ИССЛЕДОВАТЕЛЬСКИЕ СТАТЬИ

УДК 630*161.16:633.877.2+633.877.3

ОЦЕНКА ЭМИССИИ ПАРНИКОВЫХ ГАЗОВ ПРИ ПОЖАРАХ В СВЕТЛОХВОЙНЫХ ЛЕСАХ НИЖНЕГО ПРИАНГАРЬЯ

В. А. Иванов¹, Г. А. Иванова², Е. О. Бакшеева¹, А. С. Морозов^{2, 3}

- ¹ Сибирский государственный университет науки и технологий им. М. Ф. Решетнёва 660049, Красноярск, проспект Мира, 82
- 2 Институт леса им. В. Н. Сукачева СО РАН обособленное подразделение ФИЦ КНЦ СО РАН 660036, Красноярск, Академгородок, 50/28
- ³ Центр лесной пирологии, развития технологий охраны лесных экосистем, защиты и воспроизводства лесов филиал Всероссийского научно-исследовательского института лесоводства и механизации лесного хозяйства 660062, Красноярск, ул. Крупской, 42

E-mail: ivanovv53@yandex.ru, gaivanova@ksc.krasn.ru, morozovAS@firescience.ru Поступила в редакцию 11.06.2021 г.

Ежегодно на территории Сибири возникают сотни лесных пожаров. В последние десятилетия наблюдается увеличение их числа и площади соответственно, возрастает объем пирогенных эмиссий. При горении выделяются газоаэрозольные эмиссии, объем которых определяется интенсивностью пожара и сгоревшими лесными горючими материалами. В работе приведены расчеты эмиссии парниковых газов при лесных пожарах в светлохвойных насаждениях Нижнего Приангарья за 2014–2019 гг. С использованием данных о количестве сгорающих при пожаре лесных горючих материалов рассчитана масса парниковых газов, выделяющихся во время пожаров в зависимости от их вида, типа леса и метеоусловий, влияющих на высыхание горючих материалов. Установлено, что при пожарах в светлохвойных насаждениях она составляет от 5.9 до 37.5 т/га в зависимости от вида пожара и типа леса. Ежегодно в светлохвойных насаждениях Нижнего Приангарья этот показатель варьирует от 160 до 5649 тыс. т, в среднем более 2300 тыс. т. Всего за рассматриваемый период по расчетным данным выделилось при лесных пожарах более 16 млн т парниковых газов, с преобладанием СО-СО, Выявлено, что неблагоприятные условия рассеивания эмиссий от лесных пожаров складываются в летние месяцы, характеризующиеся высокой повторяемостью штилей, приземных инверсий и радиационных туманов. Относительно благоприятные погодные условия при наличии факторов загрязнения по самоочищению атмосферы от пожарных эмиссий наблюдаются весной и осенью, когда регистрируется наибольшее количество ветреных дней.

Ключевые слова: лесные пожары, пожарные эмиссии, парниковые газы, типы леса, Средняя Сибирь.

DOI: 10.15372/SJFS20210601

ВВЕДЕНИЕ

В настоящее время в связи с глобальным изменением климата особое внимание уделяется количественному содержанию парниковых газов в атмосфере. Лесные пожары являются одним из главных источников газовой и аэрозоль-

ной эмиссии в атмосферу. Лесные экосистемы поглощают парниковые газы и противодействуют изменению климатической системы планеты (Малышева и др., 2017). Наиболее разрушительное воздействие на них оказывают пожары, вызывающие кратковременные выбросы углерода в атмосферу (Софронов и др., 2000; Davis, 1959).

 $^{{\}Bbb C}$ Иванов В. А., Иванова Г. А., Бакшеева Е. О., Морозов А. С., 2021

В последние десятилетия в связи с изменением климата температура воздуха в Сибири, как и в бореальной зоне в целом, возрастает примерно вдвое быстрее, чем по земному шару. Это влечет удлинение пожароопасного периода, усиление засух и, как следствие, возрастание частоты пожаров, их площади и интенсивности (Flannigan et al., 2009). В экстремальные годы, пройденные огнем территории достигают 10-12 млн га (Wotton et al., 2017). Примечательно, что потепление приводит к увеличению частоты молний, (Romps et al., 2014) и, соответственно, возрастанию числа источников огня. В последние десятилетия на территории Сибири количество лесных пожаров увеличивается (Conard, Ponomarev, 2020) и в ближайшие годы в бореальной зоне ожидается возрастание горимости лесов более чем в 2 раза (Flannigan, 2019; Tymstra et al., 2020).

В бореальных лесах России эмиссии углерода при пожарах оцениваются от 35 до 93 МтС/год и могут достигать 150 МтС/год (Исаев, Коровин, 1999). Только при крупных пожарах в лесах Канады в 90-х годах выделялось до 27 ± 6 МтС прямых эмиссий в год (Amiro et al., 2001). Суммарное количество эмиссий углерода от природных пожаров в бореальных лесах России и Северной Америки сопоставимо с антропогенными выбросами, что эквивалентно 28–340 МтС/год (Исаев, Коровин, 1999).

Известно, что в результате горения лесных горючих материалов в атмосферу поступают продукты горения, как в газообразном виде (СО, CO_2 NO_2 , SO_2 , H_2O), так и в виде аэрозольного вещества. Аэрозоли оказывают влияние на поглощение и рассеяние солнечного света, на протекание химических процессов в атмосфере, на формирование смога и тумана, а также на чистоту вдыхаемого воздуха (Андреева и др., 2006). Воздействие дымового аэрозоля приводит к изменению температуры подстилающей поверхности и характера воздушной циркуляции в зоне задымления (Кондратьев, Исидоров, 2001). При лесных пожарах в воздух попадают и частицы сажи, состоящие из углерода и продуктов неполного сгорания растительных горючих материалов.

Различные органические вещества, в их числе и содержащиеся фенольные соединения, обладают мутагенными и канцерогенными свойствами. Задымление воздуха приводит к ухудшению микроклимата, увеличению числа туманных дней, уменьшению прозрачности атмосферы и снижению видимости, освещенности, ультрафиолетовой радиации. Даже малые

концентрации некоторых веществ весьма опасны (Шарыгин, 2011).

При сгорании 1 т сухих лесных горючих материалов образуется в среднем 2.36 т парниковых газов (Ле Дык Хуинь и др., 2013; Amiro et al., 2001). При пожарах в таежных сосновых и лиственничных лесах Средней Сибири эмиссия углерода колеблется от 2.3 до 15.8 т/га в зависимости от интенсивности пожара, при этом газовая эмиссия — от 11.3 до 35.5 т/га (Иванова, Иванов, 2015).

Цель нашего исследования – оценка эмиссии парниковых газов при лесных пожарах в светлохвойных насаждениях на примере Нижнего Приангарья.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Для расчетов и оценки эмиссии парниковых газов (СО–СО₂, СН₄, N₂О) использовались открытые данные официальной статистической отчетности по лесным пожарам на территории Красноярского края за 2014–2019 гг. Для характеристики фактической горимости лесов региона по числу случаев загораний и пройденной огнем площади применялась шкала, разработанная М. А. Софроновым и А. В. Волокитиной (1990).

Как известно, лесные пожары возникают при сочетании трех условий: наличия горючих материалов, источника тепла и благоприятных погодных условий, при отсутствии одного из них пожар не может возникнуть. Источник тепла является причиной возникновения пожара. Погодные условия, определяют высыхание горючего материала и способность его к загоранию, а также влияют на интенсивность пожара. Пожарная опасность лесных участков по условиям погоды оценивается по шкале В. Г. Нестерова (1954). На ее основе выделены классы пожарной опасности (КПО) по условиям погоды, показывающие очередность созревания лесных участков, степень высыхания лесных горючих материалов (ЛГМ) и интенсивность пожара.

В настоящее время для расчета эмиссии от лесных пожаров предлагаются разные методики (Гитарский и др., 2006; Программа..., 2006; Шейнгауз, 2006; Распоряжение..., 2015; и др.). Выбросы парниковых газов от пожаров рассчитывают как произведение выжигаемой площади на массу, доступную для горения топлива и на коэффициент сгорания (Программа..., 2006). При оценке эмиссии углекислого газа

по методикам М. Л. Гитарского с соавт. (2006) и А. С. Шейнгауза (2006) учитывают площадь, пройденную пожаром, массу органических материалов, сгорающих при пожаре, и содержание в ней углерода, доля которого в сгорающей органической массе составляет — 0.5, коэффициент конверсии в СО₂ — 3.68.

