УЛК 546.03:546.65:544.032.4

Реальная структура и теплофизические свойства твердых растворов γ -Gd $_x$ Dy $_{1-x}$ S $_{1.5-v}$

В.В. Баковец¹, А.В. Сотников¹, А.Ш. Агажанов², С.В. Станкус²

E-mail: sotnikov@niic.nsc.ru

Работа посвящена изучению температурных зависимостей теплопроводности (T=300–770 K) поликристаллических образцов твердых растворов на основе сульфидов гадолиния и диспрозия составов γ -Gd_xDy_{1-x}S_{1,49} ($x=0,1,\ 0,2,\ 0,3,\ 0,4$). Установлено, что морфологические особенности образцов, а именно, удельная площадь поверхности кристаллитов, вызывающая изменение числа деформационных центров, определяет величину теплопроводности твердых растворов γ -Gd_xDy_{1-x}S_{1,49}, причем установлено наличие аномального снижения теплопроводности для состава x=0,2. При увеличении температуры до 770 K эта аномалия незначительно уменьшается. Для рассматриваемого состава достигнуто минимальное значение коэффициента теплопроводности $0,68\pm0,03$ Вт/(м·K) при 770 K.

Ключевые слова: реальная структура, теплофизические свойства, сульфиды РЗЭ, твердые растворы.

Введение

В связи с огромными запасами тепловых ресурсов в недрах земли и увеличением спроса на потребление электрической, механической и тепловой энергии разработка и оптимизация новых устройств, генерирующих электроэнергию из природного и техногенного тепла, является актуальным решением проблемы энергетического кризиса [1–12]. Решение подобных задач может быть осуществлено путем применения эффекта термоэлектричества, использование которого может привести к экономии и аккумулированию мировых запасов электроэнергии.

В последние несколько лет в области материаловедения активно изучаются высокотемпературные термоэлектрические материалы, демонстрирующие повышенные значения параметра добротности ZT, определяющего эффективность термоэлектрического устройства [1, 12, 13]:

$$ZT = \frac{S^2 \sigma T}{\kappa_{\text{oбщ}}},\tag{1}$$

где S — коэффициент Зеебека, σ — электропроводность, $\kappa_{\text{общ}}$ — общая теплопроводность. Из уравнения следует, что одной из важнейших задач освоения термоэлектричества является разработка материалов, обеспечивающих низкую теплопроводность ($\kappa_{\text{обш}}$)

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

²Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

^{*} Работа выполнена в рамках государственного задания ИНХ СО РАН в области фундаментальных научных исследований.

[©] Баковец В.В., Сотников А.В., Агажанов А.Ш., Станкус С.В., 2020

при оптимальной электропроводности (σ) и повышенном коэффициенте термоЭДС (S). Таким требованиям отвечают полупроводниковые соединения, из которых, в частности, состоят высокотемпературные термоэлектрические материалы на основе сульфидов редкоземельных элементов (P3Э) и их твердых растворов. Отличительной особенностью таких соединений является возможность регулирования концентрации структурно-равновесных вакансий и осуществления катионных замещений при сохранении структурного типа $\mathrm{Th_3P_4}$ [14–17]. Исследование теплофизических свойств полуторного сульфида гадолиния γ -Gd $_{3-x}$ [V $_{\mathrm{Gd}}$] $_x$ S $_4$ \equiv GdS $_{1,5-y}$ позволило определить состав (1,5- $y\approx$ 1,485), для которого характерно наименьшее значение коэффициента теплопроводности [14–18]. Для повышения параметра ZT необходимо продолжать поиск вариантов уменьшения коэффициентов теплопроводности, создавая дополнительные центры рассеяния фононов в материале [19, 20].

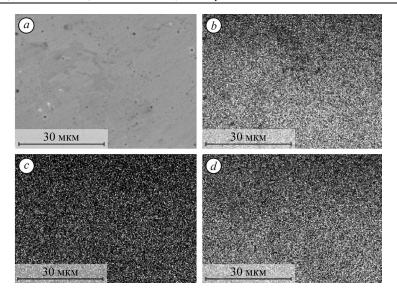
Необходимо отметить, что в опубликованных на сегодняшний день работах по сульфидам РЗЭ отсутствует детальное изучение влияния структурно-равновесной катионной вакансионной системы и других типов дефектов реальной структуры — нуль-мерных (катионные замещения, а также температурно-равновесные вакансии), одномерных (дислокации) и двумерных (границы кристаллитов и включений) — на термоэлектрические свойства. Например, в работе [21] было показано, что введение в сульфид диспрозия γ-модификации ионов гадолиния позволяет существенно снизить коэффициент теплопроводности за счет дополнительного рассеяния тепла на решетке твердых растворов сульфидов РЗЭ с разными ионными радиусами. Однако физико-химическая природа этого явления не была полностью раскрыта. Таким образом, возникает необходимость установления корреляции между изменением реальной структуры и теплофизическими свойствами сульфидов РЗЭ. Целью настоящей работы является изучение природы внутренних нарушений кристаллической структуры и их влияния на теплофизические свойства твердых растворов полуторных сульфидов РЗЭ со сруктурой Th₃P₄.

