УДК 552.112

СОСТАВ ФЛЮИДА В КАРБОНАТ- И ХЛОРСОДЕРЖАЩЕМ ПЕЛИТЕ ВБЛИЗИ ВТОРОЙ КРИТИЧЕСКОЙ ТОЧКИ: РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ С ПРИМЕНЕНИЕМ МЕТОДИКИ АЛМАЗНОЙ ЛОВУШКИ

А.Г. Сокол, О.А. Козьменко, А.Н. Крук, С.Ф. Нечепуренко

Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, просп. Академика Коптюга 3, Россия

Экспериментально при давлении 3.0 ГПа и температурах 750 и 900 °C с использованием метода алмазной ловушки исследован состав флюида в карбонат- и хлорсодержащем пелите. Отработка алгоритма реконструкции состава флюида на базе данных ИСП-АЭС и масс-балансных расчетов позволила установить, что в изученной системе уже при 3.0 ГПа и 750 °С образуется флюид, близкий по составу к сверхкритическому. Такой флюид содержит 30-50 мас. % H₂O + CO₂, до 1 мас. % Cl. Он обогащен Si и Al и содержит следующий ряд элементов в порядке снижения их концентрации: $\mathrm{K} > \mathrm{Na} > \mathrm{Ca} \approx \mathrm{Fe} >$ > Mg > Mn > Ti \approx P. Высокие концентрации CO₂ и хлора во флюиде снижают растворимость в нем Si, но увеличивают Fe, Ca, Mg и Mn в сравнении со сверхкритическими флюидами в системах пелит-H₂O и эклогит—H₂O. При температуре 900 °C в системе образуется силикатный расплав, характерный по составу для пелитовых систем. Особенностью фракционирования элементов между твердыми фазами эклогитоподобной ассоциации и сверхкритическим флюидом в наших экспериментах является высокая полвижность P. Sr и B и относительно низкая Li и S. Таким образом, близкий по составу к пелитовым расплавам зон субдукции флюид может транспортировать в область генерации дуговых магм большое количество летучих (H₂O, CO₂, Cl и P), а также значительное количество петрогенных компонентов. Однако такой высококонцентрированный флюид будет иметь характерные геохимические метки низкотемпературных слабоконцентрированных флюидов.

Мантия, субдукция, пелиты, флюид, глубинный цикл летучих, генерация магм, мантийный метасоматоз

COMPOSITION OF THE FLUID IN CARBONATE- AND CHLORINE-BEARING PELITE NEAR THE SECOND CRITICAL POINT: RESULTS OF DIAMOND TRAP EXPERIMENTS

A.G. Sokol, O.A. Koz'menko, A.N. Kruk, S.F. Nechepurenko

The composition of the fluid in carbonate- and chlorine-bearing pelite was experimentally studied at 3.0 GPa and 750 and 900 °C, using the diamond trap method. The results of inductively coupled plasma atomicemission spectrometry (ICP AES) data and mass balance calculations showed that a supercritical fluid formed in the studied system at 3.0 GPa and 750 °C. The fluid is Si- and Al-rich and contains 30-50 wt.% $H_2O + CO_2$ and up to 1 wt.% Cl. The contents of other major elements decrease in the order: $K > Na > Ca \approx Fe > Mg > Mn >$ $> Ti \approx P$. Compared with supercritical fluids appeared in the systems pelite– H_2O and eclogite– H_2O , the fluid with high CO_2 and Cl contents is richer in Fe, Ca, Mg, and Mn but poorer in Si. Silicate melt generated in this system at 900 °C has a composition typical of pelitic melt. Our experiments reveal a set of fingerprints of element fractionation between a supercritical fluid and solids forming an eclogite-like association, namely, high mobility of P, Sr, and B and low mobility of Li and S. Thus, a supercritical fluid compositionally similar to the pelitic melts generated in subduction zones can transfer significant amounts of both volatiles (H_2O , CO_2 , Cl, and P) and major components to the regions of arc magma generation. It is important that supercritical fluids should have trace element signatures of diluted low-temperature fluids.

Mantle, subduction, pelite, fluid, deep volatile cycle, magma generation, mantle metasomatism

введение

Флюиды, образующиеся в зонах субдукции, в значительной мере обеспечивают транспорт вещества из пород слэба в мантию и поэтому играют ключевую роль в генерации мантийных магм [Hermann et al., 2013; Schmidt, Poli, 2014; Keppler, 2017; Manning, Frezzotti, 2020]. Будучи частью субдуцируемых слэбов, морские/океанические осадки — пелиты являются важным источником флюидов зон субдукции и вносят существенный вклад в транспорт в мантию воды и определяющий вклад в доставку углерода, азота, крупноионных литофильных (LILE) и высокозарядных элементов (HFSE) [Hermann, 2002; Busigny

© Сокол А.Г.[⊠], Козьменко О.А., Крук А.Н., Нечепуренко С.Ф., 2023 [∞]e-mail: sokola@igm.nsc.ru et al., 2011; Hermann et al., 2013; Schmidt, Poli, 2014; Plank, Manning, 2019]. Поэтому реакции дегидратации и декарбонатизации в пелитах при субдукционных *PT*-параметрах вызывают большой интерес среди исследователей. На сегодняшний день установлено, что в широком диапазоне давлений (3—8 ГПа) при температурах вплоть до начала плавления ключевой водосодержащей фазой в породах пелитового состава является фенгит [Domanik, Holloway, 1996; Schmidt et al., 2004; Schmidt, Poli, 2014]. С ростом давления существенно водный флюид, образующийся при частичной дегидратации пелитов, приобретает способность растворять значительное количество петрогенных компонентов. Эта тенденция приводит к тому, что при P > 3—5 ГПа пелиты, содержащие летучие компоненты, достигают условий вторых критических точек, после чего состав флюида в них становится неотличим от состава расплава [Shen, Keppler, 1997; Bureau, Keppler, 1999; Schmidt et al., 2004; Kessel et al., 2005; Manning et al., 2010; Dolejs, Manning, 2010]. Предполагается, что карбонатные фазы достаточно стабильны в зонах субдукции. Тем не менее, согласно оценкам [Kelemen, Manning, 2015; Plank, Manning, 2019], около 30 % субдуцированного углерода возвращается на поверхность в виде CO₂. При этом роль CO₂ в субдукционных флюидах практически не изучена.

Работы по изучению макро- и микроэлементного состава флюидов, образующихся в реакциях дегидратации субдуцируемых пород при характерных PTf_{O_2} -параметрах, пока немногочисленны [Johnson, Plank, 1999; Kessel et al., 2005; Klimm et al., 2008; Hermann, Rubatto, 2009; Skora, Blundy, 2010]. Как правило, это экспериментальные работы, в которых исследуются флюиды, образующиеся в метаосадках, не содержащих карбонатов. На сегодняшний день отсутствуют систематические данные о концентрациях петрогенных элементов, LILE, HFSE и редкоземельных элементов (REE) в субдукционных флюидах, а также о коэффициентах распределения редких элементов между флюидами и карбонатсодержащими пелитами при давлении ≥ 3 ГПа. Дефицит данных по макро- и микроэлементному составу флюидов из карбонатсодержащих пород обусловливает актуальность адаптации метода удержания закаленных флюидов в алмазных ловушках [Рябчиков и др., 1989; Stalder et al., 1998; Johnson, Plank, 1999; Kessel et al., 2005; Hermann, Rubatto, 2009] для экспериментов с карбонатсодержащим веществом. Такие данные необходимы для разработки количественной модели массообмена между зонами субдукции и мантией.

В этой работе нами с использованием метода алмазной ловушки отработан алгоритм реконструкции состава флюида, образующегося в CO₂- и Cl-содержащем пелите при давлении 3.0 ГПа и температурах 750 и 900 °C, а также получены первые данные о влиянии CO₂ и Cl на параметры второй критической точки в пелитовой системе и о составе стабильных в ней флюидов.

МЕТОДИКА

Исходные вещества. Для экспериментов использовали глубоководный морской осадок (пелит) майкопской свиты (Таманский полуостров, Россия) (табл. 1) [Sokol et al., 2018]. Ранее этот пелит применяли в работе по изучению стабильности карбонатов при субдукционных РТ-параметрах [Сокол и др., 2023]. Пелит состоит из (мас. %): 52 — мусковита, 20 — кварца, 15 — иллитов, 5 — альбита, 5 — каолинита, 2 — кальцита и 1.7 — сидерита. Согласно термогравиметрическому анализу, он содержит 1.87 мас. % CO₂ и 5.4 мас. % H₂O. Содержание хлор-ионов в пелите составляет 0.1 мас. %. Определение хлоридов проводилось турбодиметрическим методом. Чувствительность метода — 1 мкг хлоридов в пробе. Суммарная погрешность результата определения хлор-иона с доверительной вероятностью 0.95 составляет 15 %.