Для определения эмиссии парниковых газов мы использовали методику «Руководящие принципы национальных инвентаризаций парниковых газов» (Программа..., 2006), которая устанавливает общие требования к расчету выбросов парниковых газов в атмосферу при неконтролируемом горении растительных горючих материалов при лесных пожарах различных видов (низовых, верховых и торфяных). Согласно этой методике оценку выбросов парниковых газов от пожара проводили по формуле

$$L_{\text{mowap}} = S \cdot M_{\text{cr}} \cdot K_{\text{ef}}, \tag{1}$$

где $L_{\text{пожар}}$ – количество выбросов парниковых газов от пожара, тонн каждого парникового газа; S – площадь пожара, га; M_{cr} – масса ЛГМ, сгорающих при пожаре; K_{ef} – коэффициент выбросов, г/кг сгораемого сухого ЛГМ.

Масса сгорающих ЛГМ при пожаре на каждом лесном участке, пройденном огнем, находится через запас ЛГМ до пожара и долю ЛГМ, сгорающих при пожаре, в зависимости от класса пожарной опасности по условиям погоды:

$$M_{\rm cr} = M_{\rm nm} \cdot C_{\rm hu3/Bebx}, \tag{2}$$

где $M_{\rm cr}$ — масса ЛГМ, сгорающих при пожаре; $M_{\rm дп}$ — масса ЛГМ до пожара; $C_{\rm низ/верх}$ — доля компонентов ЛГМ, сгорающая при низовом или верховом пожаре, в зависимости от класса пожарной опасности по условиям погоды.

В массу сгорающих ЛГМ входят подстилка, мхи и лишайники, травы и кустарнички, опад с мелкими (до 7 мм) сухими веточками, хвоя подроста и хвоя деревьев полога древостоя.

Доля ЛГМ, сгорающих при пожаре в зависимости от комплексного показателя пожарной опасности по условиям погоды, находится из соотношения

$$C_{\pi} = 0.0203 X + 9.8076,$$
 (3)

где $C_{_{\rm J}}$ – доля сгорающих ЛГМ, в %; X – комплексный показатель пожарной опасности по условиям погоды.

Удельный выброс парниковых газов при пожаре рассчитывается по формуле

$$K_{\alpha} = m_{\alpha}/m_{\rm r},\tag{4}$$

где K_{α} – коэффициент эмиссии парниковых газов при пожаре, кг/кг; m_{α} – масса парниковых газов, образующихся при горении ЛГМ на единице площади лесной территории; $m_{\rm r}$ – масса ЛГМ на единице площади лесной территории, сгоревшая при пожаре.

Точность расчетов эмиссии парниковых газов зависит от точности исходных данных и от используемых коэффициентов выбросов (Гитарский и др., 2006). Мы сравнили результаты наших расчетов эмиссии парниковых газов при пожарах по вышеприведенной методике (с учетом погодных условий и запасов ЛГМ по типам леса) с расчётами пожарной эмиссии по методике А. С. Шейнгауза (2006), которая определяется через массу ежегодно сгораемых органических материалов и содержание углерода в ней.

По методике А. С. Шейнгауза (2006) пожарную эмиссию рассчитывали по формуле

$$G = 0.5 \cdot R \cdot M,\tag{5}$$

где G — пожарная эмиссия углерода; 0.5 — доля углерода в сгорающей органической массе; R — коэффициент конверсии углерода в $\mathrm{CO}_2=3.68$; M — масса лесных горючих материалов на единицу пройденной огнем территории с учетом видов пожаров. Для сгорающих органических материалов она принимается 30 т/га при верховых пожарах и 12 т/га при низовых.

При расчётах мы принимаем максимальный недожег 20 %. Недожегом называется масса несгоревших ЛГМ при лесном пожаре на единицу площади. Недожег горючих материалов означает неполное сгорание углерода, при этом часть его поступает в атмосферу в виде сажи. Установлено (Валендик, Гевель, 1975; Конев, 1977), что химический недожег при сгорании ЛГМ составляет 10–20 % от углерода, содержащегося в горючих материалах.

Для оценки экологических условий территории в работе использован метеорологический потенциал загрязнения атмосферы (МПЗА), предложенный Т. С. Селегей с соавт. (1990, 2015). Это безразмерный комплексный показатель, который рассчитывается по формуле

$$M\Pi 3A = (P_{cn} + P_{T}) / (P_{O} + P_{B}), \qquad (6)$$

где P — повторяемость, %: $P_{\rm cn}$ — скоростей ветра 0—1 м/с, $P_{\rm r}$ — дней с туманом, $P_{\rm o}$ — дней с осадками более 0.5 мм, $P_{\rm B}$ — скоростей ветра \geq 6 м/с.

В числителе формулы учитываются метеорологические элементы, способствующие загрязнению атмосферы, а в знаменателе, способ-

ствующие рассеиванию загрязняющих веществ. Чем выше МПЗА, тем хуже метеорологические условия для рассеивания примесей в атмосфере на данной территории. При МПЗА < 0.8 условия для рассеивания примесей благоприятные; $0.8 \ge \text{МПЗA} \le 1.2 - \text{с}$ одинаковой вероятностью могут наблюдаться процессы, способствующие как загрязнению атмосферного воздуха, так и ее самоочищению; МПЗА > 1.2 - неблаго-приятные условия для рассеивания примесей; МПЗА > 2.4 - крайне неблагоприятные (Селегей и др., 1990, 2015).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Анализ горимости лесов. На территории Красноярского края за 2014—2019 гг. зарегистрировано свыше 9 тыс. лесных пожаров на площади 4.75 млн га. Наиболее горимы леса Нижнего Приангарья, где ежегодно возникают сотни лесных пожаров (рис. 1).

Площади, пройденные лесными пожарами за рассматриваемый период, составили более 714.8 тыс. га, или 15 % от общей площади пожаров в крае.

Фактический пожароопасный сезон на территории Нижнего Приангарья продолжается с начала апреля до середины октября (от 173 до 213 дней). Пик пожаров регистрируется в мае и июне. Наиболее напряженным в пожарном отношении был 2014 г., когда за сезон зарегистрирован 721 пожар, или 22.5 % от всех возгораний за анализируемый период (рис. 2).

Наибольшая площадь, пройденная лесными пожарами, зарегистрирована в 2019 г. и составила 258 тыс. га, или 36 % от всей выгоревшей плошали за 2014—2019 гг.

Частота пожаров в Нижнем Приангарье составила 2.24 случая на 100 тыс. га лесного фонда в год, что соответствует «повышенной» степени горимости по количеству пожаров, а площадь, пройденная огнем на 100 тыс. га — 465 га, соответствует «очень высокой» степени относительной горимости лесов по площади.

Число пожаров возрастает в связи с повышением уровня доступности лесов для населения (увеличение количества автотранспорта у населения, повышение плотности дорог), освоением лесов в удаленных и труднодоступных районах, с использованием лесов для отдыха и заготовительской рекреации. Основные причины лесных пожаров на территории региона – неосторожное обращение с огнем в лесу (46 %) и грозы (39 %).

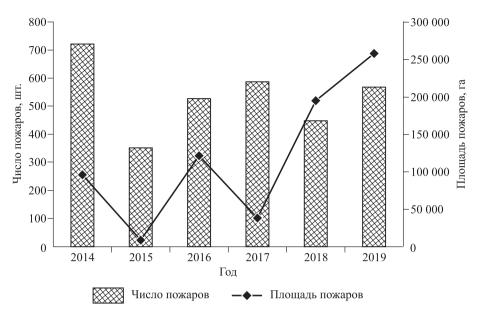


Рис. 1. Пожары в лесных формациях Нижнего Приангарья: в сосняках зеленомошных (a), на вырубках (δ) и в заболоченных лесах (s).

В регионе преобладают низовые пожары разной интенсивности (92.9 %). Доля верховых пожаров составляет 7.1 % от общего числа пожаров. Почвенных пожаров за рассматриваемый период не зарегистрировано. В сосновых и лиственничных насаждениях зарегистрировано более 62.5 % от общего числа пожаров. Наибольшее количество пожаров в светлохвойных насаждениях возникает при ІІІ и ІV классах пожарной опасности, соответственно 44.8 и 26.9 % от общего числа пожаров, при которых большинство типов ЛГМ достигает пожарной зрелости.

