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Исследуется асимптотическое поведение решений начально-краевых задач, возникаю-
щих при моделировании движения несжимаемых вязкоупругих жидкостей при различ-
ных комбинациях малых параметров релаксации (времени релаксации напряжения при
постоянной деформации и времени релаксации деформации при постоянном напряже-
нии), один из которых может быть равен нулю.
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Введение. Течения многих жидкостей, таких как растворы полимеров, битумы,
кровь, вязкие пищевые продукты и т. д., не могут быть адекватно описаны в рамках

классической модели ньютоновской жидкости. Реологические соотношения в наиболее из-
вестных моделях вязкоупругих жидкостей (модель Олдройда или Джеффриса, модель Пав-
ловского водных растворов полимеров, модель жидкости второго порядка, максвелловская
жидкость) описываются следующим двухпараметрическим семейством уравнений состо-
яния [1–4]:

S + λ1
D

Dt
S = 2µD(v) + 2µλ2

D

Dt
(D(v)), S

∣∣
t=0

= S0, λ1 6= 0. (1)

Здесь S — девиатор тензора напряжений P = −pI+S; λ1 — время релаксации напряжения

при постоянной деформации; λ2 — время ретардации, т. е. время релаксации деформации
при постоянном напряжении; µ — вязкость; тензор D определяется следующим образом:

D(v) =
1

2
(∇v +∇vт),

D/Dt — оператор дифференцирования по времени. В классической работе [1] и ряде дру-
гих теоретических работ [5–11] D/Dt — объективная производная. Однако это может быть
как полная (конвективная) производная [12–15], так и частная производная (модели Кель-
вина — Фойгта, Осколкова). В работе [16] рассматривается соотношение λ1 > λ2, однако
при описании движения слабых растворов полимеров полагается, что λ1 = 0 [10, 12–15].
Если при этом D/Dt — производная Яуманна, то уравнение (1) моделирует жидкость вто-
рого порядка (модель Ривлина — Эриксена [2]). Если λ2 = 0, λ1 > 0, то получаем модель
жидкости максвелловского типа.
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Уравнения движения несжимаемой жидкости с реологическим законом (1) имеют вид

ρ(vt + (v · ∇)v) = −∇p + div S, div v = 0. (2)

Модель (1), (2) содержит два малых параметра λ1 и λ2.

Постановке начально-краевых задач и исследованию их разрешимости для уравне-
ния (2) с реологическим соотношением (1) посвящено большое количество работ (см.,
например, [5–17]). Доказательство разрешимости получено для моделей жидкости второго
порядка, т. е. для модели (1), (2) с нулевым временем релаксации. В работе [7] исследуется
начально-краевая задача Дирихле с условием прилипания на границе в трехмерном про-
странстве в целом по времени для малых начальных данных, а также устанавливается,
что решение является классическим при достаточно гладких данных. В двумерном слу-
чае доказана глобальная разрешимость задачи. В работе [8] рассматривается стационар-
ная задача с условиями непротекания и проскальзывания и доказывается разрешимость в

гельдеровых классах при малых объемных силах. Для моделей с ненулевым временем ре-
лаксации имеются лишь данные о существовании слабого решения [9]. Математическому
исследованию моделей движения водных растворов полимеров и построению их частных

решений посвящен ряд работ В. В. Пухначева с соавторами [14, 15, 17]. Асимптотическое
поведение псевдопараболических уравнений с малым параметром при старшей производ-
ной, к которым сводится линеаризованная задача в одномерном случае, исследовалось во
многих работах. В [18] доказана сходимость к решению соответствующей задачи для урав-
нения теплопроводности в интегральной норме. В работах [19, 20] доказана равномерная
сходимость для краевых задач на ограниченном интервале и на полупрямой. Также сле-
дует отметить работу [21], в которой методом сращивания асимптотических разложений
построено асимптотическое решение задачи для модели вязкоупругой среды при наличии

горения. Однако работы, в которых проводится исследование асимптотического поведения
даже достаточно простой линейной двухпараметрической модели, автору неизвестны. Что
касается нелинейной задачи, то ранее в [22] было построено решение в виде асимптотиче-
ского ряда по малому параметру при старшей производной для случая движения раствора

полимеров вблизи критической точки. В настоящей работе исследуется нелинейная задача
с двумя равными малыми параметрами релаксации.