Экспериментальная часть

В качестве исходных твердых веществ в работе использовались оксиды редкоземельных элементов Gd_2O_3 и Dy_2O_3 с чистотой 99,99 %, а также роданид аммония NH_4SCN , соответствующий ГОСТу 27067-86, в роли сульфидирующего реагента. Для получения высокооднородных твердых растворов сульфидов РЗЭ при синтезе соответствующих прекурсоров оксидов РЗЭ золь-гель методом [22, 23] применялись молекулярные водные растворы нитратов $Gd(NO_3)_3 \cdot 5H_2O$ и $Dy(NO_3)_3 \cdot 5H_2O$. В качестве осадителя использовался двукратный избыток 1,44 M раствора NаOH. Вследствие распыления растворов исходных реагентов происходило осаждение гидроксидов в субмикронных участках маточного раствора, результатом чего явилось образование частиц нанометрового размера [24]. Полученный осадок отмывался, высушивался (T=323~K) и отжигался на воздухе (T=873-1173~K) в течение 2–4 часов до формирования частиц оксидов ($Gd_xDy_{1-x})O_{1,5}$ размером 10-20~hm.

Для получения твердых растворов сульфидов РЗЭ применялся твердофазный синтез с использованием порошков твердых растворов оксидов (≈ 5 г) сульфидирующего реагента — паров роданида аммония, а также газа носителя — аргона ($V_{\rm ras}=7$ л/ч) [25]. Процесс сульфидирования в зависимости от объектов исследования проводился при 1273 К в течение 6–8 ч. Высокотемпературная кубическая модификация твердых растворов сульфидов РЗЭ γ -Gd_xDy_{1-x}S_{1,49} была получена путем отжига синтезированных сульфидов α -Gd_xDy_{1-x}S_{1,5} в печи с индукционным нагревом при T=1473 К в атмосфере аргона ($V_{\rm ras}=7$ л/ч). Затем полученые порошки соединений сульфидов γ -модификации спекались методом горячего прессования в вакууме ($P=7\cdot10^{-3}$ Ра) при 1473 К в течение двух часов. Одноосное давление при формировании плотной керамики составляло 70 МПа.

Для получения оптимальных теплофизических свойств проводился дополнительный отжиг синтезированной керамики γ -Gd_xDy_{1-x}S_{1,49} до достижения заданного отклонения от стехиометрического состава γ -Gd $_x$ Dy $_{1-x}$ S $_{1,49}$. Синтез проходил в запаянных ампулах с газопоглотителем избыточной серы и примесного кислорода, в качестве которого был выбран порошок металлического лантана, при температуре 1173 К в течение 48 ч. Отклонение состава образцов γ -Gd_xDy_{1-x}S_{1,49} определялось методом газовой хроматографии по выделению водорода по реакции сульфида с раствором соляной кислоты [26]. Примесный состав образцов определялся атомно-адсорбционным методом с использованием спектральной установки PGS-2 (Carl Zeiss Jena, Германия) с дугой постоянного тока в качестве источника возбуждения. Энергодисперсионный химический анализ шлифов керамики проводился на установке Hitachi TM3000 TableTop SEM с приставкой Bruker QUANTAX 70 EDS с картографированием распределения атомов Gd, Dy и S по поверхности шлифов. Фазовый состав, а также размер области когерентного рассеяния (ОКР) определялись методом порошковой дифрактометрии. Рентгенофазовый анализ осуществлялся на дифрактометре Shimadzu XRD-7000 с CuK_{α} -излучением, Ni-фильтром, диапазоном 10° – 80° 2θ , шагом 0,03 и накоплением 2 с. Для исследования изменений ближнего порядка кристаллической решетки проводилась регистрация спектров комбинационного рассеяния света (КРС-спектров) образцов на спектрометре LabRAM HR Evolution (Horiba) с возбуждением на 632 нм (использовался Не-Ne лазер), с диаметром пятна ~ 1-2 мкм и мощностью 1 мВт. Измерения удельной теплоемкости (C_p) γ -Gd_xDy_{1-x}S_{1,49} выполнялись на дифференциальном сканирующем калориметре DSC 204 F1 Phoenix фирмы NETZSCH в интервале температур 300–773 К. Коэффициент температуропроводности (χ_{τ}) исследуемых образцов определялся методом лазерной вспышки на автоматизированной установке LFA-427 фирмы NETZSCH (Германия) в атмосфере высокочистого аргона (Ar 99,992 vol. %) в интервале температур 298-973 К. Плоский образец снизу облучается коротким лазерным импульсом, равным 1,064 мкм. Погрешность измерения коэффициента температуропроводности для твердых образцов составляла 2-5 % в зависимости от температуры. Общий коэффициент теплопроводности ($\kappa_{\text{обш}}$) рассчитывался по известному уравнению $\kappa_{\text{общ}} = \chi_{\text{T}} \cdot \rho_{\text{кер}} \cdot C_p$, где χ_{T} — коэффициент температуропроводности, C_p — теплоемкость, ρ_{kep} — плотность керамического материала. Экспериментальные значения χ_{T} , полученные методом лазерной вспышки, содержат решеточную и электронную диффузионные составляющие и поэтому корректировка величины $\kappa_{\text{общ}}$ не требовалась.

