На фиг. 6 и 7 приведены спектры сигналов для турбулентного а и ламинарного б течений, а также турбулентного течения со средней скоростью, такой же, что и в случае а, но с дополнительным введением турбулентной решетки. Средние скорости течений для спектров а и б равны 27.2 см/сек, а для спектра б ее значение 7.56 см/сек.

АВТОРЫ БЛАГОДАРЯ С. А. ХРИСТАНОВИЧУ ЗА ВНИМАНИЕ И ИНТЕРЕС К РАБОТЕ.

ПОДПИСАЛА 12 VII 1968

ЛИТЕРАТУРА
2. Деревянко Н. Ф., Трохан А. М. О применении корреляционного метода для измерения скорости плазменных потоков. Измерительная техника, 1966, № 10, стр. 24—28.

ОПРЕДЕЛЕНИЕ РЕАКЦИИ РАВНОМЕРНО-ЗАВИШЕННОГО ПОТОКА НА ОБТЕКАЕМЫЙ КОНТУР

А. Г. ЯРМУНКИ (Днепропетровск)

Ниже показано, что метод определения функции тока вращающегося кругового потока, разработанный в [1], может быть обобщен на любой равномерно-завихренный поток, в частности на равномерное течение с поперечным градиентом скорости. Получена формула для определения гидродинамической реакции любого равномерно-завихренного потока на обтекаемый контур. Будет выведено конечное аналитическое выражение для аэродинамической силы, действующей на круговой цилиндр в равномерно-завихренном расходящемся потоке.

Будем предполагать, что внесенный в поток с постоянным вихрем Ω контур не изменяет распределения вихря в этом потоке. Экспериментально показано, что это положение вполне приемлемо, например, при изучении обтекания тел в карусельном гидропроме. Обтекание контура описывается уравнением для функции тока Ψ:

\[4 \frac{\partial \Psi}{\partial \theta} = - \Omega \]

(1)

с условием на контуре

\[\Psi |_{\theta} = \text{const} \]

(2)
На достаточно большом расстоянии от контура функции тока будет сколько угодно мало отличаться от функции тока невозвышенного течения \(\Psi_{\infty} \) на которое наложено вихрение, так как возвышение от контура затухает по мере удаления от него. Отсюда следует, что на бесконечности функции тока \(\Psi \) имеет порядок
\[
\Psi = \Psi_{\infty} + O\left(\ln |z| \right)
\]
где через \(O(\ln |z|) \) обозначены выражения, возрастающие при \(|z| \to \infty \) не быстрее, чем \(\ln |z| \).

Краевая задача (1)—(3) отличается от краевой задачи, рассмотренной в [1], только лишь более общим условием на бесконечности (3).

Как показано в [2], самое общее равномерно-завихренное течение может быть получено путем наложения кругового равномерно-завихренного потока с центром прения в начале координат и потенциального течения \(\Psi \). Так что
\[
\Psi = -\frac{i}{\lambda} \Omega (z^2 + \Psi^0)
\]
Здесь \(\Psi^0 \) — функция тока некоторого потенциального течения.

Согласно (1)—(4), потенциальное течение, определяемое функцией \(\Psi^0 \), описывается уравнением Лапласа со следующим краевым условием и условием на бесконечности:
\[
\Psi^0 = \frac{i}{\lambda} \Omega z^2 + \text{const.} \quad \text{на } L, \quad \Psi^0 = \Psi_{\infty} + O\left(\ln |z| \right)
\]

Здесь \(\Psi_{\infty} \) — функция тока невозвышенного потокотока.

Таким образом, краевая задача (1)—(3) сводится к определению гармонической функции \(\Psi^0 \), удовлетворяющей условиям (5).

Решение этой задачи будет вести методом, предложенным в [1]. Представим функцию \(\Psi^0 \) в виде суммы гармонических функций \(\Psi^{(1)} \) и \(\Psi^{(2)} \), которые подчиняются следующим условиям на бесконечности:
\[
\Psi^{(1)} = \frac{i}{\lambda} \Omega z^2 + \text{const.} \quad \text{на } L, \quad \Psi^{(1)} = O\left(\ln |z| \right)
\]
\[
\Psi^{(2)} = 0 \quad \text{на } L, \quad \Psi^{(2)} = \Psi_{\infty} + O\left(\ln |z| \right)
\]

Тогда, как легко видеть, функция
\[
\Psi = -\frac{i}{\lambda} \Omega z^2 + \Psi^{(1)} + \Psi^{(2)}
\]
будет решением поставленной задачи (1)—(3).