Актуальность изучения поведения решений задач с малым параметром при старшей

производной обусловлена тем, что классические методы численного решения практически
неприменимы для таких задач. Наличие малого параметра при старшей производной су-
щественно затрудняет численное решение. Избежать таких трудностей позволяет явное
выделение пограничных слоев.

Целями данной работы являются исследование асимптотического поведения решений

начально-краевых задач с условиями прилипания на границах для двухпараметрических
моделей вязкоупругих жидкостей при различных комбинациях малых параметров, уста-
новление регулярности вырождения задач с малым параметром в соответствующие задачи

для вязкой несжимаемой жидкости, жидкости Максвелла или жидкости второго порядка
и явное выделение пограничных слоев.

1. Линеаризованная задача. В случае линеаризации в состоянии, близком к состо-
янию покоя, уравнения (1), (2) принимают вид

S + λ1
∂

∂t
S = 2µD(v) + 2µλ2

∂

∂t
(D(v)); (1.1)

ρvt = −∇p + div S, div v = 0. (1.2)
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Эти уравнения не зависят от вида объективной производной. Дополним систему (1.1), (1.2)
следующими начальными условиями:

vt

∣∣
t=0

= −∇p

ρ

∣∣∣
t=0

+
div S0

ρ
= v1, v

∣∣
t=0

= v0, div v0 = div v1 = 0. (1.3)

В качестве граничных условий выберем условие прилипания для скорости

v
∣∣
∂Ω×[0,T ]

= 0 (1.4)

и условие второго рода для давления

∂p

∂n

∣∣∣
∂Ω

= h(x, y, z) e−t/λ1 ,

∫
∂Ω

h dσ −
∫
Ω

div div S0 dx dy dz = 0. (1.5)

Следуя работе [23], в которой рассмотрена аналогичная задача в случае λ2 = 0 (жидкость
Максвелла), из (1.1), (1.2) выводим уравнения

λ1vtt + vt = ν ∆v + λ2ν ∆vt, ν = µ/ρ; (1.6)

∆p = (div div S0) e−t/λ1 . (1.7)

Задача решается в цилиндрической области Ω × (0, T ). Границу области ∂Ω считаем до-
статочно гладкой; ∂/∂n — оператор производной в направлении внешней нормали к по-
верхности ∂Ω× (0, T ).

Лемма 1. Классическое решение задачи (1.1)–(1.5) единственно с точностью до
постоянной в выражении для давления.
Доказательство. Применим оператор дивергенции к обеим частям равенства (1.1),

умножим это равенство почленно на div S и проинтегрируем по области Ωt. С учетом

уравнения (1.2), а также однородных начальных и краевых условий для разности двух
решений, для которой сохранены прежние обозначения, получаем следующее равенство:

1

2

d

dt

∫
Ωt

(λ1 | div S|2 + ρµλ2 |∇v|2) dΩ +

∫
Ωt

(| div S|2 + ρµ|∇v|2) dΩ = 0.

Вследствие неотрицательности подынтегральных выражений в случае классического ре-
шения получаем v ≡ 0. Давление определяется с точностью до аддитивной постоянной.

Единственность решения позволяет считать условие div v = 0 ограничением на на-
чальные данные задачи, которая фактически распалась на отдельные уравнения для ком-
понент скорости и уравнение для давления.

Решим задачу (1.3), (1.4), (1.6), затем восстановим давление из (1.5), (1.7). Сначала
рассмотрим задачу с одной пространственной переменной, которая соответствует слои-
стому течению: u = u(y, t), v = w = 0, p = p(y, t).

Лемма 2. Пусть u0(y), u1(y) ∈ C4(Ω̄); u0(0) = u0(l) = u1(0) = u1(l) = 0,

d2u0

dy2

∣∣∣
y=0

=
d2u0

dy2

∣∣∣
y=1

=
d4u1

dy2

∣∣∣
y=0

=
d4u1

dy2

∣∣∣
y=1

= 0.