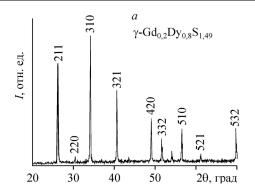

Результаты и обсуждения

Химический состав

Энергодисперсионный анализ шлифа спеченной керамики подтвердил однородность распределения элементов Gd, Dy и S в соединениях γ -Gd_xDy_{1-x}S_{1,49} (рис. 1). Результаты проведенного химического спектрального анализа примесного состава исходных оксидов и полученной керамики представлены в табл. 1. Суммарное содержание примесей по 30-ти элементам составляло менее 0,2 мас. %, а максимальный уровень отдельных примесных элементов не превышал $8\cdot 10^{-2}$ мас. %.

Рентгенофазовый анализ твердых растворов

Результаты рентгенофазового анализа подтвердили однофазный состав синтезированной керамики твердых растворов сульфидов Gd и Dy с кубической структурой $\mathrm{Th_3P_4}$ ($I43d,\ Z=4$). По результатам дифрактометрии (рис. 2a) были рассчитаны параметры элементарных ячеек решеток исследуемых соединений γ -Gd_xDy_{1-x}S_{1,49} и построена зависимость параметра элементарной ячейки a от состава твердого раствора (рис. 2b).


Рис. 1. Электронное изображение (*a*) и распределение элементов S(b), Gd(c) и Dy(d) в керамике состава γ - $Gd_{0.2}Dy_{0.8}S_{1.49}$.

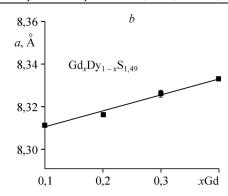

Аппроксимация экспериментальных данных прямой линией с высоким коэффициентом регрессии ($R^2=0.99$) подтверждает образование твердых растворов в исследуемой области составов.

Таблица 1 Примесный состав исследованных образцов

Соединение	$Gd_{x}Dy_{1-x}O_{1,5}$	γ -Gd _x Dy _{1-x} S _{1,5-y}
Элемент		x - 1 x 1,5 y
Ag, Cu	$< 2 \cdot 10^{-3}$	$< 2.10^{-3}$
Al, Au Cr, Fe, Mo, Pd, Sn, Te	< 0,01	< 0,01
As	< 0,08	< 0,08
Ba, Ca, Nb, Pt, Ta	< 0,03	< 0,03
Be, Cd, Mn	< 5·10 ⁻⁴	< 5·10 ⁻⁴
Bi, Tl	$< 5.10^{-3}$	$< 5.10^{-3}$
Ga, Mg, Ni, Zn	< 1.10 ⁻³	< 1.10 ⁻³
V, Pb, Co, Ge	< 0.02	< 0,02
Hf, Ti, Zr	< 0.05	< 0,05
In	< 9·10 ⁻³	< 9.10 ⁻³