Распределение площади пожаров в светлохвойных насаждениях Нижнего Приангарья по годам и по типам леса, а также в зависимости от вида лесного пожара приведено в табл. 1.

Рис. 2. Динамика числа и площади лесных пожаров на территории Нижнего Приангарья.

За рассматриваемый период наибольшие площади, пройденные пожарами, зарегистрированы в сосняках и лиственничниках зеленомошного и разнотравного типов леса (до 90 % от ежегодной площади пожаров).

Сгорание лесных горючих материалов. Количество и состав пожарных эмиссий зависит от типа и количества сгоревших горючих материалов, вида пожара, метеорологических условий и режимов горения (Куценогий и др., 1996; Иванов, Макаров, 2002; Иванова, Иванов, 2015; Samsonov et al., 2005). Лесные горючие материалы, сгорающие при лесном пожаре, представлены опадом, подстилкой, мелкими сухими веточками, травами и кустарничками, хвоей и мелкими веточками деревьев и подроста.

Полнота их сгорания, скорость распространения огня, интенсивность и другие характеристики горения в сильной степени зависят от свойств горючих материалов, их количества, структуры, химического состава и влагосодержания (Курбатский, 1970), запас и структура ЛГМ — также от типа леса, возраста и его густоты (Курбатский, Иванова, 1987; Диченков, 1992).

В табл. 2 приведены средние запасы ЛГМ для насаждений наиболее представленных типов леса Нижнего Приангарья по опубликованным ранее данным (Иванова, Иванов, 2015; Иванов и др., 2017; Буряк, Каленская, 2020).

Запасы ЛГМ варьируют в зависимости от типа леса. Коэффициент варьирования для сосновых насаждений равен 33.2 %, а для листвен-

ничных — 10.2 %. Наименьшие запасы ЛГМ в сосновых насаждениях наблюдаются в сосняках лишайниковых. Основная особенность лишайниковой группы типов леса — быстрое пожарное созревание, поэтому пожары в сосняках лишайниковых возникают в течение всего пожароопасного сезона.

Надземная фитомасса древостоя и подроста в Нижнем Приангарье в сосняках варьировала от 172 до 221 т/га, в лиственничниках — от 160 до 198 т/га. При этом на долю хвои и веточек диаметром менее 7 мм, которые могут сгорать при перебросе огня в кроны, приходится от 4 до 10 % надземной фитомассы (Иванова, Иванов, 2015).

Ранее нами экспериментально установлена доля сгорающих ЛГМ при пожарах разной интенсивности, а также выявлена зависимость количества сгорающих ЛГМ при пожаре от лесопожарного показателя засухи (Иванова, Иванов, 2015; МсRae et al., 2006). На основе этой информации мы рассчитали количество сгоревших ЛГМ при лесных пожарах в разных типах леса светлохвойных насаждениях Нижнего Приангарья за 2014—2019 гг. в зависимости от вида пожара и КПО по условиям погоды (табл. 3).

Всего за этот период сгорело при пожарах более 12.4 млн т ЛГМ. Рассчитанная масса сгорающих компонентов ЛГМ согласуется с данными М. А. Софронова с соавт. (2000) по сгоранию ЛГМ в светлохвойных насаждениях южной тайги. Основное количество сгоревших ЛГМ приходится на III—V классы, а максимум — на IV класс пожарной опасности по условиям погоды, ког-

Таблица 1. Распределение площади пожаров в светлохвойных насаждениях Нижнего Приангарья по годам и типам леса, га

Тип леса	Год							
тип леса	2014	2015	2016	2017	2018	2019	Всего	
		Сосновые	насаждения					
		Верховы	е пожары					
Лишайниковый						3000	3000	
Зеленомошный	9330	115	2825	830	300	3830	17 230	
Разнотравный	60		51	884	2340	1956	5291	
Багульниковый								
Сфагновый								
Итого	9390	115	2876	1714	2640	8786	25 521	
		Низовые	пожары					
Лишайниковый	61	25	360	1	74	8708	9229	
Зеленомошный	54 383	1576	34 349	8664	23 499	62 959	185 430	
Разнотравный	4372	3276	16 847	14 395	40 261	49 473	128 624	
Багульниковый	24			3			27	
Сфагновый					110		110	
Итого	58 840	4877	51 556	23 063	63 944	121 140	323 420	
Всего по соснякам	68 230	4992	54 432	24 777	66 584	129 926	348 941	
	Ли	 ственничні	 ые насажден	 :ия	1		l	
			е пожары					
Лишайниковый								
Зеленомошный	90		365	150	4170	4314	9089	
Разнотравный	350		350	300	1573	200	2773	
Багульниковый					20		20	
Сфагновый								
Итого	440		715	450	5763	4514	11 882	
		Низовые	пожары	'	•	•		
Лишайниковый					40	10 002	10 042	
Зеленомошный	2375	212	8585	3994	23 394	16 232	54 792	
Разнотравный	346	78	11 264	3156	91 991	41 959	148 794	
Багульниковый	4				460		464	
Сфагновый		209	38 177				38 386	
Итого	2725	499	58 026	7150	115 885	68 193	252 478	
Всего по лиственничникам	3762	449	58 741	7600	121 648	72 707	264 360	
Итого всосняках	71 992	5441	113 173	32 377	188 232	202 633	613 301	
и лиственничниках								

Таблица 2. Запас напочвенных ЛГМ в светлохвойных насаждениях, т/га

Тип леса	Травы и кустарнички	Опад	Мхи, лишайники и подстилка	УДГМ	Всего
		Сосняки	Ī		
Лишайниковый	0.2 ± 0.04	2.7 ± 0.59	9.2 ± 1.9	6.4 ± 1.13	18.5
Зеленомошный	0.7 ± 0.11	3.8 ± 0.28	17.5 ± 3.10	10.7 ± 2.68	32.7
Разнотравный	2.0 ± 0.4	5.0 ± 0.78	16.8 ± 2.56	13.2 ± 2.24	37.0
Багульниковый	2.4 ± 0.5	5.0 ± 0.69	19.9 ± 2.23	11.3 ± 2.14	38.6
Сфагновый	1.9 ± 0.4	3.0 ± 0.38	18.2 ± 2.2	6.0 ± 1.2	29.2
		Лиственнич	ники		'
Лишайниковый	0.3 ± 0.03	2.3 ± 0.5	22.7 ± 1.8	7.7 ± 1.6	33.0
Зеленомошный	0.9 ± 0.12	4.0 ± 0.36	24.4 ± 2.4	13.1 ± 1.9	42.4
Разнотравный	2.8 ± 0.4	3.7 ± 0.55	17.8 ± 2.21	12.7 ± 2.0	37.0
Багульниковый	3.0 ± 0.6	3.2 ± 0.29	28.1 ± 3.54	7.0 ± 1.3	41.3
Сфагновый	2.7 ± 0.6	4.1 ± 0.73	25.2 ± 2.17	4.3 ± 0.9	36.3

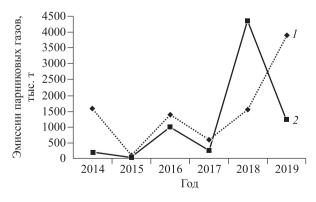
Таблица 3. Количество сгоревших ЛГМ при пожарах в светлохвойных насаждениях Нижнего Приангарья в зависимости от класса пожарной опасности (КПО), т

T		КПО по условиям погоды							
Тип леса	I	II	III	IV	V	сгоревших ЛГМ			
		Сось	овые насажде	ния					
			рховые пожар						
Лишайниковый		31 260				31 260			
Зеленомошный		214	90 741	3 316 826	15 048	3 422 829			
Разнотравный		39 090	45 577	39 866		124 533			
Багульниковый									
Сфагновый									
Итого		70 564	136 318	3 356 692	15 048	3 578 622			
	·	Hı	ізовые пожарі	bl	'	'			
Лишайниковый	17228	192	299	3808		21 527			
Зеленомошный	2113	3168	636 425	1 886 487	247 084	2 775 277			
Разнотравный	2240	17 360	612 802	1 075 164	88 232	1 795 798			
Багульниковый	44	28	123		52	247			
Сфагновый		416		47		463			
Итого	21625	21 164	1 249 649	2 965 506	335 368	4 593 312			
			ничные насаж						
	1	Be_{I}	рховые пожар	bl	ı	ı			
Лишайниковый									
Зеленомошный		511	75 529	29 650	49 945	155 635			
Разнотравный			9606	6616		16 222			
Багульниковый				505		505			
Сфагновый		711	05.105	26.551	40.045	150.000			
Итого		511	85 135	36 771	49 945	172 362			
	1071		изовые пожар <i>в</i>	o <i>l</i> 	I	1500			
Лишайниковый	4271	219	33	156 200	015 202	4523			
Зеленомошный	3507	32 091	183 443	156 308	815 202	1 190 551			
Разнотравный	23 445	8298	192 422	1 372 176	1 106 043	2 702 384			
Багульниковый	102 409		90	8766		8856			
Сфагновый	192 498	40.600	375 988	3354	1 921 245	195 852			
Итого	223 721	40 608		1 540 604		4 102 166			
Всего	245 346	132 847	1 847 090	7 899 573	2 321 606	12 446 462			

да достигают состояния пожарной зрелости все виды ЛГМ.