Тонкоизмельченный порошок пелита размещали в Au и Pt ампулы с толщиной стенки 0.2 мм диаметром 2 и 10 мм соответственно. Вес образцов варьировали от 9.5 до 504 мг. Для изучения состава субдукционных флюидов нами использован адоптированный для целей работы метод алмазной ловушки. Он был предложен И.Д. Рябчиковым с соавторами [1989] и с успехом использован в работах [Stalder et al., 1998; Johnson, Plank, 1999; Kessel et al., 2004, 2005; Hermann, Spandler, 2008; Dvir,

	1 ,	1
Компонент	Пелит	GLOSS-II
SiO ₂	55.9	56.6
TiO ₂	0.9	0.6
Al_2O_3	17.3	12.5
FeO	4.4	5.7
Fe ₂ O ₃	2.6	_
MnO	0.1	0.4
MgO	3.6	2.8
CaO	2.6	6.2
Na ₂ O	1.4	2.5
K ₂ O	3.0	2.2
P_2O_5	0.1	0.2
CO_2	1.9	3.1
H ₂ O	5.4	7.1
C1	1000	
S	7056	
Li	84	45
В	244	68
Sr	167	302

Таблица 1. Состав майкопского пелита в сравнении с составом среднестатистического субдукционного осадка GLOSS-II [Plank, 2014]

Примечание. Оксиды в мас. %, элементы в ppm. Состав пелита приведен в соответствии с данными [Sokol et al., 2018].

Рис. 1. Ячейка высокого давления для опытов с алмазными ловушками.

I — контейнер из ZrO₂; *2* — цилиндрический графитовый нагреватель; *3* — термопара PtRh₆/PtRh₃₀; *4* — MgO; *5* — Pt ампула; *6* — ZrO₂; *7* — Мо токовводы; *8* — алмазная ловушка; *9* — пелит; *10* — дополнительная Au ампула с пелитом.

Kessel, 2017]. Метод заключается в том, что для улавливания флюида в образцах при высоких *PT*-параметрах в ампулу добавляется слой (около 30 % от массы образца) синтетического алмазного порошка размерностью 14—20 мкм, марки АСМ. Наш подход заключается в существенном увеличении массы образца до 400—500 мг и алмазной ловушки до ~250—300 мг. Большой объем вещества флюида в ловушке позволил использовать методы анализа состава флюида с помо-

щью ИСП-АЭС и ИСП-МС из раствора. Кроме того, непосредственно взвешиванием можно было определять степень заполнения ловушки флюидным материалом.

Ампулы с образцами и ловушками герметично заваривали дуговой сваркой. При сборке ячеек Pt ампулы с ловушками (диаметром 10 мм) размещали донышком вверх, так чтобы ловушка находилась в верхней части ампул (рис. 1). Дополнительные Au ампулы (диаметром 2 мм) с образцами пелита применяли как контрольные для изучения фазовых отношений в образцах. Длительность экспериментов составляла 40 ч. При ее оптимизации мы руководствовались данными работы [Johnson, Plank, 1999]. В экспериментах с помощью алмазных ловушек при 2 ГПа и 600 °С периодом от 1 до 8 сут было показано, что уже при длительности около 40 ч отношения Ba/Cs и Th/Rb в алмазных ловушках достигают равновесных значений. Относительно небольшая длительность экспериментов требовалась для того, чтобы предотвратить восстановление CO_2 во флюиде за счет притока водорода в ампулы из внешних деталей ячеек. Наш предыдущий опыт показывает, что даже в ампулах из золота флюид в экспериментах длительностью более 100 ч может заметно восстанавливаться [Сокол и др., 2004; Kupriyanov et al., 2023].

После экспериментов ампулы с образцом и ловушкой взвешивались, а затем прокалывались. После прекращения выделения из ампул жидкости и газов их сушили 24 ч при 100 °C и снова взвешивали. Полученная разница $G_{(H_{2}O + CO_{2})}$ фиксировала количество в ампуле жидкости и газов, в основном $H_{2}O$ и CO₂, отделившихся при закалке флюида. После полного вскрытия ампул ловушку отделяли от образца.

Важнейшим параметром для масс-балансных расчетов при реконструкции состава флюида в алмазных ловушках является степень их заполнения продуктами закалки флюида. В ходе отработки методики был опробован вариант как использования BSE изображений сколов алмазной ловушки после экспериментов, так и взвешивания алмазной ловушки до и после растворения содержащегося в ней материала флюида. Наилучшим был признан второй вариант. Вес флюидного материала в алмазной ловушке ($G_{\rm FM}$) определяли по формуле: $G_{\rm FM} = G_{\rm L} - (G_{\rm M} + G_{\rm LOI})$, где $G_{\rm L}$ — вес образца ловушки до кислотного вскрытия; $G_{\rm M}$ — вес чистого алмазного порошка из образца ловушки; $G_{\rm LOI}$ — вес летучих компонентов, адсорбированных уже после вскрытия ампулы на материале ловушки (дополнительные материалы, https://sibran.ru/journals/Suppl_Sokol_1.pdf, табл. S1). Определение $G_{\rm LOI}$ проводилось путем взвешивания образца ловушки до и после отжига в течение 4 ч при температуре 550 °C. $G_{\rm M}$ определяли взвешиванием алмазного порошка после кислотного вскрытия, промывки в дистиллированной воде и сушке 1 ч при 350 °C. Предварительные опыты показали, что при отжиге ловушки при 550 °C и последующем поликислотном разложении в пределах погрешности измерения (0.1 мг) не происходит потери веса микроалмазов.

Методика экспериментов. Эксперименты при давлении 3.0 ГПа проведены на многопуансонном аппарате «разрезная сфера» (БАРС) [Palyanov et al., 2017]. Ампулы для экспериментов размещали в ячейки высокого давления, которые имеют форму тетрагональной призмы размером $21.1 \times 21.1 \times 25.4$ мм, с графитовым нагревателем высотой 18.5 мм. Давление в ячейках было откалибровано по фазовым переходам в Ві при 2.55 ГПа и в PbSe при 4.0 и 6.8 ГПа при комнатной температуре. При температуре 900 °С калибровка осуществлялась с использованием фазового перехода кварц—коэсит [Bohlen, Boettcher, 1982]. Температура измерялась PtRh₆/PtRh₃₀ термопарой в каждом эксперименте. Термопара была откалибрована при 6.3 ГПа относительно точек плавления Al и Ag [Sokol et al., 2015]. Измерения давления и температуры проводились с погрешностью ± 0.1 ГПа и ± 20 °C [Sokol et al., 2015; Palyanov et al., 2017]. Закалка образцов происходила со скоростью 150 град/с.

Анализ флюидного материала методом ИСП-АЭС. Особенностью образцов алмазных ловушек с флюидным материалом после экспериментов является то, что: (1) из них невозможно приготовить полированные шлифы для локальных методов анализа; (2) флюидный материал в некоторых случаях неоднородно заполняет ловушку; (3) доступная для анализа масса ловушки с флюидным материалом,

как правило, не превышает 25—50 мг. Определение в ловушках содержаний петрогенных и некоторых микроэлементов осуществляли методом ИСП-АЭС, который позволяет одновременно устанавливать большой набор элементов с широким диапазоном концентраций и низкими пределами обнаружения $(n \cdot 10^{-4} - n \cdot 10^{-5} \%)$. Для пробоподготовки использован метод щелочного плавления с гидроксидом калия как наиболее подходящий для одновременного определения петрогенных и микроэлементов, включая В и Li. Для эффективного сплавления соотношение веса пробы и плавня должно быть, как минимум, 1:4, что дает высокую концентрацию калия в анализируемом растворе и может приводить к самопоглощению аналитических линий определяемых элементов [Седых и др., 2019]. В связи с этим нам необходимо было оптимизировать соотношение навески пробы и плавня, имея в распоряжении от 5 до 50 мг материала алмазной ловушки. Поскольку исходные образцы могут содержать сульфиды, то для возможности определения Fe, S, Zn и др. были выполнены тестовые анализы с добавлением в плавень пероксида натрия.