Оценка кристалличности синтезированных образцов проводилась с использованием средних значений $OKP_{cp} = \Sigma OKP_{3KC}/n_{P\Phi A}$, где $n_{P\Phi A}$ — число рефлексов дифрактограммы. Значения OKP_{cp} рассчитывались по методу Дебая—Шеррера, их зависимости от состава исследуемого твердого раствора, представленные на рис. 3, имеют немонотонный характер с минимальным значением OKP_{cp} при xGd=0,2. Поликристаллическая керамика характеризуется наличием совокупности множества кристаллитов, размеры которых отражены величинами OKP_{cp} . Согласно теории и практике поверхностных явлений, в многокомпонентной по химическому составу поликристаллической системе с развитой поверхностью микро- и наноструктуры отдельные компоненты выступают в качестве поверхностно активных. В рассматриваемой системе, по-видимому, ионы Gd^{3+} являются поверхностно-активными в области их концентраций, близких к составу x=0,2,

 $Puc.\ 2$. Рентгенофазовый анализ прессованной керамики γ - $\mathrm{Gd}_{0,2}\mathrm{Dy}_{0,8}\mathrm{S}_{1,49}\ (a)$ и рассчитанные параметры элементарной ячейки исследуемых твердых растворов сульфидов Gd и Dy (b). Коэффициент регрессии $R^2=0,99$.

и способствуют относительно большой скорости зарождения кристаллитов при формировании твердого раствора. Это, в свою очередь, приводит к повышенной дисперсности образцов.

Известно, что кристаллиты контактируют по полукогерентным границам и вызывают появление дислокаций и деформационных напряжений в смежных областях [27]. Таким образом, обнаруженная немонотонность зависимости $\mathrm{OKP_{cp}} = f(x)$ характеризует изменение удельной площади поверхности границ кристаллитов и деформационных напряжений с максимумом для состава x=0,2. Это, как было показано в работе [18] на примере соединений γ - $\mathrm{GdS}_{1,5-y}$, сопровождается изменением ближнего порядка кристаллической решетки, а именно увеличением концентрации деформационных центров N_{C} , возникающих на границах раздела кристаллитов. В работе [20] было продемонстрировано, что число деформированных узлов решетки или дефектных центров определяется соотношением $N_{\mathrm{C}}=2\cdot10^{15}\cdot S_{\mathrm{yp}}$, где $2\cdot10^{15}$ — оценочное число узлов решетки на 1 см², S_{yp} — удельная площадь кристаллитов на 1 см³. Результаты расчетов параметра N_{C} для соединений γ - $\mathrm{Gd}_{x}\mathrm{Dy}_{1-x}S_{1.49}$ представлены в табл. 2.

Полуторные сульфиды РЗЭ кубической модификации γ -LnS_{1,5-y} характеризуются развитой структурно-равновесной вакансионной системой с концентрацией вакансий для y=(1,479-1,498), равной $5,3\cdot10^{21}-5,9\cdot10^{21}$ см⁻³ [18]. Однако у авторов нет оснований рассматривать изменение этой величины в зависимости от изменения состава твердого раствора x. Для дальнейшего анализа изменений ближнего порядка использовалась спектроскопия КРС.

КРС-спектроскопия твердых растворов

На рис. 4 представлены КРС-спектры порошков γ -Gd_xDy_{1-x}S_{1,49}, где $x=0,1,\ 0,2,\ 0,3,\ 0,4$, и соединений γ -GdS_{1,498}, γ -DyS_{1,500}. В исследованном диапазоне спектра наблюдаются мода в районе значения 195 см⁻¹ (A_1) и две моды в окрестности значений ≈ 60 и 305 см¹ (E) и ≈ 245 и 160 см⁻¹ (F_2). Обнаруженные полосы КРС-спектров можно приписать к колебаниям определенных атомных групп.

Рис. 3. Изменение ОКР_{ср} в зависимости от состава твердых растворов γ -Gd_xDy_{1-x}S_{1,49}.