Оценка эмиссий парниковых газов при пожарах. Используя полученные данные о количестве сгорающих ЛГМ, мы рассчитали по вышеуказанной методике (Программа МГЭИК ..., 2006) ежегодные пожарные эмиссии (СО–СО $_2$, СН $_4$, N_2 О) по типам леса сосняков и лиственничников и по видам пожаров за 2014–2019 гг. (табл. 4).

Проведенные расчеты показали, что в светлохвойных насаждениях пожарные эмиссии, как и количество сгорающих ЛГМ при пожарах, определяется типом леса и погодными условиями. Эмиссии по годам изменяются от 167.8 до 589.7 тыс. т. При этом вклад сосняков и лиственничников в эмиссию при пожарах различается по годам (рис. 3). Сосняки быстрее достигают состояния пожарной зрелости и чаще горят, по-


этому их вклад в пожарную эмиссию за весь рассматриваемый период преобладает.

Масса парниковых газов при лесных пожарах зависит не только от скорости горения и размеров очага горения, но и от коэффициента выбросов ($K_{\rm ef}$), который определяется типом растительности и условиями горения. По данным D. E. Ward и C. C. Hardy (1991), при сгорании 1 кг абсолютно сухого лесного горючего образуется 1.6 кг CO_2 . По нашим экспериментальным данным (Иванова, Иванов, 2015), в лесах средней и южной тайги Сибири при сгорании 1 кг абсолютно сухого горючего в среднем образуется 1.48 кг CO_2 . В Распоряжении Минприроды России от 16.04.2015 № 15р (2015) предлагаются следующие коэффициенты выбросов: $CO-CO_2 = 1515$ г/кг, $CH_4 = 2.7$ г/кг, $N_2O = 0.07$ г/кг.

Использование соотношения концентрации различных углеродосодержащих газов в эмис-

Таблица 4. Эмиссия парниковых газов при пожарах в разных типах леса Нижнего Приангарья, т

Typy 7000		Год						
Тип леса	2014	2015	2016	2017	2018	2019	Эмиссия	
			е насаждени ые пожары	R				
Лишайниковый						46 265	46 265	
Зеленомошный	323 751	3837	98 028	28 801	10 410	170 410	635 237	
Разнотравный	1674		1423	24 664	19 530	96 728	144 019	
Багульниковый								
Сфагновый								
Итого	325 425	3837	99 451	53 465	29 940	313 403	825 521	
	Ні	130вые пож	сары					
Лишайниковый	738	302	4356	12	895	318 850	325 153	
Зеленомошный	1 185 549	40 271	930 858	234 794	636 823	1 806 037	4 834 332	
Разнотравный	96 621	72 400	372 319	318 130	889 768	1 431 472	3 180 710	
Багульниковый	324			41			365	
Сфагновый					649		649	
Итого	1 283 232	112 973	1 307 533	552 977	1 528 135	3 556 359	8 341 209	
Всего всосняках	1 608 657	116 810	1 406 984	606 442	1 558 075	3 869 762	9 166 730	
	Л		ные насажде	ения				
	ı	Верхові	ые пожары		1	1	1	
Лишайниковый								
Зеленомошный	18 245		15 575		185 565	370 478	589 863	
Разнотравный	12 915			11 070	32 140	10 005	66 130	
Багульниковый								
Сфагновый								
Итого	31 160		15 575	11 070	217 705	380 483	655 993	
	ı	Низовь	іе пожары		1	1	1	
Лишайниковый					324	63 244	63 568	
Зеленомошный	84 550	7547	305 626	142 186	832 826	580 694	1 953 429	
Разнотравный	93 766	27 768	400 998	112 354	3 274 880	207 884	4 117 650	
Багульниковый	113				12 972		13 085	
Сфагновый		15 678	286 327				302 005	
Итого	178 429	50 993	992 951	254 540	4 121 002	851 822	6 449 737	
Всего в лиственничниках	209 589	50 993	1 008 526	265 610	4 338 707	1 232 305	7 105 730	
Всего	1 818 246	167 803	2 415 510	872 052	5 896 782	5 102 067	16 272 460	

Рис. 3. Эмиссии парниковых газов при пожарах в сосновых (1) и лиственничных (2) насаждениях Нижнего Приангарья.

сиях позволило рассчитать дифференцированно по годам эмиссию парниковых газов при низовых и верховых пожарах в светлохвойных лесах Нижнего Приангарья за 2014—2019 гг. она составила 16.2 млн т (табл. 5), при низовых пожарах — в среднем от 119 до 4252 тыс. т, а при верховых — от 4 до 325 тыс. т.

Мы рассчитали средневзвешенное количество парниковых газов, выделяющихся в различных насаждениях (табл. 6)

При этом, по расчетным данным, эмиссия $CO-CO_2$ преобладает (более 99 %) и на остальные газы приходится менее 1 %. Эмиссии парниковых газов варьируют по годам и в наиболее засушливые пожароопасные сезоны увеличиваются в десятки раз (табл. 7).

Таблица 5. Эмиссия СО-СО₂, СН₄ и N₂О при лесных пожарах в светлохвойных насаждениях за 2014–2019 гг., т

Год	CO-CO ₂	CH ₄	N_2O	Итого
	Сосновые	е насаждения		
		ые пожары		
2014	324 980	430	15	325 425
2015	3831	5	1	3837
2016	99 319	127	5	99 451
2017	53 394	69	2	53 465
2018	29 900	39	1	29 940
2019	312 989	400	14	313 403
Итого	824 413	1070	38	825 521
	Низовь	іе пожары		'
2014	1 281 540	1633	59	1 283 232
2015	112 824	144	5	112 973
2016	1 305 809	1664	60	1 307 533
2017	552 247	705	25	552 977
2018	1 526 120	1945	70	1 528 135
2019	3 551 670	4525	164	3 556 359
Итого	8 330 210	10 616	383	8 341 209
Итого по соснякам	9 154 623	11 686	421	9 166 730
	Лиственнич	ные насаждения		•
	Верховн	ые пожары		
2014	31 118	41	1	31 160
2015	_	_	_	_
2016	15 554	20	1	15 575
2017	11 055	14	1	11 070
2018	217 417	278	10	217 705
2019	379 981	485	17	380 483
Итого	655 125	838	30	655 993
	Низовь	іе пожары		
2014	178 193	228	8	178 429
2015	50 925	66	2	50 993
2016	991 641	1265	45	992 951
2017	254 204	324	12	254 540
2018	4 115 568	5244	190	4 121 002
2019	850 698	1085	39	851 822
Итого	6 441 229	8212	296	6 449 737
того полиственничникам	7 096 354	9050	326	7 105 730
Всего за 2014—2019 гг	1 6250 977	20 736	747	16 272 460

Таблица 6. Средневзвешенное количество парниковых газов, выделяющихся при пожарах в различных насаждениях, т/га

*				
Насаждения	Пожар	CO-CO ₂	CH ₄	N ₂ O
Сосновые	Низовой	21.8	0.039	0.0010
	Верховой	33.3	0.062	0.0016
Лиственничные	Низовой	24.6	0.044	0.0011
	Верховой	41.1	0.080	0.0021