Для проверки и подтверждения правильности разработанной методики были взяты стандартные образцы (СО) горных пород различного состава: UB-N (серпентинит), Dr-N (диорит), СГД-1а (габбро), СГХМ-4 (алюмосиликатные отложения). Справочные значения всех стандартных образцов приводятся в [http://georem.mpch-mainz.gwdg.de/sample_query.asp]. Для расчета концентраций применяли внешнюю градуировку (I) по многоэлементным растворам стандартов МЭС-1, 2, 3 производства НПП «Скат». Рабочие растворы сравнения для построения калибровочных графиков готовили разбавлением соответствующего МЭС с использованием деионизованной воды, азотной кислоты и добавлением во все растворы Sc как внутреннего стандарта с конечной концентрацией 2 мг/л. Градуировка прибора (II) проводилась по растворам, приготовленным из СО UB-N, DrN, СГД-1а, СГХМ-4 [Пупышев, Данилова, 2007]. Анализ выполнялся на атомно-эмиссионном спектрометре с индуктивно связанной плазмой iCAP-PRO (Duo) фирмы «ThermoFisherScientific», США. Для управления прибором применяли программное обеспечение Qtegra.

Пробоподготовка. Сплавление навесок от 5 до 50 мг проводили в стеклоуглеродных тиглях объемом 45 мл при соотношении плава к пробе ~1:6 по весу. Воздушно-сухую пробу помещали на дно тигля и добавляли 1—2 мл раствора КОН с концентрацией 0.1 г/мл на пробу. Тигель ставили в холодный муфель и сушили 1 ч при температуре 100—150 °C. Далее температуру в муфеле поднимали до 550 °C, после 5-минутной выдержки тигель извлекали. После охлаждения плава в тигель добавляли ~5 мл воды и оставляли на 2—3 ч. Затем в тигель по каплям добавляли 2 мл 15 %-й HCl, не допуская разбрызгивания, и раствор переносили в пробирку объемом 10 мл. Для определения петрогенных элементов растворы дополнительно разбавляли соляной кислотой той же концентрации в 10 раз. В растворы добавляли Sc как внутренний стандарт (в расчете на пробу 2 мг/л Sc).

При использовании пероксида натрия в тигли из стеклоуглерода помещали 5—25 мг воздушносухой пробы и добавляли 100—200 мг сухого КОН и 25—50 мг Na₂O₂. Затем выполняли ту же последовательность процедур, как при сплавлении с КОН. Для выявления возможного загрязнения проб в процессе химической подготовки в каждой серии анализов определяли контрольные (холостые) образцы. Контрольные и стандартные образцы готовили совместно с серией исследуемых образцов по описанной выше процедуре.

Выбор условий съемки и внутреннего стандарта. Для получения интенсивного и хорошо воспроизводимого сигнала при сохранении низкого уровня шумовых помех были выбраны следующие параметры условий съемки: мощность высокочастотного генератора 1150 Вт; распылительный поток аргона 0.65 л/мин; вспомогательный поток аргона расход пробы 0.5 мл/мин; охлаждающий поток аргона 12.5 л/мин; наблюдение плазмы аксиальное. Скорость перистальтического насоса 45 оборотов/мин; время промывки 40 с; регистрация сигнала 10—20 с. Измерение концентрации определяемых элементов выполняли на длинах волн без значимых спектральных наложений, обеспечивающих необходимую чувствительность. Введение Sc успешно корректирует влияние матрицы в растворах с высоким содержанием КСІ [Tiggelman et al., 1990]; выбранные линии — Sc 255.237; Sc 361.384; Sc 391.181 нм.

Расчет концентраций. Концентрации рассчитывались по формуле $C_{p-p} = I_{\mu_{3M. p-pa}}/I_{CO} \times A$, где I — концентрации измеряемых растворов пробы и CO, A — концентрация в CO. В тексте и таблицах приводятся концентрации калия в растворе в пересчете на КОН. В таблице 2 даны результаты определения элементов в CO из растворов после сплавления, рассчитанные с применением внутреннего стандарта по калибровкам, выполненным методом внешней градуировки (I) из растворов МЭС, доверительная вероятность 0.95. Полученные данные показали удовлетворительную сходимость с аттестованными значениями (учитывая диапазон аттестованных значений) и не выявили влияния КОН (при концентрации 10 мг/мл) на эмиссию определяемых элементов. Для оценки матричного влияния Na₂O₂ [Седых и др., 2019] мы определили параметры градуировки (II) по растворам CO после сплавления со смесью КОН и Na₂O₂ (табл. 3), по которым были затем рассчитаны концентрации в исходном пелите (табл. 4).

В таблице 4 приводятся данные содержания микроэлементов в пелите по калибровкам I и II по сравнению с ранее полученными данными [Sokol et al., 2018]. Существенное различие отмечается в со-

Элемент	Длина волны, нм	Контр. опыт	UB-N $C \pm \Delta, n = 4$	Справ. знач.	$DrN \\ C \pm \Delta, n = 8$	Справ. знач.	СГД-1а <i>С</i> ± ∆, <i>n</i> = 7	Справ. знач.	$C\Gamma XM-4$ $C \pm \Delta, n = 7$	Справ. знач.
В	249.678	2.5	150 ± 4	140	5.9 ± 0.7	14	7.8 ± 1.8	11	66.9 ± 2.4	_
Be	313.107	0.004	< 0.1	0.2	1.40 ± 0.03	1.6	1.77 ± 0.07	2.00	3.70 ± 0.07	3.6
Li	670.791	2.1	23.4 ± 1.3	27	33.0 ± 0.5	38.5	12.1 ± 1.0	14.0	137 ± 10	150
Р	213.618	1.2	150 ± 11	174	973 ± 28	797	4783 ± 112	4148	1176 ± 92	1224
S	182.034	110	193 ± 88	200	277 ± 16	350	74 ± 25	140	3758 ± 733	4300
Sr	421.552	1.6	<1.6	10	366 ± 31	400	2158 ± 102	2300	216 ± 13	200

Таблица 2. Результаты определения содержаний элементов (мкг/г) в стандартных образцах, выполненные по рабочим водным растворам (МЭС) (градуировка I) методом ИСП-АЭС

Примечание. Данные рассчитывались с учетом контрольного опыта; навеска для определения составляла 5—25 мг, разведение в 10 мл; концентрация КОН в растворе 10 мг/мл. С — измеренная концентрация, здесь и далее: n — количество замеров.

Таблица	3.
тиолици	<i>J</i> •

Параметры градуировочных функций микроэлементов

	Пар	аметр градуир	овочных функ	ций	_			
Элемент	KO	HC	Na	₂ O ₂	Диапазон градуировки, мкг/г	Коэффициент корреляции (<i>R</i> ²) КОН/ Na-O-		
	а	b	а	b				
В	5.336	0.005	4.128	0.001	11—140	0.9932/0.9958		
Be	0.2018	0.0005	0.1775	0.0004	1.28—3.60	0.9791/0.9772		
Li	1.366	0.004	0.786	0.014	14—150	0.9928/0.9795		
Р	71.4	0.31	62.5	0.59	148—4148	0.9984/0.9949		
S	363.8	0.04	248.1	0.31	140—4300	0.9851/0.9861		

<u>Примечание.</u> *а* и *b* — коэффициенты градуировочной функции: $I_{oth} = aC + b$, где I_{oth} — относительная интенсивность аналитической линии; *C* — концентрация компонента, мас. %.

Элемент			Калибровка				
	Контрольный опыт (n = 11)	МЭС	C	Литературные данные [Sokol et al. 2018]			
	(<i>n</i> - 11)	КОН	КОН	$KOH + Na_2O_2$	[50K01 ct al., 2010]		
В	2.5	268	244	248	244		
Be	0.004	1.87	1.85	1.75	1.90		
Li	2.0	82.5	86	82	84.0		
Р	1.2	493	455	438	405		
S	110	4862	6110	6756	Нет данных		
Sr	1.6	167	Нет	Нет	182		

Таблица 4. Результаты определения микроэлементов в пелите (мкг/г), рассчитанных по двум калибровкам с учетом контрольного опыта

держании S (24.4 %), что связано с окислительным плавлением пробы при добавке пероксида натрия. Также завышены концентрации по бору (8 %). Результаты по остальным элементам хорошо согласуются с данными по калибровкам МЭС. Величина контрольного опыта определяется содержанием примесей в КОН. Добавка Na_2O_2 не вносит существенный вклад в контрольный опыт, завышает количество серы в растворе и уменьшает интенсивность сигналов, особенно Li. Сравнение результатов по калибровов вочным линиям, построенным по внешним водным растворам МЭС и рабочим растворам СО, не выявило значимых различий.