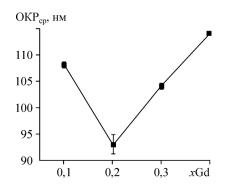
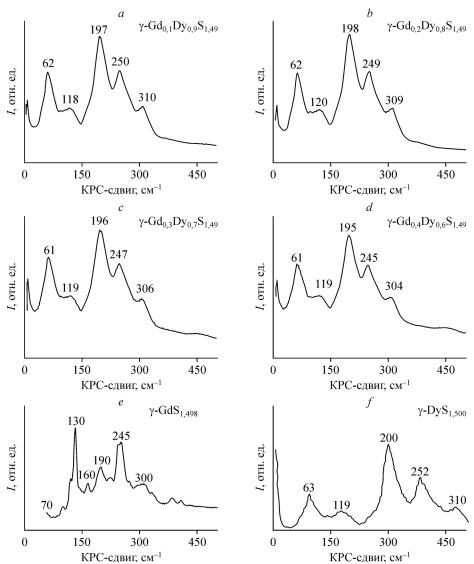
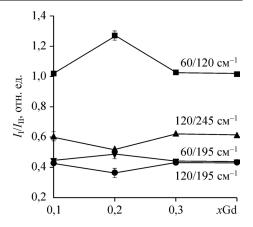



Таблица 2 Число деформационных центров в области границ кристаллитов

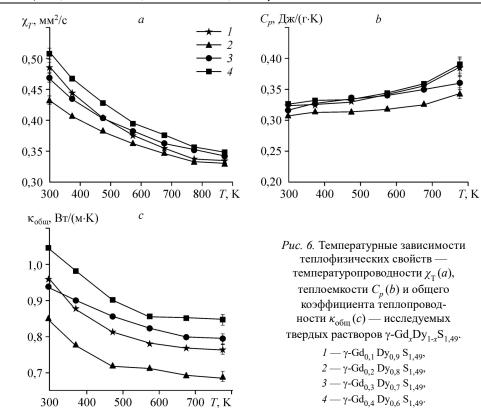
Соединение	$N_{\rm C} \cdot 10^{21}, {\rm cm}^{-3}$
γ-Gd _{0,1} Dy _{0,9} S _{1,49}	1,10
γ -Gd _{0,2} Dy _{0,8} S _{1,49}	1,28
γ -Gd _{0,3} Dy _{0,7} S _{1,49}	1,16
γ -Gd _{0,4} Dy _{0,6} S _{1,49}	1,04


Для этого воспользуемся полученным в работе [20] КРС-спектром соединения γ -GdS $_{1,498}$ и литературными данными для γ -DyS $_{1,500}$ [28]. Движению катионов Dy $^{3+}$ соответствует мода 60 см $^{-1}$, для катионов Gd $^{3+}$ это полоса 70 см $^{-1}$, а для анионов S $^{2-}$ — полосы 195, 245 и 305 см $^{-1}$. Полосу 120 см $^{-1}$ следует отнести к суперпозиции колебаний Dy $^{3+}$ и Gd $^{3+}$ (119 см $^{-1}$ — для Dy $^{3+}$ и 130 см $^{-1}$ — для Gd $^{3+}$). В исследуемых твердых растворах позиции

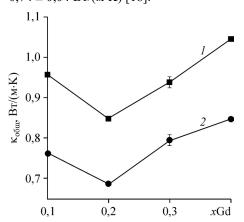
 $\it Puc.~4$. КРС-спектры исследуемых твердых растворов γ-Gd_xDy_{1-x}S_{1,49} ($\it a$ - $\it d$) и соединений γ-GdS_{1,498} ($\it e$), γ-DyS_{1,500} ($\it f$).

Puc.~5. Изменение отношений интенсивностей мод $I_1/I_{\rm II}$: 120/195 (I), 60/195 (I), 120/245 (I), 60/120 (I) см $^{-1}$ КРС-спектров.

катионов РЗЭ (с координационным числом KY = 8) можно представить в следующих окружениях (с KY = 7 для ионов S^2): (Dy-S)₇-Gd-(S-Dy) — I, (Dy-S)₆-(Gd-S)-Dy-(S-Dy) — II, (Dy-S)₇-Gd-(S- V_{Dy}) — III, (Dy-S)₆-(Gd-S)-Dy-(S- V_{Dy}) — IV, (Dy-S)₇-Gd-(S- V_{C}) — V и (Dy-S)₆-(Gd-S)-Dy-(S- V_{C}) — VI, где V_{Dy} — вакансии диспрозия, V_{C} — центры деформированных катионных узлов, связанных с реаль



ной структурой полукогерентных границ кристаллитов. Полужирным шрифтом обозначены атомы S, движению которых приписаны полосы KPC-спектров. Очевидно, что возможно существование окружений типа $(Dy-S)_5$ -(Gd-S)-(Dy-S)-Dy-(S-X) и $(Dy-S)_4$ -(Gd-S)- $(Dy-S)_2$ -Dy-(S-X) в соединениях с высокой концентрацией ионов Dy^{3+} , где X = Dy, V_{Dy} , V_C . Принимая во внимание статистическое распределение ионов P39 в решетке типа Th_3P_4 [29], эти позиции приняты близкими к позициям II, IV и VI.