Для определения функции \(\Psi^{(1)} \) можно воспользоваться теоремой об окруженности и конформным отображением. Функция \(\Psi^{(1)} \) для случая обтекания профиля Жуковского найдена в работе [1]. При обтекании аллеса с полюсами \(a \) и \(b \), центром в начале координат и полюсом \(b \) направленной вдоль оси \(x \), эта функция имеет вид
\[
\Psi^{(1)} = \text{Im} \left(\frac{i}{\lambda} \Omega z^2 \right) \cdot \left(\xi = z + \frac{1}{2} \sqrt{2z - z^2} \right), \quad z = a + \frac{b}{2}
\]

Вводя в рассмотрение комплексную скорость \(\tilde{v} \), на основании (4) получаем
\[
\tilde{v} = v^* + \tilde{v}^0 (v^* = -\frac{i}{\lambda} \Omega z^2)
\]

Здесь \(\tilde{v}^0 \) — комплексная скорость кругового равномерно-завихренного потока с центром прения в начале координат, а \(\tilde{v}^* \) — комплексная скорость потенциального течения, определяемого функциями \(\Psi^{(1)} \) и \(\Psi^{(2)} \).

Если поток, обтекающий профиль, представляет собой результат наложения двух плоских установившихся потоков, то аэродинамическую силу в этом случае можно рассчитывать, как сумму аэродинамических сил, соответствующих каждому из накладываемых потоков, и аэродинамической силы, проходящей от их взаимного влияния \(R^{**} \), в т. е. зависящей от компонентов скоростей обоих потоков, так что
\[
R = R^* + \tilde{R} + R^{**}
\]

Определение аэродинамической силу, обусловленную круговым равномерно-завихренным потоком с центром прения в начале координат, и аэродинамической силу, происходящую от взаимного влияния накладываемых потоков, по теореме Чаплыгина — Блауэуса, учитывая (10), имеем
\[
R^* = \frac{i}{\lambda} \int_0^\infty \frac{e^{-i\sigma} - d\sigma}{\Omega^2 \left(\frac{\lambda}{2} \right)^2} \tilde{v}^2 d\sigma
\]

1 Вывод формулируется впринятом здесь терминах
Используя комплексную форму теоремы Стокса [1 2], получим
\[\oint_L \bar{z}^2 \, dz = 4i \oint_{\Gamma} \bar{z} \, dS = 4iS\bar{z}_c \quad (z_c = x_c + iy_c) \]

Здесь \(S \) — площадь, ограниченная контуром \(L \), \(z_c \) — положение центра тяжести этой площади. Следовательно
\[\bar{R}^* = i \varrho \Omega S\bar{z}_c \tag{12} \]

Найдем теперь аэродинамическую силу, обусловленную интерференцией накладываемых потоков
\[\bar{R}^w = i \varrho \oint_L \bar{z}^w \, dw = \frac{1}{2} \varrho \Omega \oint_L \bar{z} \, dw \]

Здесь \(w \) — комплексный потенциал безвихревого течения. Как показано в [2]
\[\oint_L \bar{z} \, dw = \oint_L \bar{z} \, \bar{w} + 2i \oint_L \bar{z}^w \, \bar{z} \]

Вновь используя комплексную форму теоремы Стокса, с учетом первого из выражений (5) для \(\bar{z}^w \), получаем
\[\oint_L \bar{z} \, dw = \frac{1}{2} \oint_L \bar{z} \, \bar{w} = -\frac{1}{2} i\Omega \oint_S \bar{z} \, dS \]

С учетом этого
\[\oint_L \bar{z} \, dw = -\frac{1}{2} \oint_S \bar{z} \, dS = -\frac{1}{2} i\Omega S\bar{z}_c \]