На основании полученных данных мы определили содержание петрогенных компонентов в пелите (табл. 5) с использованием калибровок (I) и сопоставили результаты с данными [Sokol et al., 2018]. Концентрации петрогенных элементов были определены после сплавления с КОН из навесок 5—25 мг (концентрация калия в растворе для измерения 4—10 мг/мл). При определении кремния и алюминия, в отличие от микроэлементов, линейность калибровок (I) ограничивается концентрацией 10 мг в пересчете на исходную сухую пробу в 10 мл раствора.

Таблица 5. Содержание петрогенных компонентов в пелите (мас. %)										
Данные	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅
[Sokol et al., 2018]	55.9	0.9	17.3	7.3	0.1	3.6	2.6	1.4	3	0.1
ИСП-АЭС, <i>n</i> = 3	54.3	0.81	17.9	7.36	0.12	3.17	1.78	н. о.	н. о.	0.11
Стандартное отклонение, мас. %	1.7	12	4.5	8.2	25	8.8	11	»	»	18

Примечание. Здесь и далее: н. о. – не определено.

В результате проведенных исследований отработана методика одновременного определения петрогенных и микроэлементов в алмазных ловушках после сплавления с КОН в диапазоне 2—10 мг/мл методом ИСП-АЭС (методика непригодна для определения К и Na). Величина относительной погрешности зависит от концентрации и составляет 3–5 % для кремния и алюминия и 10—11 % для железа, кальция и магния. Величина контрольного опыта определяется количеством примесей в КОН. Сравнение результатов по калибровочным линиям, построенным по внешним водным растворам МЭС и рабочим растворам СО, не выявило значимых различий, что позволило в дальнейшем использовать калибровку (I) по стандартным растворам МЭС. Необходимым условием получения правильных результатов является уравнивание концентрации плавня (особенно с Na₂O₂) во всех анализируемых растворах.

Сканирующая электронная микроскопия и микрозондовый анализ. Текстурные взаимоотношения фаз и их состав изучались с помощью сканирующего электронного микроскопа Tescan MIRA 3 LMU, снабженного INCA EDS 450 системой микроанализа с детектором EDS X-Max-80 Silicon Drift Detector. Ускоряющее напряжение составляло 20 кВ, ток пучка 1 нА, время набора спектра 20 с. Составы фаз были исследованы методом рентгеноспектрального микроанализа на анализаторе Jeol JXA-8100 при ускоряющем напряжении 20 кВ и силе тока 40 нА. Диаметр пучка 1—2 мкм использовали для силикатных и карбонатных фаз. Время набора спектра для каждого элемента составляло 10 с. В качестве стандартов применяли: пироп (O-145) на Si, Al и Fe; Cr-гранат (Ud-92); Mn-гранат (Mn-IGEM); диопсид на Mg и Ca; альбит на Na; ортоклаз на K; ильменит на Ti; шпинель на Ni. Ошибка измерений была в пределах 2 отн. %. Закаленные стекла анализировали на микрозонде Jeol JXA-8100 расфокусированным пучком диаметром 6—10 мкм.

РЕЗУЛЬТАТЫ

Фазовые отношения в образцах. При давлении 3.0 ГПа и температурах 750 и 900 °С в образцах пелита в результате серии реакций образуется ассоциация граната, фенгита, омфацитового клинопироксена, коэсита и кианита (табл. 6; рис. 2, 3). Среди акцессорных фаз стабильны рутил, карбонат, циркон и

и полученные фазовые ассоциации											
№ экспери- мента	<i>T</i> , ℃	Ампула	Пелит, мг	Алмазная ловушка, мг	$\begin{array}{c} H_2O + CO_2, \\ M\Gamma^* \end{array}$	Главная фаза	Акцессорная фаза				
1760_1_1	750	Pt	503	250	26.0	Grt, Coe, Phe, Cpx, Ky, Fl	Ru, Carb				
1760_1_2	750	Au	17.1		н. о.	Grt, Coe, Phe, Cpx, Ky, Fl	Ро				
2167_2_1	750	Pt	503	255	20.1	н. о.	н. о.				
2103_2_3	750	»	492	250	23.3	Grt, Coe, Phe, Cpx, Ky, Fl	Po, Carb				
2103_2_2	750	Au	13.0		н. о.	Grt, Coe, Phe, Cpx, Ky, Fl	Po, Carb				
1746_1_1	750	Pt	417	300	24.3	н. о.	н. о.				
1748_1_1	900	»	400	251	5.0	Grt, Coe, Phe, Cpx, L?	н. о.				
1748_1_2	900	Au	9.5		н. о.	Grt, Coe, Phe, Cpx, Ky, L?	Ru, Carb, Zrn, Mnz				
2168_2_1	900	Pt	497	251	6.5	Grt, Ky, L	Ru				
670_8_2	900	»	504	256	6.1	Grt, Coe, Phe, Ky, L?	Ru, Po				
670_8_6	900	Au	13.4	_	н. о.	Grt, Coe, Phe, Cpx, Ky, L?	Ru, Zrn, Mnz				

Таблица б.	Условия проведения 40-часовых экспериментов с пелитом при 3.0 ГПа
	и полученные фазовые ассоциации

Примечание. Образцы из экспериментов 2167_2_1, 1746_1_1 были целиком использованы для приготовления растворов для ИСП-АЭС; прочерк — алмазная ловушка не использовалась; Grt — гранат, Coe — коэсит, Phe — фенгит, Cpx — клинопироксен, Ky — кианит, Ru — рутил, Mnz — монацит; Zrn — циркон, Carb — карбонат, L — расплав, L? — возможно присутствие расплава, Fl — флюид.

*Вес H₂O + CO₂, выделившихся после прокола ампул.

Рис. 2. *РТ*-условия экспериментов и фазовая диаграмма системы метапелит—H₂O, по данным [Hermann et al., 2013].

Пунктирные линии — изоплеты Н₂О во флюиле и расплаве (мас. %). 2СР вторая критическая точка в системе. Перитектическая реакция Phe + + Coe + Cpx = Grt + L приведена по данным [Scmidt, Poli, 2014]. Сектора в шестиугольниках отмечают присутствие фазы (черный), присутствие фазы только в части образцов (серый) или отсутствие фазы (белый). Синяя и красная пунктирные линии показывают РТусловия при холодной и горячей (North Cascadia, верхняя часть слэба) субдукции соответственно [Syracuse et al., 2010]. Міса — слюда, остальные обозн. минералов см. в табл. 6.

в части образцов монацит. Фазы в образцах распределены относительно равномерно. В целом образцы из Au и Pt ампул после экспериментов имеют идентичный фазовый состав. Единственное отличие состоит в том, что в образцах, полученных при температуре 900 °C, у стенок Pt ампул формируется тонкий (0.1—0.3 мм) осветленный слой, обусловленный выносом железа. По данным [Schmidt, Poli, 2014; Перчук и др., 2020], солидус пелита при 3.0 ГПа находится между 750 и 900 °C. В наших образцах, полученных при 900 °C, количество закаленного стекла достигает ~40 об. % (см. табл. 6; рис. 3, *a*, δ). Стекло содержит пузырьки размером < 10 мкм. Кроме того, в образцах со стеклом фиксируется гранат, кианит и рутил.

Гранат в образцах представлен идиоморфными, скелетными или атолловыми кристаллами (см. рис. 3, *a*, *б*). Их размер варьирует в пределах 5—30 мкм, достигая в отдельных случаях 60—70 мкм. Количество граната в образцах варьирует от 20 до 33 об. %. Субидиоморфные зерна фенгита в основной массе имеют размер от 10 до 20 мкм (см. рис. 3, *a*). Модальное содержание фенгита достигает ~30 об. % при 750 °C, снижаясь до нуля при 900 °C в образце со стеклом (см. рис. 3, *б*). Коэсит образует ксеноморфные (редко субидиоморфные) зерна размером до 100 мкм (см. рис. 3, *a*). Его содержание варьирует от ~20 об. % до 0 (при плавлении пелита). Клинопироксен в полученных образцах представлен преимущественно субидиоморфными зернами размером до 20 мкм. Его содержание в низкотемпературных образцах достигает ~10 об. %. В высокотемпературных образцах встречаются лишь единичные зерна клинопироксена, либо он исчезает. Количество субидиоморфного кианита и рутила, а также ксеноморф-ного пирротина составляет в образцах первые проценты. Их размер, как правило, не превышал 30 мкм.

