УДК 536.63: 661.482

ТЕМПЕРАТУРНЫЕ И МЕЖФАЗНЫЕ ИЗМЕНЕНИЯ ЭНТАЛЬПИИ ТРИФТОРИДА ГАДОЛИНИЯ В ТВЕРДОМ И ЖИДКОМ СОСТОЯНИЯХ*

К.М. ЛЯПУНОВ, А.В. БАГИНСКИЙ, С.В. СТАНКУС

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

Методом смешения измерена энтальпия дистиллированного трифторида гадолиния GdF_3 в интервале температур 394—1675 К твердого и жидкого состояний. Определены изменения энтальпии при структурном превращении (3,3 \pm 0,4 кДж/моль) и плавлении (54,2 \pm 0,4 кДж/моль), а также оценен высокотемпературный предел температуры Дебая $\theta_D=520$ К. Рассчитана теплоемкость GdF_3 во всех фазах. Приведены первичные экспериментальные данные.

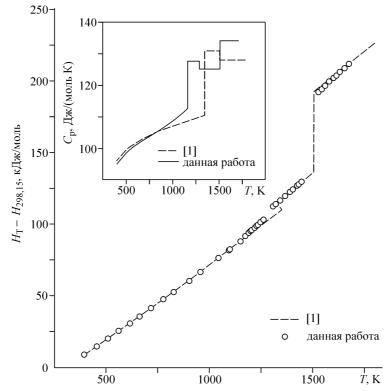
Трифторид гадолиния занимает особое место в ряду фторидов редкоземельных элементов (ФРЭ). Гадолиний открывает подгруппу тяжелых лантаноидов и имеет наполовину заполненную f-оболочку, которая обладает высокой энергетической стабильностью. По этой причине ионы гадолиния, в отличие от ряда других лантаноидов, всегда являются трехвалентными Gd^{+3} . На гадолиний приходится и так называемый "гадолиниевый излом" — нарушение монотонного изменения свойств соединений лантаноидов в зависимости от атомного номера.

Калорические свойства GdF_3 в конденсированном состоянии измерялись одними и теми же авторами [1, 2] и не были подтверждены независимыми исследованиями. Настоящая работа является завершением цикла экспериментальных исследований термодинамических свойств $\Phi \mathrm{P} \to [3-16]$ и имеет своей целью получение новых данных по энтальпии и теплоемкости GdF_3 в широком интервале температур твердого и жидкого состояний, включая области фазовых превращений.

Фторид гадолиния в форме гидратированного трифторида был получен из металлического гадолиния (99,85 %) растворением в соляной кислоте и последующим осаждением плавиковой кислотой. Дегидратация $\mathrm{GdF_3}$ проводилась прокаливанием соли на воздухе при температуре 373 К и в вакууме ($P \sim 1$ Па) при 773 К. Очистка образцов от других примесей производилась путем их переплава в высокотемпературной вакуумной печи ($P \sim 1$ сПа) с последующей вакуумной дистилляцией [9].

© Ляпунов К.М., Багинский А.В., Станкус С.В., 2005

-


^{*} Работа выполнена при финансовой поддержке Лаврентьевского конкурса молодежных проектов СО РАН (проект № 15).

Измерения энтальпии выполнялись на высокотемпературном изотермическом калориметре смешения [17] в защитной атмосфере аргона (99,992 %) с использованием ампул из тантала. Погрешность измерения энтальпии на калориметре определялась в экспериментах с α -Al $_2$ O $_3$ и составила около 0,3 %.

Первичные данные по калорическим свойствам GdF_3 приведены в таблице и на рисунке. У трифторида гадолиния наблюдалось два скачкообразных изменения энтальпии в твердой фазе при T_{t1} = 1165±15 K и T_{t2} = 1287±25 K (см. рисунок).