Таким образом
\[\bar{R}^w = i \varrho \Omega \left(\oint_L \bar{z} \, dw = -\frac{1}{2} i\Omega S\bar{z}_c \right) \tag{13} \]

Обозначим составляющую аэродинамической силы, обусловленную завихренностью потока, через \(R^{**} \), на основании выражений (11),(13) найдем
\[\bar{R} = \bar{R}^2 + R^{**} \tag{14} \]

Предполагая отсутствие особенностей в потоке, будем считать комплексную скорость \(\bar{v} \) голоморфной функцией \(z \) во внешней по отношению к контуру \(L \) части плоскости \(z \). Тогда в окрестности бесконечно удаленной точки имеем ряд Лорана
\[v = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} \frac{a_{-n}}{z^n} \tag{15} \]

Выполнив интегрирование по окружности достаточно большого радиуса, чтобы было справедливо разложение (15), выразим компоненты аэродинамической силы \(R^2 \) и \(R^{**} \) через коэффициенты этого разложения
\[\bar{R}^2 = -2i \rho \sum_{n=0}^{m} a_n a_{-(n+1)}, \quad R^{**} = \rho \Omega a_{-2} \tag{16} \]

Таким образом, главный вектор сил давления жидкости на обтекаемый равномерно-завихренным потоком профиль выражается следующим образом:
\[\bar{R} = X + iY = -\rho \left(\sum_{n=0}^{m} a_n a_{-(n+1)} - i a_{-2} \Omega \right) \tag{17} \]

Положим
\[\Omega = 0, \quad a_{-1} = -i \chi, \quad a_n = a_{\infty} (n = 0), \quad a_n = 0 \quad (n \neq 0) \]

Здесь \(\chi = \Gamma / 2 \pi \) — интенсивность оси симметрии \(\Gamma \) вокруг профиля, а \(a_{\infty} \) — комплексная скоэность плоско-направленного потока на бесконечности, получим известную теорему Н. Е. Жуковского. Рассмотрим теперь некоторые примеры.
Эллипс в равномерном потоке с непрерывным градиентом скорости. Пусть распределение скоростей невозмущенного потока в плоскости $z(x, y)$ имеет вид

$$U = -\Omega y + U_{\infty}, \quad V = 0$$

Здесь U_{∞} — скорость равномерного потока на бесконечности ($z \to \infty$, $y = 0$).

Тогда комплексная скорость невозмущенного потока, а также его потенциальной части, соответственно будут

$$\tilde{v}, \tilde{w} = \frac{1}{2} i\Omega(z - \tilde{z}) + U_{\infty}, \quad \tilde{v}_{\infty} = \frac{1}{4} i\Omega \tilde{z} + U_{\infty}$$

По теореме об окружности [7] комплесная скорость возмущенного потенциального потока, обтекающего круговой цилиндр радиуса r

$$\tilde{v}(z) = \frac{1}{2} i\Omega \tilde{z} + U_{\infty} + \frac{r^2}{8} \left(\frac{i\Omega}{2} + \frac{r^2}{8} \right) \tilde{v}$$

В более общем случае обтекания цилиндра, когда скорость невозмущенного потока направлена под углом α к оси x и на поток наложена циркуляция $\Gamma = 2\pi \chi$ вокруг цилиндра, комплесная скорость возмущенного безихревого течения имеет вид

$$\tilde{v}(z) = \frac{1}{2} i\Omega e^{-i\alpha} \tilde{z} + U_{\infty} e^{-i\alpha} - \frac{1}{2} \frac{i\chi}{\tilde{z}} + \frac{1}{2} \frac{i\Omega e^{-i\alpha}}{\tilde{z}^2}$$

Используя конформное преобразование, найдем, что комплексная скорость обтекания эллиптического цилиндра $\tilde{v}(z)$ связана с комплексной скоростью обтекания кругового цилиндра $\tilde{v}(z)$ соотношением

$$\tilde{v}(z) = \frac{z}{z^2 - e^2} \tilde{v}(z)$$

Следовательно, комплексная скорость обтекания эллиптического цилиндра, обусловленная функцией $\psi(z)$, имеет вид

$$\tilde{v}(z) = \frac{1}{2} \left(\Omega e^{-2i\alpha} \psi \frac{z}{z^2 - e^2} + U_{\infty} e^{-i\alpha} \psi \frac{z}{z^2 - e^2} \right) - \frac{i\chi}{\tilde{z}} + \frac{1}{2} \frac{i\Omega e^{2i\alpha} \psi \tilde{z}^2}{z^2} + \frac{1}{2} \frac{1}{\tilde{z}^2} \Gamma e^{i\alpha} \psi \tilde{z}^2$$