В образцах с закаленным стеклом отсутствуют клинопироксен, фенгит и коэсит (см. табл. 6). Такое изменение фазового состав свидетельствует о том, что плавление пелита осуществлялось согласно перитектической реакции Phe + Coe + Cpx = Grt + L [Schmidt et al., 2004; Hermann, Spandler, 2008; Schmidt, Poli, 2014; Перчук и др., 2020].

Состав твердых фаз. Гранат имеет практически идентичный состав в образцах, полученных при 750 и 900 °С (рис. 4, *a*). Содержание гроссулярового минала в гранате варьирует с 18 до 24 %, а пиропа с 17 до 25 %. Количество альмандина в гранатах изменяется от 52 до 57 %. Лишь в одном эксперименте 2168_2_1 состав граната оказался существенно (до 44 %) обогащен пиропом. Зерна граната в части образцов имеют зональность (от центра к краевым частям растет содержание MgO и TiO₂, а содержания FeO и MnO уменьшаются). Важно отметить, что гранаты, полученные при 2.9 ГПа и 900 °С в системе GLOSS—H₂O, моделирующей глобальный субдукционный осадок, имеют состав: 25 % гроссуляра, 21—27 % пиропа и 48—54 % альмандина [Перчук и др., 2020], фактически идентичный с полученными нами гранатами в пелитовой системе. В полученных нами гранатах присутствуют повышенные содержания примесей (мас. %): Na₂O = 0.1—0.3, TiO₂ = 0.5—0.7 и P₂O₅ = 0.3—0.5, типичных для гранатов из пелитовых систем при высоких давлениях и температурах [Hermann, Spandler, 2008].

Клинопироксен в полученных образцах соответствует омфациту. Зерна гомогенны по составу. При увеличении температуры экспериментов доля гиперстена снижается, а жадеита незначительно увеличивается: при 750 °C она варьирует от 63 до 70 %, а при 900 °C от 65 до 75 % (см. рис. 4, δ). Содержание калия в полученных нами клинопироксенах не превышает 0.01 ф. ед.

Рис. 3. ВSE изображения образцов пелита (a, δ) и алмазной ловушки (b, c) после экспериментов.

а — обр. 2103_2_2 (3.0 ГПа, 750 °С), *б* — обр. 2168_2_1 (3.0 ГПа, 900 °С); *в* — алмазная ловушка с флюидным материалом из эксперимента 2103_2_3; *г* — увеличенный фрагмент ловушки, показанный на рис. 3, *в*. Dm — алмаз; FM — флюидный материал.

Фенгит является основной твердой калийсодержащей фазой в полученных ассоциациях. Уже при давлении 3.0 ГПа и температурах 750 и 900 °С доля в нем селадонитового минала достаточно высока (рис. 5). При 750 °С содержание в фенгите Si + Mg в пересчете на 11 атомов кислородов варьирует от 3.6 до 4.0 ф. ед. При 900 °С значение в среднем превышает 3.9 ф. ед., достигая в некоторых зернах 4.1 ф. ед. (см. рис. 5). С ростом температуры концентрация Al закономерно снижается с 2.1 до 1.8 ф. ед.

Рис. 4. Составы граната (*a*) и клинопироксена (*б*) из образцов с пелитом после экспериментов при 3.0 ГПа и 700 и 900 °C.

Рис. 5. Состав фенгита после экспериментов при 3.0 ГПа и 700 и 900 °С.

В системе GLOSS— H_2O при 2.9 ГПа и 750— 850 °С фенгит имеет заметно меньше селадонитового минала: так, в нем Si + Mg варьирует от 3.5 до 3.6 ф. ед., а Al от 2.2 до 2.5 ф. ед. [Перчук и др., 2020].

Карбонат является Fe-Mg твердым раствором. В нем FeO/MgO весовое отношение близко к 1, содержание CaO находится на уровне лишь 1—2 мас. %, а концентрации MnO не достигают 1 мас. %. Такая особенность состава карбоната объясняется низким содержанием CaO в исходном пелите (см. табл. 1). В системе GLOSS—H₂O при сход-

ных *РТ*-параметрах карбонат имеет состав доломита и беден FeO [Перчук и др., 2020]. Монацит содержит (мас. %): 26—30 Ce₂O₃, 11—14 La₂O₃, 7.2—11.1 Nd₂O₃, 2.2—3.3 Pr₂O₃ и 0—1.3 Sm₂O₃. В кианите присутствует от 0 до 0.8 мас. % FeO. Рутил содержит 1.8—2.3 мас. % Al₂O₃ и 0.8—1.2 мас. % FeO. В цирконе фиксируются примеси HfO₂ = 1.5—2.2 мас. % и Nb₂O₅ до 1.5 мас. %.

Состав флюида. По окончании экспериментов в результате закалки образцов флюид распадался на газообразные и жидкие при комнатных условиях компоненты, а также твердое вещество, сохраняющееся в межзерновом пространстве алмазной ловушки. В дополнительных материалах есть видеофильм (Video S1), снятый сразу после прокола иглой Pt ампулы с пелитом и ловушкой диаметром 10 мм (после эксперимента 2103 2 2). Можно видеть, что из ампулы при ее вскрытии интенсивно выделялся газ, в основном СО₂, и вода с растворенными в ней солями. Этот процесс продолжался не менее 30 с. Количество газообразных и жидких компонентов (далее H₂O + CO₂), выделявшихся при вскрытии, определяли взвешиванием ампул до и после вскрытия (с дополнительной сушкой 24 ч при 100 °C). В жидкости присутствовало значительное количество растворенных солей, прежде всего хлоридов калия и натрия [Сокол и др., 2023]. В среднем после экспериментов при 750°С выделялось 4.9 мас. %, а при 900 °С лишь 1.2 мас. % H₂O + CO₂ к массе образца пелита. Образование 4.9 мас. % H₂O + CO₂ соответствует нахождению в образцах 30 мас. % фенгита и 2 мас. % карбоната, что отвечает реальным фазовым отношениям в образцах. Заниженное количество H₂O + CO₂ в образцах после экспериментов при 900 °C связано с образованием в них стекла с пузырьками, заполненными флюидом. В связи с невозможностью определить количество H₂O + CO₂ во флюиде из образцов, полученных при 900 °C, полную реконструкцию состава флюида/расплава в них не проводили. Степень заполнения алмазной ловушки флюидным материалом определяли в соответствии с процедурой, рассмотренной в разделе «Методика». Согласно проведенным после экспериментов при 3.0 ГПа и 750 °С замерам, количество «сухого» флюидного материала в трех ловушках (G_{FM}) варьировало от 23 до 25 мас. % и лишь в одной составило 12 мас. % (см. доп.

№ экспери- мента	Si	Al	K	Fe	Na	Ca	Mg	Ti	Р	Mn	Sr	Li	В	S
750 °C														
2167_2_1	н. о.	5614	4250	2240	4006	1857	1244	435	209	487	166	44.2	н. о.	288
1760_1_1	9475	2005	1562	990	747	1063	739	65.2	108	952	141	8.17	96.0	334
2103_2_3	н. о.	14090	8952	2204	1959	2342	2401	385	760	679	149	26	н. о.	467
2167_2_1*	н. о.	3845	1493	345	825	637	248	260	37.7	45.1	13.3	6.29	н. о.	н. о.
1746_1_1**	15605	2921	1817	681	1474	776	802	140	119	709	103	7.77	115	160
Среднее, <i>n</i> = 5	12540	5695	3615	1292	1802	1335	1087	257	247	574	114	18.0	106	312
	900 °C													
2168_2_1	н. о.	2857	917	260	483	505	175	32.0	28.1	145	14.3	4.26	н. о.	н. о.

Таблица 7. Концентрации петрогенных элементов в алмазных ловушках после экспериментов (ррт)

* Вторая проба из того же образца.

** Среднее из двух определений.

Таблица 8.