Экспериментальные значения энтальпии GdF₃

<i>T</i> , K	$H_T^0 - H_{298,15}^0$, Дж/моль	<i>T</i> , K	$H_T^{0} - H_{298,15}^{0},$ Дж/моль	<i>T</i> , K	$H_T^0 - H_{298,15}^0$, Дж/моль
394,3	8 871	1150,2	87 566	1367,4	119 361
454,1	14 605	1174,6	91 617	1391,7	122 462
505,2	19 587	1190,2	93 730	1405,7	124 132
557,9	24 838	1203,3	95 241	1426,2	126 942
611,9	30 343	1206,0	95 673	1446,9	129 509
658,5	35 039	1221,2	97 491	1528,7	192 207
713,9	40 771	1230,7	98 876	1545,2	194 048
774,4	47 008	1238,2	99 811	1560,3	196 393
823,5	52 224	1246,3	100 972	1581,6	199 641
899,8	60 238	1263,9	102 911	1602,0	202 108
953,0	65 853	1309,7	112 379	1615,9	203 562
1043,4	75 782	1320,3	113 559	1632,7	206 066
1092,5	81 187	1434,4	127 753	1654,9	208 777
1096.0	81 698	1343.2	116 316	1675.2	211 968

Энтальпия трифторида гадолиния в твердом и жидком состояниях.

Температура T_{t2} в пределах погрешности измерений совпадает с температурой структурного превращения β -YF $_3 \to \text{LaF}_3$, которая получена в экспериментах по исследованию термических свойств [9]. Изменение энтальпии при T_{t2} составляет $\Delta H_{t2}=3,3\pm0,4$ кДж/моль. Величина $\Delta H_{t1}=1,1\pm0,5$ кДж/моль существенно меньше ΔH_{t2} и лишь в два раза превосходит оцениваемые погрешности определения энтальпии. Причина возникновения данного скачка остается неясной. Монотонное изменение термических свойств в этой области температур [9] указывает на отсутствие изменений кристаллической структуры при T_{t1} . Возможно, что данный тепловой эффект связан с релаксацией напряжений, которые возникают при охлаждении спеченного дисперсного образца из-за разницы коэффициентов расширения по кристаллографическим осям. Изменение энтальпии при плавлении составило $\Delta H_{t}=52,4\pm0,4$ кДж/моль.

Первичные данные по энтальпии в области существования структуры типа β -YF $_3$ (394–1150 K) аппроксимировались методом наименьших квадратов. В результате обработки получено следующее уравнение, Дж/моль:

$$H_T^0 - H_{298,15}^0 = (103,6\pm0,44)(T - 298,15) + (141\pm8)\cdot10^4 \left(\frac{1}{T} - \frac{1}{298,15}\right) + (1,62\pm0,12)\cdot10^{-9}(T^4 - 298,15^4). \tag{1}$$

Погрешности коэффициентов аппроксимации здесь и далее приведены для доверительной вероятности 95 %. Первые два члена выражения (1) описывают вклад гармонических колебаний кристаллической решетки в виде высокотемпературного приближения модели Дебая. Последний член учитывает вклад ангармонических колебаний. Показатель степени определялся в ходе сглаживания, исходя из требования статистической значимости коэффициента.

В интервале 1174–1264 К области существования структуры типа LaF_3 (1310–1447 К) и в жидком состоянии (1529–1675 К) экспериментальные данные обрабатывались линейными зависимостями, Дж/моль:

$$H_T^0 - H_{298.15}^0 = (90180 \pm 80) + (127,6 \pm 1,3) \cdot (T - 1163),$$
 (2)

$$H_T^0 - H_{298.15}^0 = (111600 \pm 78) + (125,2 \pm 0,8) \cdot (T - 1305),$$
 (3)

$$H_T^0 - H_{298.15}^0 = (189500 \pm 190) + (134 \pm 1.8) \cdot (T - 1509).$$
 (4)

Температурные зависимости теплоемкости, представленные на рисунке, получены дифференцированием выражений (1)–(4). В пределах суммарных погрешностей данные нашей работы по энтальпии и теплоемкости расплава и низкотемпературной твердой фазы согласуются с результатами [1]. Рассчитанная из (1) температура Дебая $\theta_D = 520~{\rm K}$ совпадает с θ_D трифторида лютеция [16], катион которого также является чисто трехвалентным.