Найдем теперь комплексную скорость $\tilde{v}(z)$, соответствующую функции $\psi(z)$

$$\tilde{v}(z) = \psi(z) \frac{d}{dz}$$

где согласно изложенному ранее

$$\psi(z) = \frac{1}{8} \frac{i\chi}{\tilde{z}} \frac{z^2}{z^2 - e^2}, \quad \tilde{z} = \psi(z) = \frac{1}{2} (z + \sqrt{z^2 - e^2})$$

Следовательно, для $\tilde{v}(z)$ получаем

$$\tilde{v}(z) = \frac{1}{4} \frac{i\chi}{\tilde{z}} \frac{z^2}{\sqrt{z^2 - e^2}}$$

Комплексная скорость обтекания эллиптического цилиндра потенциальной частью невозмущенного потока

$$\tilde{v} = \tilde{v}(z) + \tilde{v}(z)$$

В окрестности бесконечно удаленной точки

$$\tilde{v} = a_0 + \frac{a_1}{z} + \frac{a_2}{z^2} + \ldots$$

где

$$a_1 = \frac{1}{2} \Omega e^{-2i\alpha}, \quad a_0 = U_{\infty} e^{-i\alpha}, \quad a_2 = -i\chi, \quad a_2 = (\frac{1}{2} \Omega e^{-2i\alpha} - \frac{r e^{i\alpha}}{2} U_{\infty})$$

Исходя из формулы (17), в этом случае можно записать

$$R = -\rho \sqrt{2(a_0 e^2 + a_1 e - a_2 - a_0 e^2)} = -\rho U_{\infty} \Gamma + \rho \Omega U_{\infty}(a + b) (a \sin^2 \alpha + b \cos^2 \alpha)$$

Отсюда величина подъемной силы

$$F = -\rho \Gamma - \rho \Omega U_{\infty} (a + b) (a \sin^2 \alpha + b \cos^2 \alpha)$$
В случае отсутствия вокруг контура циркуляции \(\Gamma \) полученный результат совпадает с результатом работы [4] 1. Полярная в этом случае \(a = b = r, \) находим
\[
F = - 2 \rho U_0 \sigma \Omega r^2
\]
(21)

Выражение (21) совпадает с известным выражением подъемной силы для кругового цилиндра \([3,4] \). Если полагать в (20) \(\Gamma = 0, b = 0, \) то получим величину подъемной силы при бесциркуляционном обтекании пластинки
\[
F = \rho U_0 \sigma \Omega \alpha \sin \alpha
\]
(22)
максимума эта сила достигает при \(\alpha = \frac{1}{2} \pi, \) когда пластинка расположена перпендикулярно потоку. Это также согласуется с выводами работы [3].

Заметим в круговом равномерно-вихревом потоке. Пусть центр вращения потока находится в точке \(z_0 = x_0 + iy_0. \) Тогда компоненты скорости в каждой точке невозмущенного потока можно представить в виде \(U = -i \omega (y - y_0), \ V = \omega (x - x_0), \) где \(\omega = \frac{1}{2} \Omega - угловая скорость потока.