Тогда для любых неотрицательных λ1, λ2 задача (1.3), (1.4), (1.6) имеет единственное
классическое решение u ∈ C3([0, l] × [0, T ]), T > 0. Это решение может быть найдено
методом разделения переменных; при λ1 6= 0, λ2 → 0 оно равномерно на [0, l] × [0, T ]
сходится вместе с производными к решению задачи о течении Максвелла, при λ1 = 0,
λ2 → 0 — к начально-краевой задаче для уравнения теплопроводности, при λ1 → 0
решение u содержит функцию пограничного слоя первого порядка [24], имеющую вид
λ1 e−t/λ1 O(1).
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Доказательство. Будем искать решение в виде ряда Фурье

u(y, t) =
∞∑

n=1

sin
(nπ

l
y
)
(C1n ek1nt + C2n ek2nt).

Здесь k1n, k2n — корни характеристического уравнения для функции, зависящей от вре-
мени, которое имеет вид

λ1k
2 + k(1 + λ2ν(πn/l)2) + ν(πn/l)2 = 0.

При λ1 > 0

k1n, k2n =
−1− λ2ν(nπ/l)2 ±

√
(1 + λ2ν(nπ/l)2)2 − 4λ1ν(nπ/l)2

2λ1
,

λ2 → 0: k1n, k2n →
−1±

√
1− 4λ1ν(nπ/l)2

2λ1
,

λ1 → 0: k1n ∼
−ν(nπ/l)2

1 + λ2ν(nπ/l)2
, k2n ∼ −

1

λ1
,

λ1 = 0: kn = − ν(nπ/l)2

1 + λ2ν(nπ/l)2
,

λ2 → 0: kn ∼≈ −ν
(nπ

l

)2
+ λ2ν

2
(nπ

l

)4
+ O(λ2

2).

Константы C1n, C2n находятся из системы двух линейных уравнений

C1n + C2n =
2

l

l∫
0

u0(y) sin
(nπ

l
y
)

dy,

k1nC1n + k2nC2n =
2

lρ

l∫
0

div (S0(y)) sin
(nπ

l
y
)

dy.

Утверждение об асимптотическом поведении решения проверяется при анализе при-
веденных выше формул. В частности, решая последнюю систему уравнений, нетрудно
показать, что C2n = λ1O(1), λ1 → 0. Это означает, что решение u сходится равномерно
на [0, l] × [0, T ] к решению вырожденной задачи, для первой производной по времени это
утверждение неверно, а вторая производная становится не ограниченной вблизи нуля.

Замечание. Лемма 1 обобщается на трехмерную задачу (1.3), (1.4), (1.6), в случае
если расчетная область является параллелепипедом с ребрами, параллельными коорди-
натным осям.

Рассмотрим асимптотику решения при различных соотношениях параметров для про-
извольной области с достаточно гладкой границей.

Утверждение 1. Пусть v0(x, y, z) ∈ (C4(Ω̄))3, v1(x, y, z) ∈ (C4(Ω̄))3, div v0 = 0,
div v1 = 0, v0, v1|∂Ω = 0, ∆v0|∂Ω = ∆v1|∂Ω = 0. Предположим, что граница области Ω
достаточно гладкая, для того чтобы классическое решение задачи (1.3), (1.4), (1.6) —
вектор-функция v — принадлежало (C3(Ω̄× [0, T ]))3. Тогда при λ1 = 0, λ2 → 0 решение v

равномерно cходится в Ω̄× [0, T ] к решению v(0) вырожденной задачи
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ρv
(0)
t = µ∆v(0),

(1.8)

v(0)
∣∣
∂Ω×[0,T ]

= 0, v(0)
∣∣
t=0

= v0, div v0 = 0, ∆v
(0)
0

∣∣
∂Ω

= 0.

При λ1 > 0, λ2 → 0 решение v равномерно cходится в Ω̄ × [0, T ] к решению v(0) вырож-
денной задачи, которая в данном случае имеет вид

ρ(λ1v
(0)
tt + v

(0)
t ) = µ∆v(0),

(1.9)

v(0)
∣∣
∂Ω×[0,T ]

= 0, v(0)
∣∣
t=0

= v0, div v0 = 0, v
(0)
t

∣∣
t=0

= 0, ∆v
(0)
0

∣∣
∂Ω

= 0.

