33} + 2C_{12} + 4C_{13}) > 0$; орторомбических — $(C_{11} + C_{22} - 2C_{12}) > 0$, $(C_{11} + C_{33} - 2C_{13}) > 0$, $(C_{22} + C_{33} - 2C_{23}) > 0$, $C_{ii} > 0$ (i = 1—6), $(C_{11} + C_{22} + C_{33} + 2C_{12} + 2C_{13} + 2C_{23}) > 0$. Кроме того, для всех типов кристаллов должно выполняться $C_{12}^* < B_0 < C_{11}^*$, т.е. объемный модуль должен быть больше усредненной по Фойгту упругой постоянной C_{12}^* , отвечающей деформации сжатия—растяжения без изменения объема, и меньше средней C_{11}^* для одноосных деформаций.

Таблица 2

Окисел	B_0	<i>C</i> ₁₁	C ₂₂	C ₃₃	<i>C</i> ₁₂	C ₁₃	C ₂₃	C ₄₄	C ₅₅	C_{66}
Li ₂ O	84,1	1 212,0			20,1		65,7			
Na ₂ O	58,3	120,4			27,3		32,3			
K ₂ O	43,1	89,0		20,2		13,1				
Rb ₂ O	36,3	75,6		16,6		17,1				
Li_2O_2	93,9	183,9 322,4		49,5	13,9		42,7		67,2	
Na ₂ O ₂	70,0	12	0,1	217,2	36,6	24,9		29,4		41,7
K_2O_2	46,7	91,5	95,5	62,7	28,5	29,1	38,3	38,3	50,0	23,3
Rb_2O_2	54,3	84,4	88,0	143,7	37,1	21,6	24,8	31,6	25,0	33,8
LiO_2	87,2	253,3	130,9	73,5	120,3	22,8	20,1	26,2	29,5	25,0
NaO_2	59,0	181,6	99,8	63,2	88,0	14,7	1,1	-64,4	30,4	41,4
KO_2	41,3	3 20,8		232,8	53,3	0,3		7,4		2,8
RbO_2	41,4	-9,9		215,4	86,2	6,9		33,8		-8,6
LiO ₃	109,3	93,5	470,0	186,7	19,2	44,7	99,6	56,8	26,6	18,3
NaO_3	71,9	48,2	349,9	160,6	4,7	15,2	89,9	60,3	20,8	27,6
KO ₃	65,3	172,4		39,5	84,4	16,7		16,3		52,7
RbO_3	57,5									

Объемный модуль упругости B₀ (ГПа) и упругие постоянные C_{ii} (ГПа) окислов металлов

Как следует из табл. 2, этим условиям не удовлетворяют: NaO₂ — упругая постоянная C_{44} , отвечающая сдвиговой деформации, является отрицательной; KO₂ – C_{12} больше, чем C_{11} , и RbO₂, где реализуются оба этих случая. В этой связи следует заметить, что рассмотрение одной лишь механической устойчивости не решает вопроса о действительной структуре кристалла. С другой стороны, известно [1], что температура полного разложения на окись и кислород ромбической фазы NaO₂ составляет 43 K, тетрагональных KO₂ — 231 K и RbO₂ — 196 K. Для сравнения, температура полного разложения на окись и кислород для перекисей лития и натрия составляет 613 и 909 K соответственно, температура разложения озонидов натрия и калия (на надперекись и кислород) — 263 и 333 K соответственно.

Причину такой нестабильности следует искать в особенностях кристаллического строения. Распределение электронной плотности показывает, что в надпероксидах образуются цепочки из чередующихся анионов и катионов с наличием общих контуров. В NaO₂ эти цепочки лежат в плоскости *ab* и ориентированы вдоль оси *a*, а в KO₂ — в плоскости *bc* и ориентированы вдоль *c*. При этом, в отличие от KO₂, в NaO₂ ось молекулярного иона составляет с осью *a* в плоскости *ab* некоторый угол. Поэтому при сдвиговой деформации на угол γ , равный 2,3° (упругая постоянная C_{44}), атомы кислороды становятся неэквивалентными, и расстояния О—О в ионах принимают значения 1,375 и 1,323 Å. В KO₂ при сжатии вдоль оси *a* на 2 % (C_{11}) кратчайшие расстояния O—O и K—O не изменяются, зато уменьшаются расстояния между анионами от 3,432 до 3,401 Å. При деформациях в плоскости *ab* эти смещения еще больше, что и обеспечивает больше значение C_{12} над C_{11} .