Установлено, что частичное замещение ионов Dy^{3+} ионами Gd^{3+} не приводит к изменению относительной интенсивности колебательных мод 195, 245 и 305 см⁻¹, однако их положение сдвигается в направлении от Dy к Gd (в сторону уменьшения содержания диспрозия). Все обнаруженные особенности согласуются с ранее полученными КРСспектрами для индивидуальных полуторных сульфидов Dy и Gd [28, 30]. Поскольку группы I и II имеют наиболее высокие симметрию и концентрации, то соответствующие моды (F_2) и $300 \text{ см}^{-1}(E)$ должны быть похожи для всех образцов, что и наблюдается на представленных КРС-спектрах (рис. 4a-4d). Полосу 160 см^{-1} , которая имеет очень малую интенсивность и проявляется изгибом на полосе 195 см⁻¹ в спектрах соединений γ -Gd_xDy_{1-x}S_{1,49}, следует отнести к группам III и IV, так как концентрация ионов в них мала. В свою очередь, к группам V и VI можно отнести полосу 195-198 см⁻¹, так как максимум полос сдвигается в сторону увеличения xGd. На рис. 5 представлены изменения отношений интенсивностей мод групп I и II $(I_{\rm I}/I_{\rm II})$ в каждом спектре. Аномалии зависимостей $I_{\rm I}/I_{\rm II}=f(x)$ для соединения $\gamma\text{-Gd}_{0.2}{
m Dy}_{0.8}{
m S}_{1.49}$ указывают на перестройку ближнего порядка кристаллической решетки. Полученные особенности изменений отношений $I_{\rm I}/I_{\rm II}$ полос КРС-спектров коррелируют с изменением величин ОКР сп (рис. 3) и, следовательно, непосредственно связаны с изменением концентрации деформационных центров на границах раздела кристаллитов. Это, в свою очередь, должно проявиться в характере изменения величины коэффициента теплопроводности в зависимости от изменения концентрации xGd.

Теплофизические свойства твердых растворов

На рис. 6 представлены температурные зависимости температуропроводности $\chi_{\rm T}$ и теплоемкости C_p , а также общего коэффициента теплопроводности $\kappa_{\rm oбщ}$ для соединений γ -Gd $_x$ Dy $_{1-x}$ S $_{1,49}$, где $x=0,1,\ 0,2,\ 0,3,\ 0,4$. Измеренные плотности керамических образцов составили: $\rho(\gamma$ -Gd $_{0,1}$ Dy $_{0,9}$ S $_{1,49})=6,198$ г/см $^3,\ \rho(\gamma$ -Gd $_{0,2}$ Dy $_{0,8}$ S $_{1,49})=6,184$ г/см $^3,\ \rho(\gamma$ -Gd $_{0,3}$ Dy $_{0,7}$ S $_{1,49})=6,183$ г/см $^3,\ \rho(\gamma$ -Gd $_{0,4}$ Dy $_{0,6}$ S $_{1,49})=6,193$ г/см 3 с погрешностью 2%). Результаты измерений показали, что соединению γ -Gd $_{0,2}$ Dy $_{0,8}$ S $_{1,49}$ соответствуют наименьшие величины температуропроводности, теплоемкости и общего коэффициента

теплопроводности. На рис. 7 представлены зависимости общего коэффициента теплопроводности от состава твердого раствора при температурах 300 и 770 К. Данные зависимости изменяются немонотонно, с резким изменением величин $\kappa_{\rm общ}$ для твердого раствора состава γ -Gd_xDy_{1-x}S_{1,49}. В свою очередь, эти аномалии коррелируют с внутренними морфологическими особенностями керамики соответствующих соединений, что подтверждается установленными аномалиями изменений величин ОКР_{ср}. Следовательно, изменение дефектности решетки твердых растворов (Gd_xDy_{1-x})S_{1,49}, вызванное изменением внутренней микроструктуры, является основной причиной аномалий теплофизических свойств для состава xGd = 0,2. Для этого состава достигнуто минимальное значение коэффициента теплопроводности 0,68 ± 0,03 BT/(м·K) при 770 K, что меньше аналогичного показателя для известного соединения состава GdS_{1,487} 0,74 ± 0,04 Bт/(м·K) [18].