Отхода комплексная скорость невозмущенного течения
\[
\bar{v}_{\infty} = - i \omega (z - z_0)
\]
Приведем соотношение (10), выделим комплексную скорость потенциальной части этого течения
\[
\bar{v}_{c,0} = i \omega \bar{z}_0
\]
Обтекание эллиптического цилиндра потенциальным потоком с постоянной скоростью на бесконечности хорошо изучено [3]; комплексная скорость в этом случае
\[
\bar{v}_{\infty} = \frac{1}{2} \left(\bar{v}_{\infty} \frac{z^r}{c^2} \left(1 \frac{(a + b)^2}{c^2} \frac{z \left(1 - \frac{1}{c^2} (\bar{v}_{\infty} \frac{z^r}{c^2}) \right)}{\bar{v}_{\infty} \frac{z^r}{c^2} - c^2} \right) \right)
\]
С учетом (18) и (19) найдем
\[
\bar{v}_{\infty} = i \omega \frac{z_0}{z} - \frac{\omega \sigma}{2} \frac{z_0}{z}\left(1 + \frac{c^2}{2} \right)
\]
(23)

Разложив правую часть последнего выражения в окрестности бесконечно удаленной точки в ряд Лорана, получим
\[
\bar{v}_{\infty} = a_0 + \frac{a_1}{z} + \frac{a_2}{z^2} + \ldots
\]
(24)

Применим теперь формулу (17)
\[
R = -2 \sigma \rho (\alpha \omega - i \omega \alpha) = -i \bar{v}_{c,0} (\Gamma' + \Gamma')
\]
\[
\Gamma' = \frac{1}{2} \bar{v}_{c,0} \frac{z_0}{z_0} \left(a + b \right) + \left(a - b \right) \bar{z}_0 \frac{a + b}{z_0}
\]
Полагая \(z_0 = iy_0, \) \(a = b, \) находим
\[
\bar{v}_{c,0} = i \omega \bar{z}_0, \quad R = \Omega |\bar{v}_{c,0}^2|
\]
(25)

Этот результат совпадает с известным выражением аэродинамической силы для круга [1], когда центр вращения потока находится на мнимой оси.

Если полагать в (24) \(b = 0, \) \(a = c, \) то получим выражение для аэродинамической силы, действующей на плоскую пластинку длинной \(2c \)
\[
R = -i \bar{v}_{c,0} (\Gamma' + \Gamma'), \quad \Gamma' = \frac{2 \bar{v}_{c,0} c^2}{(1 + \frac{c^2}{z_0})}
\]
(26)

Здесь \(\bar{v}_c \) — скорость невозмущенного потока в центре пластинки. Циркуляцию \(\Gamma' \) определяем из условия конечности скорости на задней кромке пластинки. С этой целью проанализируем выражение для комплексной скорости обтекания пластинки. На основании (10) и (23) найдем
\[
\bar{v} = -i \bar{v}_{c,0} U_0 \frac{1}{\bar{v}_{c,0} \frac{z^r}{c^2} - c^2} \left(\bar{v}_{c,0} \frac{z^r}{c^2} + \bar{v}_{c,0} \frac{z^r}{c^2} \right)
\]
(27)

Здесь \(U_0 \) — компоненты скорости потенциальной части невозмущенного течения. При произвольной величине циркуляции \(\Gamma = 2 \pi \chi \) и \(z = \pm c \) скорость имеет бесконечные значения, что соответствует обтеканию острых передней и задней кромок.

1 Различие в знаках объясняется противоположным правилом знаков для вихря \(\Omega. \)

8 ПМГФ, № 5, 1968
Подчиним теперь величину Γ условию конечности скорости на задней кромке ($z = c$), как того требует постановка Жуковского — Чайльдсга. Тогда получим

$$\Gamma = 2\pi \chi = - \frac{2\pi c}{V^* + 1/\omega} = \pi \cos(\tau_0 + \frac{1}{2}) - c$$

Подставляя значения Γ и Γ' в первое из выражений (26), находим, что

$$R = - \pi \rho a^2 \left(\tau_0 + \frac{1}{2} \right) \left(\frac{1}{2} c \tau_0 + \frac{1}{2} \right) - c \tau_0$$

Исходя из этого, можно записать

$$F_a = \frac{1}{2} \pi \rho a^2 \left(\tau_0 + \frac{1}{2} \right) \left(\tau_0 + \frac{1}{2} \right) \cos(\theta) = \frac{1}{2} \pi \rho a^2 \left(\frac{1}{2} c \tau_0 + \frac{1}{2} \right) \sin(\theta)$$

(27)

Здесь α — местный угол атаки в центре пластинки, F_a — проекция аэродинамической силы на направление скорости невозмущенного потока в центре пластинки, а $F_a + \frac{1}{2}$ — проекция аэродинамической силы на направление $\alpha = \frac{\pi}{2}$.