Концентрации петрогенных элементов во флюидной фазе (ppm) с учетом доли флюида в алмазной ловушке

№ экспери- мента	Si	Al	K	Fe	Na	Ca	Mg	Ti	Р	Mn	Sr	Li	В	S
2167_2_1	н. о.	23464	17765	9363	16743	7762	5199	1817	873	2036	695	185	н. о.	1205
1760_1_1	47373	10025	7809	4952	3734	5315	3695	326	539	4760	704	40.9	»	н. о.
2103_2_3	н. о.	52010	33044	8135	7231	8643	8863	1422	2804	2506	549	93	480	1723
2167_2_1*	»	13730	5332	1231	2944	2275	887	927	135	161	47.5	22.5	н. о.	н. о.
1746_1_1	103773	19438	4534	9811	5167	5335	527	505	4719	690	52	110	765	1064
Среднее, <i>n</i> = 5	75573	23741	15215	5646	8095	5836	4899	1085	1029	2840	537	79	623	1417

Примечание. Для ловушки из обр. 2168_2_1 доля флюида не определена.

* Вторая проба из того же образца.

материалы, табл. S1). Полученные количественные данные по степени заполнения алмазной ловушки позволили нам рассчитать коэффициент пересчета содержаний макро- и микроэлементов в алмазных ловушках по данным ИСП-АЭС (табл. 7) на их абсолютные концентрации во флюиде (табл. 8).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Положение второй критической точки для СО₂- и СІ-содержащего пелита. Ранее было установлено, что выше второй критической точки (2СР) водный флюид, образующийся при частичной дегидратации пелитов, способен растворять значительное количество петрогенных компонентов [Shen, Keppler, 1997; Bureau, Keppler, 1999; Schmidt et al., 2004; Kessel et al., 2005; Manning et al., 2010; Dolejs, Manning, 2010]. При параметрах 2СР состав флюида становится неотличим от состава расплава (см. рис. 2). В нашем случае дегидратация и декарбонатизация пелита приводила к высвобождению воды и двуокиси углерода. Согласно масс-балансным расчетам, весовое отношение H₂O/(H₂O + CO₂) при 3.0 ГПа и 750 °С во флюиде было не менее 0.7, а содержание хлор-ионов в нем достигало 1 мас. %. Для того чтобы установить, находилась ли исследованная нами система выше 2СР, необходимо определить количественное отношение в образующемся флюиде суммы H₂O + CO₂ к общему количеству растворенного вещества. Количество H₂O + CO₂ в образцах определяли взвешиванием ампул до и после прокалывания с дополнительной сушкой. Вес петрогенного материала из флюида фиксировали взвешиванием алмазной ловушки до и после растворения флюилного материала. Для пролуктов опытов при 3.0 ГПа и 750 °С получены все необходимые данные для определения соответствующего отношения (см. табл. 6, доп. материалы, табл. S1). Однако есть неопределенность в том, как интерпретировать данные о потере при прокаливании алмазной ловушки ($G_{
m LOI}$). При реконструкции флюида мы вычитали $G_{\rm LOI}$ из веса флюидного материала (см. доп. материалы, табл. S1), полагая, что летучие могли быть адсорбированы из воздуха. Однако это могли быть карбонаты и гидроксиды, которые, очевидно, образовывались в алмазной ловушке при закалке флюида. В этом случае они являлись частью флюидного материала. На сегодня мы не можем однозначно установить происхождение летучих, определенных как G_{LOI} . Эта неопределенность создает основную ошибку определения доли $\text{H}_2\text{O} + \text{CO}_2$ к растворенным во флюиде петрогенным компонентам. Тем не менее с учетом и без учета G_{LOI} , количество $\text{H}_2\text{O} + \text{CO}_2$ во флюиде из трех образцов варьировало в относительно узком диапазоне от 26 до 34 мас. % и в одном достигало 42-54 мас. %.

Известно, что в системе метапелит— H_2O расплав ниже 2CP не может содержать более 25— 30 мас. % H_2O (см. рис. 2) [Hermann, Spandler, 2008; Hermann et al., 2013]. Таким образом, часть из реконструированных нами богатых летучими фаз содержала предельные для расплавов количества $H_2O + CO_2$, а часть имела состав, характерный для сверхкритических флюидов при параметрах выше 2CP. Ранее считалось, что для пелитовой системы с >5 мас. % H_2O 2CP находится при давлении 3.6 ГПа и температуре 750 °C, по данным [Hermann, Spandler, 2008; Hermann et al., 2013], а по данным [Schmidt, Poli, 2014], при давлении 5.3 ГПа и температуре 850 °C.

Полученные нами значения позволяют сделать вывод, что при 3.0 ГПа и 750 °С исследованная пелитовая система с 5.4 мас. % H_2O , 1.9 мас. % CO_2 и 0.1 мас. % Cl находилась либо непосредственно вблизи, либо даже выше 2CP. Такой вывод достаточно нетривиален. Дело в том, что присутствие CO_2 и Cl может приводить к разнонаправленному влиянию на растворимость макро- и микрокомпонентов во флюиде [Frezzotti, Ferrando, 2015; Keppler, 2017; Barnes et al., 2018; Manning, 2018; Macris et al., 2020]. CO_2 как неполярный растворитель плохо растворяет силикаты и оксиды. Поэтому, как правило, чем выше

концентрация CO_2 во флюиде, тем ниже в нем должна быть концентрация силикатов и оксидов. Cl должен снижать растворимость SiO₂ [Cruz, Manning, 2015], но его комплексообразование с металлами должно приводить к повышению растворимости других петрогенных компонентов и REE [Macris et al., 2020].

Особенности состава флюида. Традиционно считается, что сверхкритические флюиды в пелитовой системе обогащены Si, Al и K [Schmidt et al., 2004; Hermann et al., 2013; Schmidt, Poli, 2014; Keppler, 2017]. Флюид в исследованной нами пелитовой системе с H_2O , CO_2 и Cl тоже обогащен Si и Al, при этом он содержит следующий ряд элементов в порядке снижения их концентрации: $K > Na > Ca \approx Fe >$ > Mg > Mn > Ti \approx P (см. табл. 8; рис. 6, 7). Ранее в работе [Hermann et al., 2013] отмечалось, что в системе метапелит—H₂O растворимость мафических компонентов очень низка, так что MgO + FeO < 3 мас. %. Очевидно, именно присутствие хлора обеспечивает высокую растворимость во флюиде Fe, Ca и Mg. При этом сопоставление с литературными данными [Kessel et al., 2005; Hermann, Spandler, 2008; Hermann et al., 2013] показывает, что состав реконструированного флюида по отношению (Na + K)/Al к Si/Al (мол. %) попадает в поле расплавов (см. рис. 6). Принципиально, что реконструированный нами состав флюида существенно отличается от состава расплава (закаленного стекла), полученного в тех же образцах пелита при 3.0 ГПа и 900 °С (см. табл. 8, 9). Составы флюида и расплава (нормированные без H₂O и CO₂ к 100 %) содержат близкие количества K₂O и Na₂O. При этом во флюиде меньше SiO₂, но больше Al₂O₃, FeO, CaO, MgO и MnO. Интересно, что состав полученного нами при 900 °C расплава (закаленного стекла) близок к составам расплавов, полученным другими авторами в пелитовых системах при близких РТ-параметрах. Это обусловлено тем, что во всех случаях расплав образовался через перетектическую реакцию: Phe + Coe + Cpx = Grt + L [Schmidt et al., 2004; Hermann, Spandler, 2008; Schmidt, Poli, 2014; Перчук и др., 2020]. Интересно, что вблизи 2СР составы расплавов (закаленных стекол), полученных в системе GLOSS—H₂O при давлении 3.5 ГПа и температурах 750 и 900 °С (см. табл. 9), отличаются несущественно, лишь по содержанию Na₂O [Hermann, Spandler, 2008].

Таким образом, анализ полученных данных свидетельствует в пользу того, что при 3.0 ГПа и 750 °C в карбонат- и хлорсодержащем пелите образуется близкий к сверхкритическому флюид, содержащий 30—50 мас. % $H_2O + CO_2$, до 1 мас. % Cl и 1.5 мас. % P_2O_5 (см. рис. 2). По соотношению Si/Al и (Na + K)/Al он близок к водосодержащим расплавам (см. рис. 6). Однако, в отличие от них, флюид содержит относительно мало SiO₂, но много FeO, CaO, MgO и MnO. Такая особенность состава флюида связана со снижением в нем растворимости SiO₂ в присутствии CO₂ (неполярный растворитель) и Cl, но ростом растворимости металлов из-за их комплексообразования с Cl [Frezzotti, Ferrando, 2015; Cruz, Manning, 2015; Keppler, 2017; Barnes et al., 2018; Manning, 2018; Macris et al., 2020]. С ростом температуры с 750 до 900 °C флюид плавно превращается в расплав с резким увеличением степени плавления пелита до ~40 мас. % и ~4-кратным снижением концентрации в нем Cl. При этом состав расплава становится идентичным с составом расплавов из пелитовых систем (см. табл. 9).