Таблица 7. Эмиссия CO–CO $_2$, CH $_4$ и N $_2$ O при лесных пожарах за 2014–2019 гг., т

Гор		7,,,,,,,,,,					
Газ	2014	2015	2016	2017	2018	2019	Эмиссия
CO–CO ₂ CH ₄	181 531 2332	167 580 215	2 412 323 3076	870 900 1112	5 889 005 7506	5 095 338 6495	16 250 977 20 736
$_{\rm N_2O}$	83	8	111	40	271	234	747
Всего	1 818 246	167 803	2 415 510	872 052	5 896 782	5 102 067	16 272 460

Площадь,		По методике	е МГЭИК	По методике А. С. Шейнгауза						
Год	пройденная	Эмиссия								
	пожарами, га	парниковых газов, т	удельная, т/га	парниковых газов, т	удельная, т/га					
Верховые пожары										
2014	9830	356 585	36.2	542 616						
2015	115	3837	33.4	6348						
2016	3591	115 026	32.0	198 223	55.2					
2017	2164	64 535	29.8	119 452	33.2					
2018	8403	247 645	29.5	463 846						
2019	13 300	693 886	52.2	734 160						
Сре	днее	246 919	35.5	344 107	55.2					
Ит	0 Г 0	1 481 514		2 064 645						
		Низо	вые пожары							
2014	61 565	1 461 661	23.7	1 360 586						
2015	5376	163 966	30.5	118 809						
2016	109 582	2 300 484	21.0	2 421 762	22.1					
2017	30 213	807 517	26.7	667 707	22.1					
2018	179 829	5 649 137	31.4	3 974 220						
2019	18 933	4 408 181	23.3	4 184 259						
Сре	днее	2 465 157	26.1	2 121 224	22.1					
т И	0 Г 0	14 790 946		12 727 343						
Вс	его	16 272 460		14 791 988						

Мы сравнили результаты расчетов эмиссии парниковых газов при пожарах в светлохвойных лесах Нижнего Приангарья по методике МГЭИК (Программа МГЭИК..., 2006) с расчетами пожарной эмиссии по методике А. С. Шейнгауза (2006) за период с 2014 по 2019 г. (табл. 8).

Средняя удельная эмиссия при верховых пожарах, рассчитанная по методике МГЭИК, равна 35.5 т/га, что на 35 % меньше удельной эмиссии, рассчитанной по методике А. С. Шейнгауза (2006) – 55.2 т/га. Это обусловлено тем, что при расчетах по методике МГЭИК (Программа МГЭИК..., 2006) учитывался не только тип леса, с которым связаны состав и структура ЛГМ, но и класс пожарной опасности по погоде, определяющий высыхание горючих материалов. Это позволяет более точно учесть количество сгорающих ЛГМ при пожаре и рассчитать пожарную эмиссию. При расчетах по методике А. С. Шейнгауза (2006) удельная эмиссия не изменяется по годам, так как количество сгорающих ЛГМ на 1 га принимается постоянным.

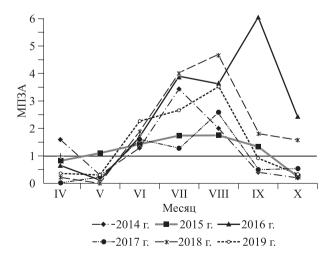
Существенные различия объясняются разными подходами к оценке количества ЛГМ, сгорающих при верховых пожарах. В методике А. С. Шейнгауза (2006) при верховых пожарах считают массу сгоревших напочвенных ЛГМ и

стволовой древесины, как и в некоторых других работах (Тимофеева, Гармышев, 2017).

Но известно, что при верховых пожарах у деревьев сгорают лишь хвоя, листва и веточки до 7 мм в диаметре, а стволы и сучья деревьев могут гореть в молодняках и редко во взрослых насаждениях (Курбатский, 1962).

Кроме того, в расчетах по методике А. С. Шейнгауза (2006) не учитывается количество сгораемого лесного материала в зависимости от погодных условий, как при низовых пожарах, так и при верховых. Разница в сгоревших ЛГМ при низовых пожарах может достигать 6–7 раз, а при верховых пожарах — 1.6—1.8 раза.

В среднем эмиссия парниковых газов за рассматриваемый период, рассчитанная с учетом типа леса и класса пожарной опасности, превышает более чем на 1480 тыс. т эмиссию при пожарах, рассчитанную по методике А. С. Шейнгауза (2006). Рассчитанная нами относительная изменчивость удельной эмиссии при низовых пожарах по годам значительная и равна 35.8 %. Сравнение результатов, полученных по двум методам расчета, показывает, что средняя разница удельной эмиссии при низовых пожарах составляет 4 т/га, или около 15 %.


Таким образом, расчет эмиссии парниковых газов по методике с учетом типа леса и класса по-

жарной опасности, определяющих состав, структуру и высыхание горючих материалов, позволяет более точно учесть количество сгорающих ЛГМ и соответственно пожарную эмиссию.

Экологическое влияние пирогенной эмиссии. При лесных пожарах в атмосферу поступают продукты горения не только в газообразном виде, но и в виде аэрозолей, представляющих собой смесь аэрозольных частиц различных размеров, оказывающих влияние на поглощение и рассеяние солнечного света, протекание химических процессов в атмосфере, формирование смога и туманов, а также на частоту вдыхаемого воздуха (Андреева и др., 2006).

На территории Нижнего Приангарья пожары возникают в течение всего пожароопасного сезона. Например, в 2014 г. они длились в течение 95 дней, а в 2019 г. – 121 день. В результате пожаров происходит задымленность лесных территорий, из-за которой невозможны авиарейсы на местных авиалиниях и плавание судов по рекам. Подобная задымленность территории в Красноярском крае наблюдалась в 2018 и 2019 гг.

Для оценки экологических условий территории мы использовали метеорологический потенциал загрязнения атмосферы (МПЗА), предложенный Т. С. Селегей с соавт. (1990, 2015). Согласно проведенным нами расчетам МПЗА для Нижнего Приангарья, погодные условия характеризуются довольно низкой способностью атмосферы к рассеиванию аэрозольных эмиссий при лесных пожарах (МПЗА_{срг} = 1.61). Показатели МПЗА по исследуемым годам остаются высокими в течение всего пожароопасного сезона, что обусловлено небольшим количеством осадков и сравнительно большой повторяемо-

Рис. 4. Метеорологический потенциал загрязнения атмосферы в пожароопасные сезоны на территории Нижнего Приангарья.

стью туманов. В целом за 2014–2020 гг. зафиксировано лишь 43 % случаев с атмосферными процессами, благоприятствующими очищению атмосферы (рис. 4).

Относительно благоприятные погодные условия при равновероятных факторах загрязнения атмосферы и ее самоочищения от эмиссии от лесных пожаров наблюдаются весной и осенью, когда регистрируется наибольшее число ветреных дней. Неблагоприятные условия рассеивания эмиссий от лесных пожаров складываются в летние месяцы, которые характеризуются высокой повторяемостью штилей, приземных инверсий и возникновением радиационных туманов из-за слабой повторяемости ветров со скоростью более 6 м/с.

ЗАКЛЮЧЕНИЕ

Проведенными исследованиями установлено, что на территории Нижнего Приангарья регулярно возникают лесные пожары, наибольшее количество которых регистрируется в светлохвойных лесах (до 62 %). Ежегодные пожарные эмиссии парниковых газов варьируют от 160 тыс. т (2015 г.) до 5649 тыс. т (2019 г.), увеличиваясь в засушливые годы в десятки раз. За 2014—2019 гг. при лесных пожарах в регионе выделилось более 16 млн т парниковых газов с преобладанием СО—СО₂, из которых более 10 млн т за последние 2 года.

В результате пожарных эмиссий в течение пожароопасного сезона возникает задымленность лесных территорий. влияющая на здоровье и жизнедеятельность населения. В этот период создаются условия, благоприятные для возникновения задымления. Неблагоприятные условия рассеивания эмиссий от лесных пожаров складываются именно в летние месяцы, которые характеризуются высокой повторяемостью штилей, приземных инверсий и радиационных туманов. Относительно благоприятные погодные условия (при наличии факторов загрязнения) по самоочищению атмосферы от загрязнения пожарными эмиссиями наблюдаются весной и осенью, когда регистрируется наибольшее количество ветреных дней.

