2013. Том 54

Приложение

S128 – S131

УДК 546.41′46′881-31

ЯМР⁵¹V В ТВЕРДЫХ РАСТВОРАХ Mn_{2-2x}Ni_{2x}V₂O₇

Н.А. Журавлёв, М.В. Ротермель, Т.И. Красненко, Р.Ф. Самигуллина

Институт химии твердого тела УрО РАН, Екатеринбург e-mail: Zhuravlev@ihim.uran.ru

Статья поступила 21 февраля 2013 г.

Методами ЯМР ⁵¹V, ДТА и термогравиметрического анализа исследовано термическое поведение сложного пированадата марганца-никеля $Mn_{2-2x}Ni_{2x}V_2O_7$. Показано, что характер сверхтонких взаимодействий ⁵¹V в пированадате марганца и твердых растворах на основе его полиморфных модификаций обусловлен структурно-активированным процессом обмена кислородом с газовой фазой.

Ключевые слова: пированадат марганца, пированадат никеля, ЯМР ⁵¹V, фазовые переходы, ДТА, ТГ.

введение

Ванадаты марганца имеют многообещающий потенциал практического использования: в электрохимических устройствах [1, 2], в качестве черного пигмента с высоким коэффициентом отражения в ИК области [3]. Принимая это во внимание, систематическое изучение сложных ванадатов марганца должно быть продолжено. Пированадат марганца претерпевает обратимый фазовый переход I рода при 28 °C [4, 5]. Низкотемпературная модификация α-Mn₂V₂O₇ кристаллизуется в триклинной сингонии, пр. $P\overline{1}$ с параметрами при 20 °C: a = 6.868(2), b = 7,976(2), c = 10,927(2) Å, $\alpha = 87,81(1), \beta = 72,14(1), \gamma = 83,08(1)^{\circ}, V = 564,5(5)$ Å³, Z = 4;β-Mn₂V₂O₇ при 50 °C кристаллизуется в структуре тортвейтита и принадлежит моноклинной сингонии, пр.гр. C2/m с параметрами кристаллической решетки a = 6,7129(6), b = 8,7245(5),c = 4.9693(4) Å, $\beta = 103.591(8)^{\circ}$, V = 282.88(4) Å³, Z = 2 [4]. Кристаллическая структура обеих модификаций Mn₂V₂O₇ представлена сотообразными слоями Mn²⁺, отделенными связанными попарно мостиковым кислородом группами [V₂O₇]. Угол V—O_{мост}—V в ванадий-кислородных тетраэдрах для α-модификации меньше 180°, тогда как в β-Mn₂V₂O₇ он развернут. Атомы ванадия в низкотемпературной модификации Mn₂V₂O₇ занимают четыре кристаллографически неэквивалентные позиции, в β-Mn₂V₂O₇ позиции V⁵⁺ эквивалентны [4]. Нами показано, что замещение Mn^{2+} ионами Ni^{2+} стабилизует низкотемпературную триклинную структуру $Mn_2V_2O_7$ в интервале концентраций до 27 мол.% Ni₂V₂O₇, а температура перехода в моноклинную фазу возрастает до 155±5 °С для Мп_{1.46}Ni_{0.54}V₂O₇ [6]. Спектры ЯМР ⁵¹V твердых растворов α-Mn_{2-2x}Ni_{2x}V₂O₇ имеют сложный многокомпонентный характер. Для твердых растворов β-Mn_{2-2x}Ni_{2x}V₂O₇ спектр представлен одной гауссовой кривой [6]. Целью настоящего исследования явилась аттестация структурно обусловленных взаимодействий в ванадийкислородной подрешетке Mn_{2-2x}Ni_{2x}V₂O₇ при различных температурах.