Фракционирование элементов. Полученные данные о составе флюида позволяют нам сделать выводы о подвижности макро- и микроэлементов при процессах дегидратации и декарбонатизации пелитов в зонах субдукции на глубинах около 100 км при характерном для зон субдукции температурном режиме. Фракционирование элементов между силикатной матрицей и флюидом в значительной мере

определяется стабильностью в системе при *PT*параметрах экспериментов соответствующих минералов-концентраторов [Hermann, Rubatto, 2009]. На рисунке 8 приведены нормированные на исходный пелит концентрации элементов в реконструированном флюиде. Можно видеть, что несовместимыми с эклогитоподобной ассоциацией фаз элементами являются P, Mn, Sr и B (источником избыточного Mn могли быть металлические включения в синтетических алмазах ловушки). Наши данные подтвержда-

Рис. 6. Границы составов, экспериментально полученных при субдукционных *РТ*-параметрах водных флюидов, промежуточных сверхкритических флюидов и водосодержащих расплавов, в координатах (Na + K)/Al — Si/Al (мол. %).

1, *3*, *4* — [Kessel et al., 2005]; *2*, *5* — [Hermann, Spandler, 2008]; 6 — составы стекол из образцов, полученных при 3.0 ГПа и 900 °C; 7 — составы флюидов из алмазной ловушки после экспериментов при 3.0 ГПа и 750 °C.

Рис. 7. Содержание петрогенных элементов в сверхкритическом флюиде, реконструированном при анализе алмазных ловушек после экспериментов при 3.0 ГПа и 750 °C.

ют высокую подвижность Sr и B [Leeman, 1996; Marschall et al., 2007; Palmer, 2017] при отделении флюидов из метаосадков в зонах субдукции. Перераспределение фосфора во флюид, по-видимому, отражает высокую растворимость в сверхкритическом флюиде монацита [Keppler, 2017] и, возможно, дополнительного источника фосфора (органика?). При наличии стабильных фаз-концентраторов — фенгита и омфацитового пироксена — калий и натрий демонстрируют умеренную подвижность. Пониженную подвижность показывают Ca > Mg > Fe, которые концентрируются в гранате, пироксене и карбонате. Практически не перераспределяются во флюид Ti и S, находящиеся в стабильных рутиле и пирротине. Известно, что Li может быть подвижным в зонах субдукции в процессах плавления слэбов [Ryan, Langmuir, 1987; Brenan et al., 1998; Caciagli et al., 2011]. В наших образцах Li демонстрирует относительно невысокую подвижность, по-видимому, из-за вхождения в фенгит. В целом полученные данные указывают на то, что фракционирование элементов между твердыми фазами эклогитоподобной

	Наши д	анные	[Schmidt et al., 2004]	[Herm	ann, Spandle	er, 2008]	[Перчук и др., 2020]		
	Пелит— H ₂ O-CO ₂ -Cl	Пелит— H ₂ O-CO ₂ -Cl	Пелит—H ₂ O* (CO 821)		GLOSS—H	20 ₂ 0	GLOSS—H ₂ O		
Параметр	3.0**	3.0	4.0	3.5	3.5	4.5	2.9		
	750***	* 900 900		750	900	700	900		
	Флюид	Расплав	Расплав	Расплав	Расплав	Св. флюид	Расплав		
SiO ₂	58.0	73.0	76.6	74.9	73.6	88.5	74.5		
TiO ₂	0.7	0.2	0.4	0.3	0.3	0.2	0.2		
Al ₂ O ₃	17.7	15.2	13.4	13.6	14.4	2.6	14.1		
FeO	2.9	1.0	0.8	0.6	0.9	0.2	1.0		
MnO	1.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1		
MgO	3.2	0.3	0.2	0.3	0.4	3.9	0.5		
CaO	3.2	0.2	0.6	1.1	1.2	0.6	2.1		
Na ₂ O	4.3	3.2	2.4	6.2	3.8	3.2	3.8		
K ₂ O	7.2	6.3	5.6	3.1	5.2	0.7	3.6		
P_2O_5	1.5	0.5	_	< 0.2	0.25	_	_		
Сумма	100.0	100.0	100.0	99.99	100.0	100.0	99.8		

Таблица 9.	Вариации концентраций петрогенных компонентов в расплавах и сверхкритических фли	оидах
	в системе пелит—летучие и модельной системе GLOSS—H ₂ O (мас. %)	

Примечание. Св. флюид – сверхкритический флюид.

* Природный метапелит амфиболитовой фации.

** Давление, ГПа

*** Температура, °С

Рис. 8. Содержание петрогенных элементов в сверхкритическом флюиде (см. рис. 7), нормированное на состав исходного пелита.

ассоциации и флюидом осуществлялось с типичной для относительно низкой температуры высокой подвижностью P, Sr и B и относительно низкой Li. Сера при редокс-условиях вблизи буфера Ni-NiO (характерных для использованной ячейки высокого давления) оказывается практически неподвижной.

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

Нами отработан алгоритм реконструкции состава флюида, образующегося в системе пелит—летучие вблизи 2СР. Вода и двуокись углерода, выделяющиеся при дегидратации и декарбонатизации пелита, составляют основу флюидной фазы. В то же время флюид содержит высокие концентрации растворенных петрогенных компонентов и микроэлементов. Обобщение данных показало, что при 3.0 ГПа и 750 °C в карбонат- и хлорсодержащем пелите образуется близкий к сверхкритическому флюид, содержащий 30—50 мас. % $H_2O + CO_2$, до 1 мас. % СІ и 1.5 мас. % P_2O_5 . Флюид обогащен Si и Al и содержит следующий ряд элементов в порядке снижения их концентрации: $K > Na > Ca \approx Fe > Mg > Mn >$ > Ti \approx P. Присутствие в системе наряду с H_2O также CO_2 и хлора приводит к тому, что состав образующегося флюида оказывается обеднен Si, но обогащен Fe, Ca, Mg и Mn относительно сверхкритических флюидов в системах пелит— H_2O и эклогит— H_2O . Особенностью фракционирования элементов между твердыми фазами эклогитоподобной ассоциации и флюидом является высокая подвижность P, Sr и B и относительно низкая Li, что характерно для низкотемпературных процессов. Сера при редокс-условиях вблизи буфера Ni-NiO плохо растворяется во флюиде.

Авторы выражают благодарность Ю.М. Борздову, Ю.Н. Пальянову, А.Ф. Хохрякову, а также рецензентам О.Г. Сафонову и А.В. Гирнису за полезные замечания, которые позволили заметно улучшить представление материала.

Аналитические исследования выполнены в ЦКП многоэлементных и изотопных исследований СО РАН. Работа поддержана грантом Российского научного фонда (проект 22-17-00005).

Дополнительные материалы: https://sibran.ru/journals/Suppl_Sokol_1.pdf

ЛИТЕРАТУРА

Перчук А.Л., Сердюк А.А., Зиновьева Н.Г., Шур М.Ю. Плавление и минеральные парагенезисы глобального субдукционного осадка, обогащенного водой, в условиях закрытой и открытой систем: эксперимент и термодинамическое моделирование // Геология и геофизика, 2020, т. 61 (5—6), с. 701—724, doi: 10.15372/GiG2019177.

Пупышев А.А., Данилова Д.А. Использование атомно-эмиссионной спектрометрии с индуктивно связанной плазмой для анализа материалов и продуктов черной металлургии // Аналитика и контроль, 2007, № 2/3, с. 131—181.

Рябчиков И.Д., Орлова Г.П., Каленчук Г.Ю., Ганеев И.И., Удовкина Н.Г., Носик Л.П. Взаимодействие шпинелевого лерцолита с водно-углекислым флюидом при 20 кбар и 900 °С // Геохимия, 1989, № 3, с. 385—392. Седых Э.М., Громяк И.Н., Лоренц К.А., Скрипник А.Я., Колотов В.П. Методический подход к анализу горных пород и метеоритов методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой // ЖАХ, 2019, т. 74, № 4, с. 297—305, doi: 10.1134/S0044450219040121.