СПИСОК ЛИТЕРАТУРЫ

- Spedding F.H., Beaudry B.J., Henderson D.C., Moorman J. High temperature enthalpies and related thermodynamic functions of trifluorides of Sc, Ce, Sm, Eu, Gd, Tb, Dy, Er, Tm and Yb // J. Chem. Phys. — 1974. — Vol. 60, No. 4. — P. 1578–1588.
- Spedding F.H., Henderson D.C. High-temperature heat contents and related thermodynamic functions of seven trifluorides of the rare earth: Y, La, Pr, Nd, Gd, Ho, and Lu // Ibid. 1971. Vol. 54, No. 6. P. 2476–2483.

- 3. Станкус С.В., Хайрулин Р.А., Тягельский П.В. Изменение плотности LiF, YF₃ и LiYF₄ при плавлении // Неорганические материалы. 1996. Т. 32, № 2. С. 234–237.
- 4. Stankus S.V., Khairulin R.A., Tyagel'sky P.V. Thermal properties of rare earth fluorides in solid and liquid states // High Temp. High Pressures. 1995/1996. Vol. 27/28. P. 493–498.
- 5. Stankus S.V., Khairulin R.A., Tyagel'sky P.V. Density changes of ytterbium trifluoride on phase transitions // J. Alloys and Compounds. 1997. Vol. 257, No. 1. P. 62–64.
- 6. Станкус С.В., Хайрулин Р.А., Тягельский П.В. Термические свойства дистиллированного фторида иттрия вблизи точки плавления // Теплофизика высоких температур. 1997. Т. 35, № 6. С. 999–1001.
- **7.** Хайрулин Р.А., Станкус С.В., Тягельский П.В. Тепловое расширение DyF₃ в твердом и жидком состояниях // Неорганические материалы. 1998. Т. 34, № 7. С. 888–892.
- Khairulin R.A., Stankus S.V., Tyagel'sky P.V. Thermal properties of lutetium trifluoride at high temperatures // High Temp. High Pressures. 1998. Vol. 30, No. 4. P. 479–482.
- Stankus S.V., Khairulin R.A., Lyapunov K.M. Phase transitions and thermal properties of gadolinium trifluoride // J. Alloys and Compounds. 1999. Vol. 290. P. 30–33.
- 10. Ляпунов К.М., Багинский А.В., Станкус С.В. Калорические свойства LiYF₄:Nd в твердом и жидком состояниях // Теплофизика высоких температур. — 2000. — Т. 38, № 1. — С. 151–153.
- 11. Хайрулин Р.А., Станкус С.В., Ляпунов К.М. Термические свойства трифторида гольмия при высоких температурах // Теплофизика высоких температур. 2000. Т. 38, № 1. С. 154–155.
- 12. Ляпунов К.М., Багинский А.В., Станкус С.В. Экспериментальное исследование энтальпии трифторида диспрозия в твердом и жидком состояниях // Теплофизика и аэромеханика. 2000. Т. 7, № 1. С. 137–140.
- **13. Stankus S.V., Khairulin R.A., Lyapunov K.M.** Thermal properties and phase transitions of heavy rare earth fluorides // High Temp. High Pressures. 2000. Vol. 32, No. 4. P. 467–472.
- 14. Lyapunov K.M., Baginskii A.V., Stankus S.V. Experimental study of the enthalpy of holmium trifluoride in solid and liquid states // J. Alloys and Compounds. 2000. Vol. 306. P. 17–20.
- 15. Хайрулин Р.А., Станкус С.В., Ляпунов К.М. Фазовые превращения и термические свойства трифторида эрбия при высоких температурах // Неорганические материалы. 2000. Т. 36, № 12. С. 1523—1526.
- Lyapunov K.M., Baginskii A.V., Stankus S.V. Experimental study of the enthalpy of lutetium trifluoride in solid and liquid states // J. Allovs and Compounds. — 2004. — Vol. 372. — P. 7–9.
- **17. Багинский А.В., Станкус С.В.** Высокотемпературный массивный изотермический калориметр // Теплофизические свойства растворов, расплавов и композитов: Сб. науч. тр. Новосибирск: Изд. Ин-та теплофизики СО АН СССР, 1991. С. 123.

Статья поступила в редакцию 4 ноября 2004 г.