В отличие от потенциального обтекания плоской пластинки, угол атаки α можно выбрать так, чтобы подъемная сила обращается в нуль, в рассматриваемом случае аэродинамическая сила всегда отлична от нуля. Действительно, нельзя найти такой угол, чтобы одновременно $F_a = 0$ и $F_a + \frac{1}{2} = 0$.

Этот вывод полностью согласуется с выводом, полученным в работе [1].

Анализируя выражения (20)—(22) и (24)—(26), замечаем, что, в отличие от обтекания контура потенциальным потоком, в равномерно-завихренном потоке аэродинамическая сила возникает даже при отсутствии циркуляции Γ. Эта сила пропорциональна модулю вектора-викурия.

Разрывной цилиндр в равномерно-завихренном потоке. Пусть в центре вращения кругового равномерно-завихренного потока $z = z_0$ имеется источник мощности m, расположенный вне цилиндра L радиуса r, ось которого проходит через начало координат C. Комплексная скорость невозмущенного течения и потенциальная часть этого течения в рассматриваемом случае соответственно имеют вид

$$V = \frac{m}{z - z_0} - io \left(\frac{1}{2} \cdot \frac{1}{z - \frac{1}{2}} \right), \quad V = \frac{m}{z - z_0} + io \frac{1}{z - \frac{1}{2}}$$

Используя теорему об окружности [1], комплексную скорость соответствующего невозмущенного течения, можно записать в виде

$$V = \frac{m}{z - z_0} + \frac{m}{z - \frac{1}{2}} z_0 - \frac{m}{z - \frac{1}{2}} + io \frac{1}{z - \frac{1}{2}} + \frac{1}{z - \frac{1}{2}}$$

(28)

В рассматриваемом случае, как нетрудно видеть, $v(0) = 0$.

Так как в потоке имеется особенность, то непосредственное применение формулы (17) не представляется возможным. Поэтому для вычисления аэродинамической силы, действующей на цилиндр, воспользуемся выражением (14).

Располагая равномерно-завихренный источник на действительной оси в точке $z = z_0$, по теореме о вычетах можно получить

$$\bar{R} = 2\pi m \left(\frac{k}{k^2 - 1} \right) U_r^* \left(\frac{k}{k^2 - 1} \right) V_r^* \left(\frac{k}{k^2 - 1} \right) - i\pi a^2 \Gamma, \quad \bar{R} = U_r - iV_r, \quad k = |z_0|/r$$

(28)

Здесь U_r и V_r — компоненты скорости невозмущенного потока на оси цилиндра в начале координат.

Анализируя формулу (28), замечаем, что, как и в предыдущих примерах, аэродинамическая сила отлична от нуля даже при отсутствии вихря цилиндра циркуляции Γ. Эта сила притягивает цилиндр в равномерно-завихренному источнику, если $U_c > V_c$. Если указанная сила направлена от источника, $U_c < V_c$. При $k \to \infty$, что соответствует уменьшению относительной неоднородности потока вокруг цилиндра и приближает его к цилинду в однородном потоке, эта сила исчезает. В последнем случае при наличии вокруг цилиндра циркуляции Γ формулы (28) следует известная теорема Жуковского, так как устремляем k к бесконечности, получим $R = i\pi a^2 \Gamma$.

Автор благодарит В. Е. Давидюка за полезные советы.

Поступила 12 III 1968

Литература

1. М и к у г а В. И., Н о в и к о в Б. Г. Обтекание профилей круговым потоком, ПМТФ, 1960, № 3.
2. М и л л - Т о м с о н Л. М. Теоретическая гидродинамика. М., «Мир», 1964.
3. Д р у к е р И. Г. Подъемная сила, действующая на контур в плоском однородно завихренном потоке бесконечной жидкости. ПМТФ, 1966, № 2.
4. Л а м б Г. Гидродинамика, ОГИЗ, 1947.
5. Л о й ц и н с к и й Л. Г. Механика жидкости и газа. М., Гостехиздат, 1957.