[©] Журавлёв Н.А., Ротермель М.В., Красненко Т.И., Самигуллина Р.Ф., 2013

Рис. 1. Спектры ЯМР ⁵¹V ($f_{pes} = 22 \text{ M}\Gamma\mu$) М $n_{1,9}$ N $i_{0,1}$ V₂O₇. Порядковые номера линий соответствуют обозначениям в таблице

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Однофазные образцы из области существования твердого раствора $Mn_{2-2x}Ni_{2x}V_2O_7$ получены по методике, описанной в [6]. Спектры ЯМР ⁵¹V снимали на модифицированном спектрометре широких линий ЯМР Tesla BS 567 A, резонансная частота $f_r = 22$ МГц в температурном интервале $-95 \div +170$ °C. Величины сдвигов линий $K_{iso} = (H - H_0)/H_0$ измерены относительно положения пика ЯМР ⁵¹V (H_0) в 1М водном растворе KVO₃. Сопряженные термогравиметрический (ТГ) и дифференциально-термический анализы (ДТА) выполняли на термоанализаторе SETSYS Evolution (Setaram, Франция) в воздушной среде при скорости изменения температуры 10 град./мин в интервале температур 20—700 °C. В качестве эталона использовали оксид алюминия.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Спектры ЯМР ⁵¹V триклинной низкотемпературной модификации α -Mn₂V₂O₇ и твердых растворов на его основе могут быть разложены на четыре компоненты гауссовой формы с различными параметрами сверхтонких взаимодействий (СТВ) (рис. 1). Изменение числа линий

Линия <i>I</i>				Линия 2			Линия <i>3</i>			Линия <i>4</i>		
		Ширина,			Ширина,			Ширина,			Ширина	,
t, °C	$K_{\rm iso},\%$	Гс	<i>S</i> , %	$K_{\rm iso},\%$	Гс	<i>S</i> , %	$K_{\rm iso}, \%$	Гс	<i>S</i> , %	$K_{\rm iso},\%$	Гс	<i>S</i> , %
$Mn_{1,46}Ni_{0,54}V_2O_7$												
23	0,73	35,7	10,13	0,518	35,7	16,85	0,2224	43,7	40,09	-0,134	71,4	32,94
125	0,587	35,7	15,73	0,361	35,7	15,96	0,16	35,7	42,47	-0,11	40,1	25,84
150	0,553	35,7	14,29	0,306	35,7	11,98	0,111	40,1	56,68	-0,126	44,6	17,05
$Mn_{1,9}Ni_{0,1}V_2O_7$												
23	0,505	32,1	20,00	0,202	42,8	51,00	-0,145	44,6	19,00	-0,38	44,6	10,00
30	0,49	33,9	24,86	0,205	40,1	52,77	-0,12	44,6	15,72	-0,4	44,6	6,66
50	0,46	31,2	20,74	0,192	37,5	47,73	-0,145	47,3	21,74	-0,4	47,3	9,79
100	0,395	28,5	18,38	0,16	36,6	53,61	-0,102	44,6	18,32	-0,355	44,6	9,69
105	0,295	35,7	9,36	0,082	34,3	82,58	-0,07	44,6	8,05			0,00
115			0,00	0,077	33,9	100,00			0,00			0,00
125			0,00	0,078	35,7	100,00			0,00			0,00
150			0,00	0,07	31,2	100,00			0,00			0,00
$Mn_2V_2O_7$												
-30	0,6	40,1	24,38	0,234	44,6	51,25	-0,1	44,6	9,43	-0,31	44,6	14,95
0	0,545	23,6	12,61	0,17	44,6	75,39	-0,07	23,6	3,84	-0,215	23,6	8,16
15	0,53	35,7	11,38	0,131	47,7	67,23	-0,21	44,6	13,17	-0,47	35,7	8,22
20	0,48	26,8	4,75	0,115	41,9	83,52	-0,23	44,6	4,75	-0,46	44,6	6,98
23	0,35	31,2	2,13	0,097	41,0	97,87			0,00			0,00
40			0,00	0,098	36,6	100,00			0,00			0,00
100			0,00	0,082	33,9	100,00			0,00			0,00

Параметры сверхтонких взаимодействий ЯМР 51 V в $Mn_{2-2x}Ni_{2x}V_2O_7$

Рис. 2. Температурные зависимости изотропного сдвига (*a*) и интегральной интенсивности (*б*) компонент спектра ЯМР 51 V образца Mn_{1,9}Ni_{0,1}V₂O₇. Порядковые номера линий соответствуют обозначениям в таблице