Доказательство. Условия для начальных функций и порядок согласования позво-
ляют рассмотреть при t = 0 уравнение (1.6), которое в случае λ1 = 0 имеет вид

vt(x, y, z, 0) = ν ∆v0 + λ2ν ∆(vt(x, y, z, 0)), (1.10)

в случае λ1 > 0 — вид

λ1vtt(x, y, z, 0) + v1(x, y, z) = ν ∆v0 + λ2ν ∆v1. (1.11)

В первом случае в силу условий согласования решение vt(x, y, z, 0) уравнения (1.10) не
содержит функцию пограничного слоя вблизи границы, во втором решение vtt(x, y, z, 0)
уравнения (1.11) обращается в нуль.

Такая же аргументация применима к уравнению (1.6), записанному для граничных
точек. Выполнение условий для начальных функций также приводит к отсутствию функ-
ций типа функции пограничного слоя в окрестности начального момента времени. Таким
образом, на боковой поверхности цилиндра и на его нижнем основании входящие в урав-
нение производные равномерно ограничены, более того, они имеют вид λ2O(1).

Следствие. Согласно утверждению 1 решение задачи (1.3), (1.4), (1.6) может быть
представлено в виде асимптотического ряда

v =
n∑

k=0

λk
2v

(k) + O(λn+1
2 ), λ2 → 0, (1.12)

где v(k) (k > 1) — решения задач

ρ(λ1v
(k)
tt + v

(k)
t ) = µ∆v(k) + µ∆v

(k−1)
t ,

(1.13)
v(k)

∣∣
∂Ω×[0,T ]

= 0, v(k)
∣∣
t=0

= 0, v
(k)
t

∣∣
t=0

= 0,

v(0) — решение задачи (1.9).

Справедливость данного следствия можно показать используя утверждение 1 и метод
математической индукции.

Рассмотрим случай лишнего начального условия при обращении в нуль малого пара-
метра.

Через Ck+α, k ∈ N , α ∈ (0, 1) будем обозначать гельдеровы классы функций.
Утверждение 2. Пусть v0(x, y, z) ∈ (C4+α(Ω̄))3, v1(x, y, z) ∈ (C2+α(Ω̄))3; div v0 = 0,

div v1 = 0, v0, v1|∂Ω = 0, ∆v0|∂Ω = 0, ∆2v0|∂Ω = 0, ∆v1|∂Ω = 0. В случае равных времен
релаксации 0 < λ1 = λ2 = λ → 0 задача (1.3), (1.4), (1.6) регулярно вырождается в
задачу

v
(0)
t = ν ∆v(0), v(0)

∣∣
∂Ω

= 0, v(0)
∣∣
t=0

= v0,
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решение которой может быть представлено в виде

v = v(0) + λ(v1 − ν ∆v0)(1− e−t/λ) + z,

где функция z равномерно в замкнутой области Ω̄× [0, T ] стремится к нулю при λ → 0
вместе с производными zt, ∆z.

Доказательство. Записывая уравнение (1.6) в виде

λ(vt − ν∆v)t + vt − ν ∆v = 0,

получаем

vt − ν ∆v = (v1 − ν ∆v0) e−t/λ . (1.14)

В случае если нарушено условие v1 − ν ∆v0 = 0, запишем задачу для z, используя (1.3),
(1.4), (1.14):

zt − ν ∆z = λ ∆(v1 − ν ∆v0)(1− e−t/λ), z
∣∣
t=0

= 0, z
∣∣
∂Ω×[0,T ]

= 0.

С учетом нулевых начальных и граничных условий для z и вида правой части получаем

|z|
C2+α,1+α/2(Ω̄×[0,T ])

→ 0, λ → 0.

Утверждение 3. В условиях утверждения 1 для начальных данных задача (1.3),
(1.4), (1.6) при λ1 → 0 регулярно вырождается в задачу для жидкости второго порядка

v
(0)
t = ν ∆v(0) + λ2ν ∆v

(0)
t , v(0)

∣∣
t=0

= v0, v(0)
∣∣
∂Ω×[0,T ]

= v
(0)
0

∣∣
∂Ω×[0,T ]

= 0. (1.15)

При этом решение v исходной задачи в случае λ2 = 0 может быть представлено в виде

v = v(0) + λ1 e−t/λ1(−λ1v
(0)
tt

∣∣
t=0

+ ν ∆v0 − v1) + λ1z, (1.16)

а в случае λ2 6= 0 — в виде

v = v(0) + λ1

t/λ1∫
0

g(x, y, z, τ) e−τ dτ + λ1z, (1.17)

где

gτ = νλ2 ∆g, g
∣∣
∂Ω×[0,T ]

= 0, g
∣∣
t=0

= v1 − v
(0)
t

∣∣
t=0

+ λ1v
(0)
tt

∣∣
t=0

.