Зависимости усредненных упругих постоянных C_{11}^* и C_{12}^* показывают, что в ряду каждого металла они достигают максимального значения на озониде, тогда как C_{44}^* для лития — на оксиде, натрия — на озониде, а калия и рубидия — на пероксиде. В зависимости от катиона для оксидов — озонидов C_{11}^* убывает с ростом атомного номера. Модуль всестороннего сжатия B_0 убывает в ряду каждого аниона с увеличением межатомного расстояния М—О. Для оксидов и пероксидов такая зависимость близка к линейной, и она может быть хорошо описана соотношением $B_0 \sim d_{\rm M-O}^{-3.5}$.

ХИМИЧЕСКАЯ СВЯЗЬ

В табл. 3 приведены в единицах |e| (e — заряд электрона) эффективные заряды атомов (Q) и заселенности перекрывания (P) между атомами и их ближайшими соседями. Так, для Na₂O₂ различия в избыточных зарядах неэквивалентных в кристаллографическом отношении атомов натрия и кислорода составляют 0,009 |e| и 0,021 |e| соответственно. Во всех окислах заселенности перекрывания между атомами металла и кислорода значительно меньше, чем между атомами металла и кислорода в пероксидах, надпероксидах и озонидах образуют устойчивые молекулярные ионы с ковалентной химической связью, а взаимодействие между металлом и анионом носит ионный характер.

Заряды анионов в ряду оксид—озонид лития составляют -1,69, -1,67, -0,93, -0,90 |e|, а в ряду пероксидов лития—рубидия -1,69, -1,83, -1,77, -1,51 |e|. Отличие в зарядах натрия в ряду Na₂O, Na₂O₂, NO₂, NaO₃ составляет 0,073 |e|. Заряд атома кислорода в окислах варьирует от положительного в озонидах до почти -2 |e| в оксидах. Таким образом, способность кислорода изменять свое зарядовое состояние в широких пределах и обуславливает возможность существования значительного круга окислов.

Рассмотрим теперь перераспределение зарядовой плотности, которое происходит при образовании кристаллических окислов из свободных атомов. На рисунке изображены карты деформационной плотности KO₂ в плоскости {011} и KO₃ в плоскости {110}. В озониде атомы калия располагаются параллельно указанной плоскости выше и ниже на 1,782 Å. На рисунке пунктиром обозначены контуры отрицательных значений $\Delta\rho(r)$, сплошными линиями — положительных и нулевой контур выделен жирным.