Таким образом, летом многочисленные лесные пожары на территории Нижнего Приангарья и низкая способность самоочищения задымленной атмосферы создают неблагоприятные условия для здоровья и жизнедеятельности населения, а это требует усиления мер по предупреждению, своевременному обнаружению и тушению лесных пожаров в данном регионе.

СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Андреева И. С., Анкилов А. Н., Бакланов А. М., Бондарчук Е. Н., Бородулин А. И., Бурдуков А. П., Буряк Г. А., Быков А. А., Виноградова А. А., Голобокова Л. П., Головко В. В., Горшков А. Г., Дубровская О. А., Жуков В. А., Захаренко В. С., Зыков С. В., Иванов А. В., Иванов А. В., Иванов В. В., Иванов В. П., Иванова Γ . А., Иванова Н. А., Истомин В. Л., Климович М. Ю., Коковкин В. В., Кочубей Д. И., Кривенцов В. В., Куценогий К. П., Куценогий П. К., Лисицын А. П., Лупян Е. А., Мазуров А. А., Макаров В. И., Макухин В. Л., Мальбахов В. М., Маринайте И. И., Марченко В. В., Марченко Ю. В., Мищенко П. А., Моложникова-Чипанина Е. В., Молородов Ю. И., Назиров Р. Р., Нецветаева О. Г., Оболкин В. А., Олькин С. Е., Онищук Н. А., Пармон В. Н., Полищук Ю. М., Пономарев Е. И., Попов В. И., Попова С. А., Потемкин В. Л., Прошин А. А., Пушкин С. Г., Рапута В. Ф., Резникова И. К., Репин В. Е., Ромасько В. Ю., Самсонов Ю. Н., Сафатов А. С., Сергеев А. Н., Смирнов В. В., Смирнов Н. П., Смоляков Б. С., Сухинин А. И., Счастливиев Е. Л., Токарева О. С., Трубина Л. К., Трухан С. Н., Фалеев В. Л., Федотов А. М., Флитман Е. В., Ходжер Т. В., Хуторова О. Г., Чернова Г. В., Швеиов Е. Г., Шевченко В. П., Шлычков В. А., Штайн Р. Аэрозоли Сибири / Отв. ред. К. П. Купеногий. Новосибирск: Изд-во СО РАН, 2006. 548 с. (Интеграционные проекты СО РАН. Вып. 9) [Andreeva I. S., Ankilov A. N., Baklanov A. M., Bondarchuk E. N., Borodulin A. I., Burdukov A. P., Buryak G. A., Bykov A. A., Vinogradova A. A., Golobokova L. P., Golovko V. V., Gorshkov A. G., Dubrovskaya O. A., Zhukov V. A., Zaharenko V. S., Zykov S. V., Ivanov A. V., Ivanov A. V., Ivanov V. V., Ivanov V. P., Ivanova G. A., Ivanova N. A., Istomin V. L., Klimovich M. Yu., Kokovkin V. V., Kochubej D. I., Krivencov V. V., Kucenogij K. P., Kucenogij P. K., Lisicyn A. P., Lupyan E. A., Mazurov A. A., Makarov V. I., Makuhin V. L., Mal'bahov V. M., Marinajte I. I., Marchenko V. V., Marchenko Yu. V., Mishchenko P. A., Molozhnikova-Chipanina E. V., Molorodov Yu. I., Nazirov R. R., Necvetaeva O. G., Obolkin V. A., Ol'kin S. E., Onishchuk N. A., Parmon V. N., Polishchuk Yu. M., Ponomarev E. I., Popov V. I., Popova S. A., Potemkin V. L., Proshin A. A., Pushkin S. G., Raputa V. F., Reznikova I. K., Repin V. E., Romas'ko V. Yu., Samsonov Yu. N., Safatov A. S., Sergeev A. N., Smirnov V. V., Smirnov N. P., Smolyakov B. S., Suhinin A. I., Schastlivcev E. L., Tokareva O. S., Trubina L. K., Truhan S. N., Faleev V. L., Fedotov A. M., Flitman E. V., Hodzher T. V., Hutorova O. G., Chernova G. V., Shvecov E. G., Shevchenko V. P., Shlychkov V. A., Shtajn R. Aerozoli Sibiri (Aerosols of Siberia) / Otv. red. K. P. Koutsenogy (Ed. K. P. Kutsenogii). Novosibirsk: Izd-vo SO RAN (Sib. Br., Rus. Acad. Sci. Publ. House), 2006. 548 p. (Integratsionnye proekty SO RAN. Vyp. 9) (Integration projects Sib. Br. Rus. Acad. Sci. Iss. 9) (in Russian)].

Буряк Л. В., Каленская О. П. Влияние пожаров на формирование насаждений Нижнего Приангарья. Пушкино: ВНИИЛМ, 2020. 140 с. [Buryak L. V., Kalenskaya O. P. Vliyanie pozharov na formirovanie nasazhdeniy Nizhnego Priangar'ya (The influence of fires on the formation of

stands of the Lower Angara region). Pushkino: VNIILM, 2020. 140 p. (in Russian)].

Валендик Э. Н., Гевель Н. Ф. Полнота сгорания некоторых лесных горючих материалов // Проблемы лесной пирологии. Красноярск: Ин-т леса и древесины им. В. Н. Сукачева СО АН СССР, 1975. С. 127–137 [Valendik E. N., Gevel' N. F. Polnota sgoraniya nekotorykh lesnykh goryuchikh materialov (Completeness of combustion of some forest combustible materials) // Problemy lesnoy pirologii (Problems of forest pyrology). Krasnoyarsk: In-t lesa i drevesiny im. V. N. Sukacheva SO AN SSSR (V. N. Sukachev Inst. For. & Timber Sib. Br. USSR Acad. Sci.), 1975. P. 127–137 (in Russian)].

Гитарский М. Л., Замолодчиков Д. Г., Коровин Г. Н., Карабань Р. Т. Эмиссия и поглощение парниковых газов в лесах России в связи с выполнением обязательств по климатической конвенции ООН // Лесоведение. 2006. № 6. С. 34—44 [Gitarskiy M. L., Zamolodchikov D. G., Korovin G. N., Karaban' R. T. Emissiya i pogloshchenie parnikovykh gazov v lesakh Rossii v svyazi s vypolneniem obyazatel'stv po klimaticheskoy konventsii OON (Emission and absorption of greenhouse gases in the forests of Russia related to the implement of obligations under the U.N.O. Climate Convention) // Lesovedenie (For. Sci.). 2006. N. 6. P. 34—44 (in Russian with English abstract)].

Диченков Н. А. Географичность запасов лесных горючих материалов // Лесохоз. информ. 1992. Вып. 257. С. 156–160 [Dichenkov N. A. Geografichnost' zapasov lesnykh goryuchikh materialov (Geography of forest fuel materials reserves) // Lesokhoz. inform. (For. Inform.) 1992. Iss. 257. P. 156–160 (in Russian with English abstract)].

Иванов А. В., Макаров В. И. Оценка объема эмиссий при сгорании некоторых видов лесных горючих материалов // Оптика атмосферы и океана. 2002. Т. 15. № 5-6. С. 488–490 [Ivanov A. V., Makarov V. I. Otsenka ob'ema emissii pri sgoranii nekotorykh vidov lesnykh goryuchikh materialov (Estimation of the volume of emissions during the combustion of some types of forest combustible materials) // Optika atmosfery i okeana (Optics of Atmosphere and Ocean). 2002. V. 15. N. 5–6. P. 488–490 (in Russian with English abstract)].

Иванов В. А., Иванова Г. А., Москальченко С. А., Коршунов Н. А. Лесные горючие материалы и пожароопасность насаждений Сибири: учебное пособие. Красноярск: СибГУ им. М. Ф. Решетнёва, 2017. 93 с. [Ivanov V. A., Ivanova G. A., Moskal'chenko S. A., Korshunov N. A. Lesnye goryuchie materialy i pozharoopasnost' nasazhdeniy Sibiri: uchebnoe posobie (Forest combustible materials and fire hazard of Siberian stands: tutorial). Krasnoyarsk: SibGU im. M. F. Reshetnyova (Reshetnev Sib. St. Univ. Sci. Technol.), 2017. 93 p. (in Russian)].