В обоих случаях z равномерно по λ1 ограничено вместе с производной по времени в
замкнутой области Ω̄× [0, T ].

Доказательство. Решение вырожденной задачи (1.13) в общем случае не удовле-
творяет второму начальному условию vt|t=0 = v1. Следуя [24], с учетом (1.6) запишем
уравнение для главной части второго итерационного процесса в случае λ2 = 0:

wττ + wτ = 0, τ = t/λ1.

Выберем решение в виде

w(−t/λ1, x, y, z) = λ1f(x, y, z) e−t/λ1 .

В этом случае задача для z в представлении (1.16) записывается следующим образом:

λ1ztt + zt − ν ∆z = (ν e−t/λ1 ∆f − v
(0)
tt ),

z
∣∣
t=0

= −f , z
∣∣
∂Ω×[0,T ]

= 0, zt

∣∣
t=0

= −v
(0)
tt

∣∣
t=0

, (1.18)

f = −λ1v
(0)
tt

∣∣
t=0

+ ν ∆v0 − v1.
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В силу того, что начальное условие для zt выполняется для уравнения (1.18) при λ1 = 0,
решение z вместе с производной по времени равномерно ограничено относительно малого
параметра.

Пусть λ2 6= 0. Тогда уравнение для главной части второго итерационного процесса
имеет вид

wττ + wτ = ν ∆wτ , τ = t/λ1. (1.19)

Выполняя подстановку

wτ = λ1 e−τ g(τ, x, y, z),

получаем следующую задачу для g:

gτ = νλ2 ∆g, g
∣∣
∂Ω

= 0, g
∣∣
t=0

= v1 − v
(0)
t + λ1v

(0)
tt

∣∣
t=0

.

Решение w уравнения (1.19) имеет вид

w = λ1

τ∫
0

g(x, y, z, τ) e−τ dτ + w(x, y, z, 0).

Для функции z получаем следующую задачу:

λ1ztt + zt − ν ∆z − νλ2 ∆zt = ν

t/λ1∫
0

∆g e−τ dτ − v
(0)
tt ,

(1.20)

z
∣∣
t=0

= z
∣∣
∂Ω

, zt

∣∣
t=0

= −v
(0)
tt .

В левой части уравнения (1.20) имеется дополнительное слагаемое, не зависящее от λ1,
в правой части функция пограничного слоя принимает другой вид, но остальная аргумен-
тация для обоснования представления (1.17), основанная на выполнении вырожденного
уравнения при t = 0, остается прежней.

2. Нелинейная задача: слоистые течения с производной Яуманна. Рассмот-
рим простейшую нелинейную задачу с двумя параметрами. Для случая слоистого течения
имеем

u = u(y, t), v = w = 0, p = p(y, t), S =

(
a(y, t) b(y, t)

b(y, t) c(y, t)

)
.

Задача со свободной границей для случая слоистого течения растворов полимеров

(λ1 = 0) исследовалась в [25].
В случаях верхней и нижней конвективных производных задача остается линейной.

В реологическом соотношении (1) будем использовать производную Яуманна. В этом слу-
чае для модели с λ1 6= 0 имеет место нелинейная задача. В силу (1) получаем систему

a + λ1ȧ− λ1buy = −λ2µu2
y,

b + λ1ḃ + λ1(a/2− c/2)uy = µuy + λ2µuyt, (2.1)

c + λ1ċ + λ1buy = λ2µu2
y.

Здесь c = −a [23]. Выполняя подстановку b = d + µuy, получаем систему

a + λ1ȧ− λ1duy = (λ1 − λ2)µu2
y,

(2.2)
d + λ1ḋ + λ1auy = (λ2 − λ1)µuyt.
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Решение задачи Коши для (2.2) можно найти методом вариации постоянных, используя
общее решение однородной системы (2.2) с нулевыми правыми частями, имеющее вид

a = e−t/λ1

(
D sin

( t∫
0

uy(y, τ) dτ
)

+ A cos
( t∫

0

uy(y, τ) dτ
))

,

d = e−t/λ1

(
D cos

( t∫
0

uy(y, τ) dτ
)
− A sin

( t∫
0

uy(y, τ) dτ
))

.