Таблица З

М	M_2O	M_2O_2	MO ₂	MO_3		
Li	<i>Q</i> _M +0,846	$Q_{\rm M1}$ +0,791, $Q_{\rm M2}$ +0,884	<i>Q</i> _M +0,926	$Q_{\rm M}$ +0,898		
	<i>Q</i> ₀ –1,691	<i>Q</i> ₀ –0,837	<i>Q</i> ₀ –0,463	Q_{01} +0,086, Q_{02} -0,492		
	<i>P</i> _{MO} 0,006	<i>P</i> _{M10} 0,012, <i>P</i> _{M20} 0,008	<i>P</i> _{MO} 0,006	$P_{\rm MO1}$ 0,002, $P_{\rm MO2}$ 0,011		
	P _{OO} -0,004	P ₀₀ -0,106	P ₀₀ -0,041	P_{0102} 0,087, P_{0203} -0,047		
Na	<i>Q</i> _M +0,900	$Q_{\rm M1}$ +0,914, $Q_{\rm M2}$ +0,905	<i>Q</i> _M +0,926	<i>Q</i> _M +0,853		
	<i>Q</i> ₀ –1,800	Q_{01} -0,924, Q_{02} -0,903	<i>Q</i> ₀ –0,463	Q_{01} +0,052, Q_{02} -0,452		
	<i>P</i> _{MO} 0,005	<i>P</i> _{M102} 0,003, <i>P</i> _{M202} 0,009	<i>P</i> _{MO} 0,004	$P_{\rm MO1}$ 0,004, $P_{\rm MO2}$ 0,015		
	P ₀₀ 0,001	P_{0101} -0,143, P_{0202} -0,173	P ₀₀ -0,105	P_{0102} 0,055, P_{0203} -0,069		
Κ	<i>Q</i> _M +0,847	$Q_{ m M}$ +0,884	<i>Q</i> _M +0,945	$Q_{\rm M}$ +0,862		
	<i>Q</i> ₀ –1,694	<i>Q</i> _O –0,884	<i>Q</i> ₀ –0,472	Q_{01} +0,039, Q_{02} -0,453		
	<i>P</i> _{MO} 0,001	P _{MO} -0,004	<i>P</i> _{MO} 0,002	$P_{\rm MO1}$ -0,002, $P_{\rm MO2}$ 0,010		
	P ₀₀ -0,001	P ₀₀ -0,129	P ₀₀ -0,184	P_{0102} 0,045, P_{0203} -0,070		
Rb	<i>Q</i> _M +0,993	$Q_{\rm M}$ +1,000	<i>Q</i> _M +0,915	$Q_{\rm M}$ +0,786		
	<i>Q</i> ₀ –1,986	$Q_0 = -1,000$	<i>Q</i> ₀ –0,457	Q_{01} +0,045, Q_{02} -0,429		
	Р _{мо} –0,029	P _{MO} -0,016	P _{MO} 0,001	Q_{03} -0,402		
	P ₀₀ 0,000	P ₀₀ -0,205	P ₀₀ -0,117	$P_{\rm MO1}$ 0,008, $P_{\rm MO23}$ 0,014		
		-		P_{O1O2} 0,104, P_{O1O3} 0,115		
				P ₀₂₀₃ -0,063		

Заряды атомов металла $Q_{\rm M}$, кислорода $Q_{\rm O}$, заселенность перекрывания атомов металла-кислорода $P_{\rm MO}$ и кислород-кислорода $P_{\rm OO}$ (все в ед. |e|)

Электронный заряд вытекает из внешних областей атомов калия, обеспечивая ему эффективный положительный заряд, и натекает в область атомов кислорода, которые, как это хорошо видно, образуют молекулярные ионы $O_2^{-0,945}$ и $O_3^{-0,862}$. Внутри первого заряд вытекает из об-

Распределение деформационной плотности в KO₂ (слева) и KO₃ (справа)

ласти вдоль линии связи О—О и натекает в область в форме тора, ориентированного перпендикулярно этой линии. Таким образом, химическая связь имеет выраженный ковалентный характер π -типа. В KO₃ для двух эквивалентных атомов кислорода O2 и O3 избыточный заряд также находится в области деформированного тора, но, в отличие от надпероксида, имеется очень слабый максимум $\Delta \rho(r)$ на линиях O1—O2 и O1—O3, поэтому мы полагаем, что здесь помимо π - имеется слабая σ -составляющая ковалентной химической связи.