Можно полагать, что для большего снижения теплопроводности твердых растворов целесообразно использовать РЗЭ с большей разницей радиусов ионов, что должно снизить теплопроводность за счет усложнения спектра фононов.

Рис. 7. Зависимости коэффициента теплопроводности от состава твердого раствора γ -Gd_xDy_{1-x}S_{1,49}. T = 300 K(1), 770 K(2).

Заключение

Керамические образцы твердых растворов на основе сульфидов гадолиния и диспрозия составов γ -Gd_xDy_{1-x}S_{1,49} ($x=0,1,\ 0,2,\ 0,3,\ 0,4$) являются информативными объектами в плане рассмотрения реальной структуры различной размерности и механизмов ее влияния на теплофизические свойства соответствующих материалов. Для состава γ -Gd_{0,2}Dy_{0,8}S_{1,49} общий коэффициент теплопроводности κ _{общ} имеет аномально низкое значение — 0,68 Bt/(м·K) при T=770 К. Это связано с максимально высокой удельной площадью границ кристаллитов и связанной с ней концентрацией деформационных центров кристаллической решетки, что приводит к усложнению фононного спектра. Изменения реальной структуры твердых растворов сульфидов определяются, в частности, различиями ионных радиусов катионов Gd³⁺ и Dy³⁺ и их концентрациями. Это приводит к значительным нарушениям дальнего и ближнего порядков решетки, вызывающих понижение теплопроводности за счет уменьшения длины свободного пробега фононов.

Перспективным путем дальнейшего снижения теплопроводности является использование РЗЭ-катионов с большей разницей ионных радиусов для формирования твердых растворов.

Авторы статьи выражают благодарность Д.П. Пищуру за результаты измерений теплофизических свойств, И.Ю. Филатовой и Т.Д. Пивоваровой за помощь в синтезе твердых растворов сульфидов РЗЭ, к.х.н. Е.А. Максимовскому за полученные микрофотографии SEM, а также С.И. Кожемяченко за съемку КРС-спектров.

Список литературы

- He J., Kanatzidis M.G., Dravid V.P. High performance bulk thermoelectrics via a panascopic approach // Mater. Today. 2013. Vol. 16, No. 5. P. 166–176.
- Aswal D.K., Basu R., Singh A. Key issues in development of thermoelectric power generators: high figure-of-merit materials and their highly conducting interfaces with metallic interconnects // Energy Convers. Manag. 2016. Vol. 114. P. 50–67.
- Tritt T.M., Bottner H., Chen L. Thermoelectrics: direct solar thermal energy conversion // MRS Bull. 2008. Vol. 33, No. 4. P. 366–368.
- Liu W., Jie Q., Kim H.S., Ren Z. Current progress and future challenges in thermoelectric power generation: from materials to devices // Acta Mater. 2008. Vol. 87, No. 155. P. 357–376.
- Zebarjadi M., Esfarjani K., Dresselhaus M.S., Ren Z.F., Chen G. Perspectives on thermoelectrics: from fundamentals to device applications // Energy Environ. Sci. 2012. Vol. 5, No. 1. P. 5147–5162.
- Bell L.E. Cooling, heating, generating power and recovering waste heat with thermoelectric systems // Sci. 2008.
 Vol. 321, No. 5895. P. 1457–1461.
- Sootsman J.R., Chung D.Y., Kanatzidis M.G. New and old concepts in thermoelectric materials // Angew. Chem. Int. Ed. 2009. Vol. 48, No. 46, P. 8616–8639.
- 8. Snyder G.J., Toberer E.S. Complex thermoelectric materials // Nat. Mater. 2008. Vol. 7, No. 2. P. 105-114.
- **9. Шевельков А.В.** Химические аспекты создания термоэлектрических материалов // Успехи химии. 2008. Т. 77, № 1. С. 3–21.
- **10. Zevenhoven R., Beyene A.** The relative contribution of waste heat from power plants to global warming // Energy. 2011. Vol. 36, No. 6. P. 3754–3762.
- 11. Yang J., Caillat T. Thermoelectric materials for space and automotive power generation // MRS Bull. 2006. Vol. 31, No. 3. P. 224–229.
- 12. LeBlanc S. Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications // Sustain. Mater. and Technol. 2014. Vol. 1. P. 26–35.
- Nolas G.S., Poon J., Kanatzidis M. Recent developments in bulk thermoelectric materials // MRS Bull. 2006.
 Vol. 31, No. 3, P. 199–205.
- 14. Гаджиев Г.Г., Исмаилов Ш.М., Абдулаев Х.Х., Хамидов М.М., Омаров З.М. Тепловые и электрические свойства сульфидов гадолиния при высоких температурах // Теплофизика высоких температур. 2001. Т. 39, № 3. С. 437—442.
- **15. Лугуев С.М., Лугуева Н.В., Соколов В.В.** Теплопроводность Gd₂S₃ и Dy₂S₃ // Физика твердого тела. 1988. Т. 30, № 3. С. 873–875.
- Wood C., Lockwood A., Parker J., Zoltan A., Zoltan D., Danielson L.R., Raag V. Thermoelectric properties of lanthanum sulfide // J. Appl. Phys. 1985. Vol. 58, No. 4. P. 1542–1547.