В результате получаем весьма сложное нелинейное интегродифференциальное уравнение.
Рассмотрим частный (менее громоздкий) случай равных времен релаксации и ретардации
(λ1 = λ2 = λ). В этом случае решение (2.2) с начальными данными a(0) = a0, d(0) = d0

имеет вид

a = e−t/λ
(
d0 sin

( t∫
0

uy(y, τ) dτ
)

+ a0 cos
( t∫

0

uy(y, τ) dτ
))

,

d = e−t/λ
(
d0 cos

( t∫
0

uy(y, τ) dτ
)
− a0 sin

( t∫
0

uy(y, τ) dτ
))

.

(2.3)

Утверждение 4. Задача (1), (2) с производной Яуманна в операторе D/Dt для сло-
истого течения с условием прилипания на границах в случае равных времен релаксации
имеет классическое решение u ∈ C2+α([0, l] × [0, t∗]) на достаточно малом интервале
времени, если u0, a0, b0 ∈ C2+α([0, l]× [0, T ]) и выполнены необходимые условия согласова-
ния.
Доказательство. Действительно, в данном случае система (2.2) является однород-

ной, решение задачи Коши имеет вид (2.3), уравнения (1.2) принимают форму

ρut = µuyy + e−t/λ
(
− a′0(y) sin

( t∫
0

uy dτ
)

+ (b′0(y)− µu′′0) cos
( t∫

0

uy dτ
))

+

+ e−t/λ

t∫
0

uyy(y, τ) dτ
(
− a0(y) cos

( t∫
0

uy dτ
)

+ (µu′0 − b0(y)) sin
( t∫

0

uy dτ
))

,

py = e−t/λ1

t∫
0

uyy dτ
(
a0(y) sin

( t∫
0

uy dτ
)
−

(b0(y)

ρ
− νu′0

)
cos

( t∫
0

uy dτ
))

+

+ e−t/λ1

(
a′0(y) sin

( t∫
0

uy dτ
)

+
(b′0(y)

ρ
− νu′′0

)
cos

( t∫
0

uy dτ
))

.

Для упрощения преобразований положим a0 = 0 и запишем последние два уравнения:

ρut − µuyy = e−t/λ
(
(b′0 − µu′′) cos

( t∫
0

uy dτ
)

+

t∫
0

uyy dτ (µu′0 − b0) sin
( t∫

0

uy dτ
))

; (2.4)
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py = e−t/λ1

t∫
0

uyy dτ
(
νu′0 −

b0

ρ

)
cos

( t∫
0

uy dτ
)

+

+ e−t/λ1

(b′0
ρ
− νu′′0

)
cos

( t∫
0

uy dτ
)
. (2.5)

Введем обозначение

ρut − µuyy = w. (2.6)

Выражая из (2.6) uyy и подставляя в (2.4) при a0 = 0, получаем уравнение

w = e−t/λ(b′0(y)− µu′′0) cos
( t∫

0

uy dτ
)

+ e−t/λ
(
u′0 −

b0(y)

µ

)
sin

( t∫
0

uy dτ
) t∫

0

(ρut − w) dτ.

Для

W =

t∫
0

w(y, τ) dτ

имеем следующую задачу Коши:

Wt + W e−t/λ
(
u′0 −

b0(y)

µ

)
sin

( t∫
0

uy dτ
)

= e−t/λ(b′0(y)− µu′′0) cos
( t∫

0

uy dτ
)

+

+ e−t/λ
(
u′0 −

b0(y)

µ

)
sin

( t∫
0

uy dτ
)
ρ(u− u0), W (0) = 0. (2.7)

Если считать известной функцию u ∈ C1+α([0, l]× [0, T ]), то задача (2.7) имеет единствен-

ное классическое решение W ∈ Cα,2+α
y,t ([0, l] × [0, T ]), следовательно, w ∈ Cα,1+α

y,t ([0, l] ×
[0, T ]). Наконец, решая начально-краевую задачу для уравнения (2.6) с условиями

u(y, 0) = u0, u(0, t) = u(l, t) = 0, (2.8)

восстановим функцию u ∈ C2+α([0, l] × [0, t∗]) для некоторого t∗ < T . Оценки, необходи-
мые для применения теоремы Шаудера, следуют из структуры уравнений (2.6)–(2.8) при
подходящем выборе t∗. Давление восстанавливается из уравнения (2.5).