Иванова Г. А., Иванов А. В. Пожары в сосновых лесах Средней Сибири. Новосибирск: Наука, 2015. 240 с. [Ivanova G. A., Ivanov A. V. Pozhary v sosnovykh lesakh Sredney Sibiri (Fires in the pine forests of Central Siberia). Novosibirsk: Nauka (Science), 2015. 240 p. (in Russian)].

Исаев А. С., Коровин Г. Н. Углерод в лесах Северной Евразии // Круговорот углерода на территории России.
М.: Мин-во науки и технологий РФ, 1999. С. 63–95
[Isaev A. S., Korovin G. N. Uglerod v lesakh Severnoy Evrazii (Carbon in the forests of Northern Eurasia) //

- Krugovorot ugleroda na territorii Rossii (Carbon cycle on the territory of Russia). Moscow: Min-vo nauki i tekhnologii RF (Min. Sci. Technol. Rus. Fed.), 1999. P. 63–95 (in Russian)].
- Кондратьев К. Я., Исидоров В. А. Воздействия сжигания биомассы на химический состав атмосферы // Оптика атмосферы и океана. 2001. Т. 14. № 2. С. 106–115 [Kondrat'ev K. Ya., Isidorov V. A. Vozdeystviya szhiganiya biomassy na khimicheskiy sostav atmosfery (The effects of biomass burning on the chemical composition of the atmosphere) // Optika atmosfery i okeana (Optics of Atmosphere and Ocean). 2001. V. 14. N. 2. P. 106–115 (in Russian with English abstract)].
- Конев Э. В. Физические основы горения растительных материалов. Новосибирск: Наука. Сиб. отд-ние, 1977. 239 с. [Konev E. V. Fizicheskie osnovy goreniya rastitel'nykh materialov (Physical bases of burning of plant materials). Novosibirsk: Nauka, Sib. otd-nie (Sci., Sib. Br.), 1977. 239 p. (in Russian)].
- Курбатский Н. П. Техника и тактика тушения лесных пожаров М.: Гослесбумиздат, 1962. 153 с. [Kurbatskiy N. P. Tekhnika i taktika tusheniya lesnykh pozharov (Technique and tactics of extinguishing forest fires). Moscow: Goslesbumizdat, 1962. 153 p. (in Russian)].
- Курбатский Н. П. Исследование количества и свойств лесных горючих материалов // Вопросы лесной пирологии. Красноярск: Ин-т леса и древесины им. В. Н. Сукачева СО АН СССР, 1970. С. 5–58 [Kurbatskiy N. P. Issledovanie kolichestva i svoystv lesnykh goryuchikh materialov (Study of quantity and properties of forest combustible materials) // Voprosy lesnoy pirologii (Questions of forest pyrology). Krasnoyarsk: In-t lesa i drevesiny im V. N. Sukacheva SO AN SSSR (V. N. Sukachev Inst. For. & Timber Sib. Br. USSR Acad. Sci.), 1970. P. 5–58 (in Russian)].
- Курбатский Н. П., Иванова Г. А. Пожароопасность сосняков лесостепи и пути ее снижения. Красноярск: Ин-т леса и древесины им. В. Н. Сукачева СО АН СССР, 1987. 112 с. [Kurbatskiy N. P., Ivanova G. A. Pozharoopasnost' sosnyakov lesostepi i puti ee snizheniya (Fire hazard of pine forests of the forest-steppe and ways to reduce it). Krasnoyarsk: In-t lesa i drevesiny im. V. N. Sukacheva SO AN SSSR (V. N. Sukachev Inst. For. & Timber Sib. Br. USSR Acad. Sci.), 1987. 112 p. (in Russian)].
- Куценогий К. П., Валендик Э. Н., Буфетов Н. С., Барышев В. Б. Эмиссии крупного лесного пожара в Сибири // Сиб. экол. журн. 1996. Т. З. № 1. С. 93–101 [Koutsenogiy K. P., Valendik E. N., Bufetov N. S., Baryshev V. B. Emissii krupnogo lesnogo pozhara v Sibiri (Emissions of a large forest fire in Siberia) // Sib. ekol. zhurn. (Sib. Ecol. J.). 1996. V. 3. N. 1. P. 93–101 (in Russian with English abstract)].
- Ле Дык Хуинь, Нгуен Тхи Тху Ха, Смирнов А. П. Эмиссия углерода от лесных пожаров 2002 г. в национальном парке «У Минь Тхыонг» на юге Вьетнама // Безопасность жизнедеятельности. 2013. № 12. С. 28–32 [Le Dyk Huin', Nguen Thi Thu Ha, Smirnov A. P. Emissiya ugleroda ot lesnykh pozharov 2002 g. v natsional'nom parke «U Min' Thyong» na yuge V'etnama (Carbon emission from forest fires in 2002 in the national park «U Minh Thuong» in the south of Vietnam) // Bezopasnost'

- zhiznedeyatel'nosti (Safety of vital functions). 2013. N. 12. P. 28–32 (in Russian with English abstract)].
- Малышева Н. В., Моисеев Б. Н., Филипчук А. Н., Золина Т. А. Методы оценки баланса углерода в лесных экосистемах и возможности их использования для расчетов годичного депонирования углерода // Лесн. вестн. 2017. Т. 21. № 1. С. 4–13 [Malysheva N. V., Moiseev B. N., Filipchuk A. N., Zolina T. A. Metody otsenki balansa ugleroda v lesnykh ekosistemah i vozmozhnosti ikh ispol'zovaniya dlya raschetov godichnogo deponirovaniya ugleroda (The methods of carbon balance estimation in forest ecosystems and the their application to calculate annual carbon sequestration) // Lesn. vestn. (For. Bull.). 2017. V. 21. N. 1. P. 4–13 (in Russian with English abstract)].
- *Нестеров В. Г.* Общее лесоводство. М.-Л.: Гослесбумиздат, 1954. 656 с. [*Nesterov V. G.* Obshchee lesovodstvo (General forestry). Moscow-Leningrad: Goslesbumizdat, 1954. 656 р. (in Russian)].
- Программа МГЭИК по национальным кадастрам парниковых газов. Руководящие принципы национальных инвентаризаций парниковых газов МГЭИК. Сельское хозяйство, лесное хозяйство и другие виды землепользования. 2006. Т. 4 [Programma MGEIK po natsional'nym kadastram parnikovykh gazov. Rukovodyashchie printsipy natsional'nykh inventarizatsiy parnikovykh gazov MGEIK. Sel'skoe hozyaystvo, lesnoe khozyaystvo i drugie vidy zemlepol'zovaniya (IPCC Program on National Greenhouse Gas Inventories. IPCC Guidelines for National Greenhouse Gas Inventories. Agriculture, forestry and other types of land use). 2006. V. 4. (in Russian)].
- Распоряжение Минприроды России от 16.04.2015 № 15-р «Об утверждении методических рекомендаций по проведению добровольной инвентаризации объема выбросов парниковых газов в субъектах Российской Федерации». М.: Минприроды России, 2015 [Rasporyazhenie Minprirody Rossii ot 16.04.2015 N. 15-г «Ob utverzhdenii metodicheskih rekomendatsiy po provedeniyu dobrovol'noy inventarizatsii ob'ema vybrosov parnikovykh gazov v sub'ektakh Rossiyskoy Federatsii» (Order of the Ministry of Natural Resources of the Russian Federation N. 15-г of 16.04.2015 «On approval of methodological recommendations for conducting a voluntary inventory of greenhouse gas emissions in the subjects of the Russian Federation»). Moscow: Minprirody Rossii, 2015 (in Russian)].
- Селегей Т. С., Филоненко Н. Н., Ленковская Т. Н. О методике определения метеорологического потенциала загрязнения атмосферы // Оптика атмосферы и океана. 2015. Т. 28. № 8. С. 725–729 [Selegey T. S., Filonenko N. N., Lenkovskaya T. N. O metodike opredeleniya meteorologicheskogo potentsiala zagryazneniya atmosfery (On the methodology for determining the meteorological potential of atmospheric pollution) // Optika atmosfery i okeana (Optics of Atmosphere and Ocean). 2015. V. 28. N. 8. P. 725–729 (in Russian with English abstract)].
- Селегей Т. С., Юрченко И. П. Потенциал рассеивающей способности атмосферы // Геогр. и природ. ресурсы. 1990. № 2. С. 132–137 [Selegey T. S., Yurchenko I. P. Potentsial rasseivayushchey sposobnosti atmosfery (The potential of the scattering ability of the atmosphere) //