спектров ЯМР ⁵¹V при фазовом переходе соответствует числу кристаллографически неэквивалентных позиций ионов ванадия в α - и β -модификациях. Гауссова форма всех компонент спектра ЯМР ⁵¹V в обеих модификациях свидетельствует о сохранении высокой степени симметрии зарядового окружения ванадия внутри кислородных тетраэдров. Параметры сверхтонких взаимодействий для $Mn_2V_2O_7$ и ряда составов твердых растворов при различных температурах представлены в таблице. На рис. 2 показаны зависимости параметров СТВ от температуры для образца $Mn_{1,9}Ni_{0,1}V_2O_7$. Наличие изотропного сдвига линий ЯМР ⁵¹V может быть обусловлено трансформацией зарядового окружения ядер ванадия, связанного с присутствием вакансий в кислородной подрешетке и появлением дополнительной электронной плотности на ионах ванадия.

Для регистрации обмена кислородом с газовой фазой нами проведены термоаналитические и термогравиметрические исследования образца состава $Mn_{1,6}Ni_{0,4}V_2O_7$. Кривые ДТА и ТГ нагрева и охлаждения приведены на рис. 3. При нагреве регистрируется эндотермический, а при охлаждении — экзотермический эффект с началом при 102 °C. Максимумы эффектов сдвинуты относительно друг друга по температуре, что обусловлено кинетикой процессов (скорость нагрева—охлаждения 10 град./мин), величины эффектов ΔH близки (1,5 кДж/моль — эндоэффект, 1,3 кДж/моль — экзоэффект, среднее значение энтальпии фазового перехода (1,4± ±0,1) кДж/моль). Заметим, что энтальпия фазового перехода понижается с ростом концентра-

ции ионов никеля в твердом растворе. Так, для крайнего состава твердого раствора $Mn_{1,46}Ni_{0,54}V_2O_7 \Delta H = (0,9\pm0,1)$ кДж/моль, тогда как для $Mn_2V_2O_7 \Delta H = (3,7\pm0,3)$ кДж/моль [4].

Следует обратить внимание, что при двойном циклическом процессе нагрева-охлаждения образца его масса обратимо изменяется: при нагревании увеличивается, а при охлаждении — уменьшается на одну и ту же величину, $\Delta m/m = (0,032 \pm \pm 0,001)$ % в температурном интервале 50—200 °C. Рост массы образца при нагреве может быть объяснен заполнением кислородных вакансий кислородом газовой фазы, а уменьшение массы при охлаждении — обратным процессом. Такое неординар-

Рис. 3. Кривые ДТА и ТГ нагрева и охлаждения для $Mn_{1,6}Ni_{0,4}V_2O_7$

ное поведение образца при нагреве и охлаждении очевидно не связано с термической активацией выхода кислорода в газовую фазу. Наблюдаемое явление повторяющегося обмена образца кислородом с газовой фазой в процессах нагрева—охлаждения может быть обусловлено деформационными преобразованиями низкосимметричной структуры, когда с изменением температуры происходят сдвиги слоев марганец-кислородной подрешетки, изменяются межатомные расстояния и образуется возможность для ионов кислорода занимать вакантные места при нагреве и освобождать их при охлаждении.

выводы

Таким образом, изотропные сдвиги спектров ЯМР ⁵¹V обусловлены структурными кислородными вакансиями, приводящими к изменению зарядового окружения ядер ванадия, т.е. появлению состояний с переменной валентностью. Обратная корреляция числа кислородных вакансий с изменением температуры обусловлена сдвиговыми термическими деформациями слоистой структуры сложного пированадата марганца-никеля.

Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект № 11-03-00779-а.

СПИСОК ЛИТЕРАТУРЫ

- 1. Gouda G.M., Nagendra C.L. // Sensors and actuators A. 2009. 166. P. 263.
- 2. Andrukaitis E. // J. Power Sources. 1997. 68. P. 652.
- 3. Красненко Т.И. // Патент РФ 2471712 от 10.01.2013. Заявка № 2011123950 от 10.06.2011.
- 4. *Liao J.-H., Leroux F., Payen C. et al.* // J. Solid State Chem. 1996. **121**. P. 214.
- 5. Красненко Т.И., Добош В.Г., Светлаков С.В. и др. // Журн. неорган. химии. 1999. 44, № 3. С. 485.
- 6. Красненко Т.И., Журавлёв Н.А., Ротермель М.В. // Изв. РАН. Сер. физ. 2013. 77, № 3. С. 278.