Рассмотрим механизм образования химической связи с точки зрения подрешеток [12, 13] на примере KO₃. Подрешетки кислорода и калия получаются из кристаллической путем удаления из последней соответственно калия и кислорода. При этом подрешетки электронейтральные и их симметрия совпадает с кристаллической. Образование молекулы озонида происходит уже в подрешетке кислорода. Заряд атома O1 в ней равен +0,169 |*e*|, а заселенность перекрывания P_{0102} равна 0,094 |*e*|, тогда как P_{0203} –0,062 |*e*|. Перекрывание внешних электронных оболочек атомов в подрешетке калия с заселенностью P_{KK} , равной 0,051 |*e*|, приводит к тому, что валентные электроны практически полностью передаются в области анионов, где и распределяются таким образом, что заряд O1 становится равным +0,039 |*e*|, а O2 и O3 –0,453 |*e*|. Это приводит к взаимодействию ионов разного знака с заселенностью перекрывания P_{0102} и P_{0203} , равной 0,045 и –0,070 |*e*| соответственно. Энергия взаимодействия подрешеток, вычисленная как разность их полных энергий на одну молекулу, составила для KO₃ –0,3859 ат. ед. (в KO₂ –0,3904 ат. ед.).

Экспериментальные исследования деформационной плотности выполнены в [7]. Отличительной особенностью полученных здесь карт является отсутствие избыточного заряда внутри озонид-иона. Небольшая его часть появляется только на расстоянии 0,5 Å от анионной плоскости. Заряд также вытекает из области вдоль линии O2—O3, но наблюдаются общие контуры плотности в перпендикулярной плоскости. Сопоставление карт на рисунке и экспериментальных показывает, что имеется хорошее совпадение теоретических и экспериментальных деформационных плотностей и это прежде всего касается форм областей избыточного электронного заряда, в частности, за атомом O1.

ЗАКЛЮЧЕНИЕ

Методом линейной комбинации атомных орбиталей с градиентной аппроксимацией обменно-корреляционного функционала электронной плотности программным кодом CRYSTAL06 путем оптимизации геометрии кристаллических решеток M_2O , M_2O_2 , MO_2 , MO_3 (M = Li, Na, K) вычислены параметры элементарных ячеек и координаты атомов в них, в том числе ранее неизвестных для LiO_2 и RbO_2 надпероксидов лития, рубидия и гипотетического LiO_3 .

Из зависимостей полной энергии от деформаций вычислены модули всестороннего сжатия и упругие постоянные C_{ij} . Механическая стабильность кристаллов определяется условиями, накладываемыми на C_{ij} , и они не выполняются для MO_2 (M = Na, K, Rb), что обусловлено особенностями их кристаллического строения и химической связи.

Рассчитаны эффективные заряды атомов и заселенности перекрывания их с ближайшими соседями, а также карты распределения деформационной плотности. Показано, что во всех окислах, кроме оксидов, образуются молекулярные ионы кислорода O_2 и O_3 с зарядами, близкими к -2 |e| в пероксидах, -1 |e| в надоксидах и озонидах. Низкая заселенность перекрывания между анионом и катионом свидетельствует об ионном характере взаимодействия между ними. Химическая связь в анионе имеет ковалентный характер π -типа. Отличительной особенностью ее образования является переток заряда из связевой в тороидальную область с центром на кислороде перпендикулярно линии O—O.

Работа поддержана проектом № 2.1.1/1230 АВЦП "Развитие научного потенциала высшей школы (2009-2010 годы)".