- 17. Лугуев С.М., Лугуева, Н.В. Соколов В.В. Теплопроводность и термоэлектрические свойства сульфидов диспрозия // XIII Межгосударственный семинар «Термоэлектрики и их применения». Физико-технический институт им. А.Ф. Иоффе. Санкт-Петербург. 2012. С. 1–5.
- 18. Bakovets V.V., Sotnikov A.V., Agazhanov A.Sh., Stankus S.V., Korotaev E.V., Pishchur D.P., Shkatulov A.I. Some features of thermophysical properties of γ-Gd₂S₃ ceramics based on real structure // J. Amer. Ceram. Soc. 2018. Vol. 101, No. 10. P. 4773–4782.
- **19.** Лугуев С.М., Лугуева Н.В., Соколов В.В. Теплопроводность Gd₂S₃ с избыточным содержанием гадолиния // Физика твердого тела. 2000. Т. 42, № 6. С. 1013–1016.
- 20. Сотников А.В., Баковец В.В., Агажанов А.Ш., Станкус С.В., Пищур Д.П., Соколов В.В. Влияние морфологических дефектов на теплофизические свойства γ-Gd₂S₃ // Физика твердого тела. 2018. Т. 60, № 3. С. 482—489
- **21.** Лугуев С.М., Лугуева Н.В., Соколов В.В. Температурные и концентрационные зависимости теплопроводности твердых растворов сульфидов гадолиния и диспрозия // Теплофизика и аэромеханика. 2012. Т. 19, № 3. С. 375–380.
- 22. Nalwa H.S. Nanostructured materials and nanotechnology. Academic Press, 2001. 834 p.
- 23. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М.: Физматлит, 2005. 416 с.
- **24.** Баковец В.В., Трушникова Л.Н., Корольков И.В., Плюснин П.Е., Долговесова И.П., Пивоварова Т.Д., Алферова Н.И. Синтез наноструктурированного люминофора Y₂O₃-Eu-Bi золь-гель методом // Журнал общей химии. 2013. Т. 83, № 1. С. 3–12.
- 25. Ohta M., Hirai S., Kato H., Sokolov V.V., Bakovets V.V. Thermal decomposition of nh₄scn for preparation of Ln₂S₃ (Ln = La and Gd) by sulfurization // Mater. Trans. 2009. Vol. 50, No. 7. P. 1885–1889.
- 26. Чучалина Л.С., Васильева И.Г., Камарзи А.А., Соколов В.В. Косвенный газохроматографический метод определения состава сульфидов лантана // Журнал аналитической химии. 1978. Т. 33, № 1. С. 190–192.
- 27. Свелин Р.А. Термодинамика твердого состояния. М.: Металлургия, 1968. 316 с.
- 28. Аркатова Т.Г., Жузе, Б.П. Карий М.Г., Камарзин А.А., Кухарский А.А., Михайлов Б.А., Шелых А.И. Колебательные спектры сульфидов редкоземельных металлов состава Ln₂S₃ // Физика твердого тела. 1979. Т. 21, № 11. С. 3428–3433.
- 29. Колесов Б.А., Камарзин А.А., Соколов В.В. КР спектры и структурные особенности вакансионных кристаллов γ-Ln₂S₃ // Журнал структурной химии. 1997. Т. 38, № 4. С. 655–661.
- 30. Knight D.S., White W.B. Raman spectroscopic study of the rare earth sesquisulfides // Spectrochinica Acta. 1990. Vol. 46, No. 3. P. 381–387.

Статья поступила в редакцию 6 ноября 2019 г., после доработки— 16 января 2020 г., принята к публикации 10 февраля 2020 г.