- Geogr. i prirod. resursy (Geogr. and natural resources). 1990. N. 2. P. 132–137 (in Russian with English abstract)].
- Софронов М. А., Волокитина А. В. Пирологическое районирование в таежной зоне. Новосибирск: Наука. Сиб. отд-ние, 1990. 204 с. [Sofronov M. A., Volokitina A. V. Pirologicheskoe rayonirovanie v taezhnoy zone (Pyrological regioning in taiga zone). Novosibirsk: Nauka, Sib. otd-nie (Sci., Sib. Br.), 1990. 204 p. (in Russian)].
- Софронов М. А., Швиденко А. З., Голдаммер И. Г., Волокитина А. В. Влияние пожаров на баланс углерода в бореальной зоне Северной Евразии: создание информационной базы для моделей // Лесоведение. 2000. № 4. С. 3–8 [Sofronov M. A., Shvidenko A. Z., Goldammer I. G., Volokitina A. V. Vliyanie pozharov na balans ugleroda v boreal'noy zone Severnoy Evrazii: sozdanie informatsionnoy bazy dlya modeley (The impact of fires on the carbon balance in the boreal zone of Northern Eurasia: creating an information base for models) // Lesovedenie (For. Sci.). 2000. N. 4. P. 3–8 (in Russian with English abstract)].
- Тимофеева С. С., Гармышев В. В. Экологические последствия лесных пожаров на территории Иркутской области // Экология и промышленность России. 2017. Т. 21. № 3. С. 46–49 [Timofeeva S. S., Garmyshev V. V. Ekologicheskie posledstviya lesnykh pozharov na territorii Irkutskoy oblasti (Ecological consequences of forest fires in the territory of Irkutsk Oblast) // Ekologiya i promyshlennost Rossii. (Environ. & Industry of Russia). 2017. V. 21. N. 3. P. 46–49 (in Russian with English abstract)].
- Шарагин А. М. Влияние лесных пожаров на экологическую ситуацию // Усп. соврем. естествознания. 2011. № 7. С. 236–236 [Sharagin A. M. Vliyanie lesnykh pozharov na ekologicheskuyu situatsiyu (The influence of forest fires on the ecological situation) // Usp. sovrem. estestvoznaniya (Adv. current nat. sci.). 2011. N. 7. P. 236–236 (in Russian with English abstract)].
- Шейнгауз А. С. Концепция развития лесного комплекса востока России: докл. на Первом Дальневост. междунар. экон. форуме. Хабаровск, 2006. 11 с. [Sheyngauz A. S. Kontseptsiya razvitiya lesnogo kompleksa vostoka Rossii: dokl. na Pervom Dal'nevost. Mezhdunar. ekon. forume (The concept of development of the forest complex of the East of Russia: a report at the First Far

- East. Int. Econ. Forum). Khabarovsk, 2006. 11 p. (in Russian with English abstract)].
- Amiro B. D., Todd J. B., Wotton B. M., Logan K. A., Flannigan M. D., Stocks B. J., Mason J. A., Martell D. L., Hirsch K. G. Direct carbon emissions from Canadian forest fires, 1959–1999 // Can. J. For. Res. 2001. V. 31. N. 3. P. 512–525.
- Conard S. G., Ponomarev E. I. Fire in the North: the 2020 Siberian fire season // Wildfire. 2020. V. 29.4. P. 26–32.
- Davis K. P. Forest fire: control and use. New York, Toronto, London: McGraw-Hill Book Co. Inc., 1959. 584 p.
- Flannigan M. D. Fighting fire with science // Nature. 2019. V. 576. P. 328.
- Flannigan M. D., Krawchuk M. A., Groot W. J. de, Wotton B. M., Gowman L. M. Implications of changing climate for global wildland fire // Int. J. Wildland Fire. 2009. V. 18. N. 5. P. 483–507.
- McRae D. J., Conard S. G., Ivanova G. A., Sukhinin A. I., Baker S. P., Samsonov Y. N., Blake T. W., Ivanov V. A., Ivanov A. V., Churkina T. V., Hao W. M., Koutzenogij K. P., Kovaleva N. M. Variability of fire behavior, fire effects, and emissions in Scotch pine forests of Central Siberia // Mitigation and Adaptation Strategies for Global Change (MITI). 2006. V. 11. Iss. 1. P. 45–74.
- Romps D. M., Seeley J. T., Vollaro D., Molinari J. Projected increase in lightning strikes in the United States due to global warming // Science. 2014. V. 346. Iss. 6211. P. 851–854.
- Samsonov Y. N., Koutsenogii K. P., Makarov V. I., Ivanov A. V., Ivanov V. A., McRae D. J., Conard S. G., Baker S. P., Ivanova G. A. Particulate emissions from fires in central Siberian Scots pine forests // Can. J. For. Res. 2005. V. 35. N. 9. P. 2207–2217.
- Tymstra C., Stocks B. J., Cai X., Flannigan M. D. Wildfire management in Canada: Review, challenges and opportunities // Progress in Disaster Sci. 2020. V. 5. Article number: 100045. 10 p.
- Ward D. E., Hardy C. C. Smoke emissions from wildland fires // Environ. Int. 1991. V. 17. Iss. 2–3. P. 117–134.
- Wotton B. M., Flannigan M. D., Marshall G. A. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada // Environ. Res. Let. 2017. V. 12. N. 9. Article number: 095003. 12 p.

ESTIMATING OF GREENHOUSE GAS EMISSIONS FROM FIRES IN LIGHT CONIFEROUS FORESTS OF THE LOWER ANGARA REGION

V. A. Ivanov¹, G. A. Ivanova², E. O. Baksheeva¹, A. S. Morozov^{2, 3}

- ¹ Reshetnev Siberian State University of Science and Technology Prospekt Krasnoyarskiy Rabochiy, 31, Krasnoyarsk, 660037 Russian Federation
- ² V. N. Sukachev Institute of Forest, Russian Academy of Sciences, Siberian Branch Federal Research Center Krasnoyarsk Scientific Center, Russian Academy of Sciences, Siberian Branch Akademgorodok, 50/28, Krasnoyarsk, 660036 Russian Federation
- ³ Center of the Forest Pyrology Branch of All-Russian Research Institute for Silviculture and Mechanization of Forestry Krupskaya str., 42, Krasnoyarsk, 660062 Russian Federation

E mail: ivanovv53@yandex.ru, gaivanova@ksc.krasn.ru, morozovAS@firescience.ru

Every year, hundreds of forest fires occur on the territory of the Siberia. It is established that in recent decades there has been an increase in the number and area of forest fires, respectively, the volume of pyrogenic emissions increases too. During fires gas-aerosol emissions are released the volume of which is determined by the intensity of the fire and the burnt forest combustible materials. The paper presents calculations of greenhouse gas emissions from fires in light coniferous forests of the Lower Angara region for 2014–2019. Using data on the amount of forest combustible materials burned in a fire, the mass of greenhouse gases released during fires is calculated, depending on the type of fire, the type of forest and weather conditions that affect the drying of combustible materials., The estimated greenhouse gas emission from fires in light coniferous forests ranges from 5.9 to 37.5 ton/ha, depending on the type of fire and the type of forest. Each year, in the light coniferous forests of the Lower Angara region, greenhouse gas emissions from fires vary from 160 to 5649 thousand tons, on average more than 2300 thousand ton/ha per year. In total, during the period under review, according to the calculated data, more than 16 million tons of greenhouse gases were released during forest fires, with a predominance of CO-CO₂. It is revealed that unfavorable conditions of dispersion of emissions from forest fires are formed in the summer months, characterized by a high frequency of calm, surface inversions and radiation fogs. Relatively favorable weather conditions in the presence of pollution factors for self-cleaning the atmosphere from fire emissions are observed in spring and autumn, when the greatest number of windy days is recorded.

Keywords: forest fires, fire emissions, greenhouse gases, forest types, Central Siberia.

How to cite: *Ivanov V. A., Ivanova G. A., Baksheeva E. O., Morozov A. S.* Estimating of greenhouse gas emissions from fires in light coniferous forests of the lower Angara region // *Sibirskij Lesnoj Zurnal* (Sib. J. For. Sci.). 2021. N. 6. P. 3–17 (in Russian with English abstract and references).