Утверждение 5. Задача (2.4), (2.8) при начальных данных u0, a0, b0 ∈ C4+α([0, l] ×
[0, T ]) и выполнении условий согласования в области существования классического ре-
шения регулярно вырождается в задачу

u
(0)
t = ν ∆u(0), u(0)

∣∣
∂Ω

= 0, u(0)
∣∣
t=0

= u0.

При этом решение задачи (2.4), (2.8) может быть представлено в виде

u = u(0) − λ(u1 − ν ∆u0)(e
−t/λ−1) + λz, (2.9)

где z — равномерно по λ ограниченная в норме C2+α,1+α/2(Ω̄× [0, T ]) функция.
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Доказательство. Подставляя (2.9) в (2.4), получаем следующую задачу для z:

zt − νzyy + e−t/λ sin
( t∫

0

uy dτ
)(b0

ρ
− ν(u0)y

) t∫
0

zyy dτ = (1− e−t/λ)(u′′1 − νuIV
0 )−

− 1

λ
e−t/λ ·2 sin2

(1

2

t∫
0

uy dτ
)(b′0

ρ
− νu′′0

)
− 1

λ
sin

( t∫
0

uy dτ
)(b0

ρ
− νu′0

)
e−t/λ×

×
(( t∫

0

u0
t dτ

) ρ

ν
+ (u′′1 − νuIV

0 )(λ− λ e−t/λ−t)
)
, (2.10)

z(y, 0) = 0, z(0, t) = z(l, t) = 0.

Интегродифференциальное уравнение (2.10) отличается от (2.4) тем, что после явно-

го выделения функции пограничного слоя λ e−t/λ(u1 − ν ∆u0) правая часть параболи-
ческого уравнения (2.10) допускает равномерную по λ оценку нормы в пространстве

Cα([0, l]× [0, T ]). Это утверждение справедливо для коэффициента при

t∫
0

zyy dτ . В правой

части (2.10) имеются слагаемые, содержащие коэффициент λ−1, в частности слагаемое

1

λ
sin

( t∫
0

uy dτ
)(b0

ρ
− ν(u0)y

)
e−t/λ

( t∫
0

u0
t dτ

) ρ

ν
,

для которого сложно получить оценку.Однако, учитывая, что u0 ∈ C4+α([0, l]×[0, T ]), мож-
но сделать вывод, что это слагаемое также может быть оценено по норме Cα независимо

от λ. Таким образом, функция z равномерно по λ ограничена в норме C2+α,1+α/2(Ω̄×[0, T ]).

Заключение. Проведено исследование асимптотического поведения решения линеа-
ризованной задачи о движении вязкоупругой жидкости с условиями прилипания на гра-
нице течения при различных соотношениях двух малых параметров релаксации. При до-
статочной гладкости начальных данных в случае фиксированного времени релаксации

напряжения при постоянной деформации λ1 и при стремлении к нулю времени релаксации

деформации при постоянном напряжении λ2 решение может быть представлено в виде

асимптотического ряда по целым положительным степеням λ2. Для параметра λ1 при

t ≈ 0 всегда возникает пограничный слой, который явно выделен в изученных решени-
ях в виде функции пограничного слоя первого порядка. Также рассмотрена нелинейная
задача с производной Яуманна для слоистого течения в случае равных значений пара-
метров. Доказано утверждение о локальной по времени разрешимости задачи и выделен
пограничный слой в окрестности начального момента времени.

Для нелинейных задач большей размерности наиболее простым является случай двух

пространственных переменных при λ1 = 0, поскольку в этом случае имеет место класси-
ческая разрешимость как задачи о движении жидкости второго порядка, так и задачи для
вязкой несжимаемой жидкости, в которую она вырождается. В данном случае решение

также может быть представлено в виде асимптотического ряда по целым положительным

степеням λ2. Для малого параметра λ1 в общем случае будет возникать пограничный слой

вблизи начального значения времени, поскольку в вырожденной задаче отсутствует одно
начальное условие. Однако строгому обоснованию асимптотик препятствует отсутствие
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теоремы существования классического решения для задач о движении вязкоупругих сред

в общем случае.
Автор выражает благодарность В. В. Пухначеву за постановку задачи и полезные

обсуждения.
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