СПИСОК ЛИТЕРАТУРЫ

- 1. Вольнов Н.К. Перекисные соединения щелочных металлов. М.: Наука, 1980.
- 2. Mikajlo E.A., Dorsett H.E., Ford M.J. // J. Chem. Phys. 2004. 120, N 22. P. 10799 10806.
- 3. Cancarevie Z., Schon J.C., Jansen M. // Phys. Rev. B. 2006. 73, N 224114.
- 4. Moakafi M., Khenata R., Bouhemadou A. et. al. // Eur. Phys. J. 2008. 64B. P. 35 42.
- 5. Baumeier B., Kruger P., Pollmann J., Vajenine G.V. // Phys. Rev. B. 2008. 78, N 125111.
- 6. Goel P., Choudhury N., Chaplot S.L. // Phys. Rev. B. 2004. 70, N 174307.
- 7. Kellersohn T., Korber N., Jansen M. // J. Amer. Chem. Soc. 1993. 115. P. 11254 11258.
- 8. Klein W., Armbruster K., Jansen M. // Chem. Commun. 1998. 7. P. 707 708.
- 9. Cota L.G., De La Mora P. // Acta Crystallogr. B. 2005. 51. P. 133 136.
- 10. Wu H., Zhang H., Cheng X., Cai L. // Philosophical Magazine. 2007. 87, N 23. P. 3373 3383.
- 11. Журавлев Ю.Н., Басалаев Ю.М., Поплавной А.С. // Теорет. и эксперим. химия. 2003. **39**, № 2. С. 72 78.
- 12. Журавлев Ю.Н., Поплавной А.С. // Журн. структур. химии. 2001. 42, № 6. С. 1056 1063.
- 13. Журавлев Ю.Н., Поплавной А.С. // Журн. структур. химии. 2003. 44, № 2. С. 216 222.
- 14. Журавлев Ю.Н., Кравченко Н.Г., Оболонская О.С. // Хим. физика. 2010. 29, № 1. С. 11 19.
- Dovesi R., Saunders V.R., Roetti C., Orlando R., Zicovich-Wilson C.M., Pascale F., Civalleri B., Doll K., Herrison N.M., Bush L.J., D'Aroo Ph., Llunell M. CRYSTAL06 User's Manual. – Torino: University of Torino, 2006.
- 16. Schmidt M.W., Baldridge K.K., Boatz J.A. et. al. // J. Comput. Chem. 1993. 14. P. 1347 1359.
- 17. Becke A.D. // J. Chem. Phys. 1993. P. 5648 5656.
- 18. Слэтер Дж. Методы самосогласованного поля для молекул и твердых тел. М.: Мир, 1978.
- 19. Perdew J.P., Zunger A. // Phys. Rev. B. 1981. 23. P. 5048 5079.
- 20. Perdew J.P., Wang Y. // Phys. Rev. B. 1986. 33. P. 8800 8802.
- 21. Perdew J.P., Wang Y. // Phys. Rev. B. 1992. 45. P. 13244 13248.
- 22. Интернет-pecypc http://crystal.unito.it/Basis_Sets/ptable.html
- 23. Bredow T., Jig K., Evarestov R.A. // Phys. Stat. Sol. B. 2006. 243. P. R10 R12.
- 24. Cora F. // Mol. Phys. 2005. 103. P. 2483 2496.
- 25. Gatti C., Saunders V.R., Roetti C. // J. Chem. Phys. 1994. 101. P. 10686 10696.
- 26. Corno M., Busco C., Civalleri B., Ugliengo P. // Phys. Chem. Chem. Phys. 2006. 8. P. 2464 2472.
- 27. Beckstein O., Klepeis J.E., Hart G.L.W., Pankratov O. // Phys. Rev. B. 2001. 63, N 134112.
- 28. Шеин И.Р., Кийко В.С., Макурин Ю.Н. и др. // Физика тверд. тела. 2007. 49, № 6. С. 1015 1020.
- 29. Mehl M.J., Osburn J.E., Papaconstantopoulos D.A., Klein B.M. // Phys. Rev. B. 1990. 41, N 15. P. 10311 10323.
- 30. Jansen M., Schnick W. // ANCEA. 1985. 97. P. 48 49.
- 31. Ziegler M., Rosenfeld M., Kaenzig W., Fischer P. // HPACA. 1976. 49. P. 57 90.
- 32. Bremm T., Jansen K. // ZAACA. 1992. **21**. P. 64 66.
- 33. *Foeppl H.* // ZAACA. 1957. **291**. P. 12 50.
- 34. Tallman R.L., Magrave J.L., Bailey S.W. // J. Amer. Chem. Soc. 1957. 79. P. 2979 2980.
- 35. Wyckoff R. Crystal Structure. New York: Interscience, 1963.
- 36. Борн М., Кунь Х. Динамическая теория кристаллических решеток. М.: Изд-во иностр. лит, 1958.
- 37. Wu Z., Zhao E., Xiang H., Hao X. et. al. // Phys. Rev. B. 2007. 76, N 054115.