Сокол А.Г., Пальянов Ю.Н., Пальянова Г.А., Томиленко А.А. Кристаллизация алмаза во флюидных и карбонатно-флюидных системах при мантийных *P*, *T* параметрах. Ч. 1. Состав флюида / Геохимия, 2004, № 9, с. 1—10.

Сокол А.Г., Крук А.Н., Козьменко О.А., Пальянов Ю.Н. Стабильность карбонатов при субдукции: влияние режима дефлюидизации хлорсодержащего метапелита // ДАН, 2023, т. 509, № 3, с. 50—55, doi: 10.31857/S2686739722602381.

Barnes J.D., Manning C.E., Scambelluri M., Selverstone J. The behavior of halogens during subductionzone processes // The role of halogens in terrestrial and extraterrestrial geochemical processes / Eds. D. Harlov, L. Aranovich. Cham, Springer, 2018, p. 545—590, doi: 10.1007/978-3-319-61667-4_8.

Bohlen S.R., Boettcher A.L. The quartz ⇒ coesite transformation: a precise determination and the effects of other components // J. Geophys. Res. B: Solid Earth, 1982, v. 87 (B8), p. 7073—7078, doi: 10.1029/JB087iB08p07073.

Brenan J.M., Ryerson F.J., Shaw H.F. The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: experiments and models // Geochim. Cosmochim. Acta, 1998, v. 62, p. 3337—3347, doi: 10.1016/S0016-7037(98)00224-5.

Bureau H., Keppler H. Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications // Earth Planet. Sci. Lett., 1999, v. 165, p. 187—196, doi: 10.1016/S0012-821X(98)00266-0.

Busigny V., Cartigny P., Philippot P. Nitrogen isotopes in ophiolitic metagabbros: A re-evaluation of modern nitrogen fluxes in subduction zones and implication for the early Earth atmosphere // Geochim. Cosmochim. Acta, 2011, v. 75 (23), p. 7502—7521, doi: 10.1016/j.gca.2011.09.049.

Caciagli N., Brenan J.M., McDonough W.F., Phinney D. Mineral-fluid partitioning of lithium and implications for slab-mantle interaction // Chem. Geol., 2011, v. 280, p. 384—398, doi: 10.1016/j.chem-geo.2010.11.025.

Cruz M.F., Manning C.E. Experimental determination of quartz solubility and melting in the system $SiO_2-H_2O-NaCl$ at 15–20 kbar and 900–1100 °C: implications for silica polymerization and the formation of supercritical fluids // Contrib. Mineral. Petrol., 2015, v. 170, p. 1–17, doi: 10.1007/s00410-015-1187-7.

Dolejš D., Manning C.E. Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid-flow systems // Geofluids, 2010, v. 10, p. 20—40, doi: 10.1111/j.1468-8123.2010.00282.x.

Domanik K.J., Holloway J.R. The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: Implications for deeply subducted sediments // Geochim. Cosmochim. Acta, 1996, v. 60 (21), p. 4133—4150, doi: 10.1016/S0016-7037(96)00241-4.

Dvir O., Kessel R. The effect of CO₂ on the water-saturated solidus of K-poor peridotite between 4 and 6 GPa // Geochim. Cosmochim. Acta, 2017, v. 206, p. 184—200, doi: 10.1016/j.gca.2017.02.028.

Frezzotti M.L., Ferrando S. The chemical behavior of fluids released during deep subduction based on fluid inclusions // Am. Mineral., 2015, v. 100, p. 352—377, doi: 10.2138/am-2015-4933.

Hermann J. Allanite: thorium and light rare earth element carrier in subducted crust // Chem. Geol., 2002, v. 192, p. 289—306, doi: 10.1016/S0009-2541(02)00222-X.

Hermann J., Rubatto D. Accessory phase control on the trace element signature of sediment melts in subduction zones // Chem. Geol., 2009, v. 265 (3-4), p. 512-526, doi: 10.1016/j.chemgeo.2009.05.018.

Hermann J., Spandler C.J. Sediment melts at sub-arc depths: an experimental study // J. Petrol., 2008, v. 49 (4), p. 717—740, doi: 10.1093/petrology/egm073.

Hermann J., Zheng Y.-F., Rubatto D. Deep fluids in subducted continental crust // Elements, 2013, v. 9 (4), p. 281—287, doi: 10.2113/gselements.9.4.281.

Johnson M.C., Plank T. Dehydration and melting experiments constrain the fate of subducted sediments // Geochem. Geophys. Geosyst., 1999, v. 1 (12), doi: 10.1029/1999GC000014.

Kelemen P.B., Manning C.E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up // PNAS, U.S.A. 2015, v. 112, E3997-E4006, doi: 10.1073/pnas.1507889112.

Keppler H. Fluids and trace element transport in subduction zones // Am. Mineral., 2017, v. 102 (1), p. 5–20, doi: 10.2138/am-2017-5716.

Kessel R., Ulmer P., Pettke T., Schmidt M.W., Thompson A.B. A novel approach to determine highpressure high-temperature fluid and melt compositions using diamond-trap experiments // Am. Mineral., 2004, v. 89 (7), p. 1078—1086, doi: 10.2138/am-2004-0720. Kessel R., Schmidt M.W., Ulmer P., Pettke T. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth // Nature, 2005, v. 437, p. 724—727, doi: 10.1038/nature03971.

Klimm K., Blundy J.D., Green T.H. Trace element partitioning and accessory phase saturation during H₂O-saturated melting of basalt with implications for subduction zone chemical fluxes // J. Petrol., 2008, v. 49, p. 523—553, doi: 10.1093/petrology/egn001.

Kupriyanov I.N., Sokol A.G., Seryotkin Y.V., Kruk A.N., Tomilenko A.A., Bul'bak T.A. Nitrogen fractionation in mica metapelite under hot subduction conditions: Implications for nitrogen ingassing to the mantle // Chem. Geol., 2023, 628, 121476, doi: 10.1016/j.chemgeo.2023.121476.

Leeman W.P. Boron and other fluid-mobile elements in volcanic arc lavas: Implications for subduction processes // Subduction: Top to Bottom / Eds. G.E. Bebout, D.W. Scholl, S.H. Kirby, J.P. Platt. Washington, D.C., AGU. Geophys. Monograph Ser., 1996, v. 96, p. 269–276, doi: 10.1029/GM096p0269.

Macris C.A., Newton R.C., Wykes J., Pan R., Manning C.E. Diopside, enstatite and forsterite solubilities in H₂O and H₂O-NaCl solutions at lower crustal and upper mantle conditions // Geochim. Cosmochim. Acta, 2020, v. 279, p. 119—142, doi: 10.1016/j.gca.2020.03.035.

Manning C.E. Fluids of the lower crust: deep is different // Annu. Rev. Earth Planet. Sci., 2018, v. 46, p. 67—97, doi: 10.1146/annurev-earth-060614-105224.

Manning C.E., Frezzotti M.L. Subduction-zone fluids // Elements, 2020, v. 16 (6), p. 395-400, doi: 10.2138/gselements.16.6.395.

Manning C.E., Antignano A., Lin H.A. Premelting polymerization of crustal and mantle fluids, as indicated by the solubility of albite + paragonite + quartz in H_2O at 1 GPa and 350–620°C // Earth Planet. Sci. Lett., 2010, v. 292, p. 325–336, doi: 10.1016/j.epsl.2010.01.044.

Marschall H.R., Altherr R., Rüpke L. Squeezing out the slab — modelling the release of Li, Be and B during progressive high-pressure metamorphism // Chem. Geol., 2007, v. 239, p. 323—335, doi: 10.1016/j. chemgeo.2006.08.008.

Palmer M.R. Boron cycling in subduction zones // Elements, 2017, v. 13 (4), p. 237—242, doi: 10.2138/ gselements.13.4.237.

Palyanov Yu.N., Kupriyanov I.N., Khokhryakov A.F., Borzdov Yu.M. High-pressure crystallization and properties of diamond from magnesium-based catalysts // CrystEngComm, 2017, v. 19, p. 4459—4475, doi: 10.1039/C7CE01083D.

Plank T. The chemical composition of subducting sediments // Treatise on geochemistry. 2nd ed. Amsterdam, Elsevier, 2014, v. 4, p. 607—629, doi: 10.1016/B978-0-08-095975-7.00319-3.

Plank T., Manning C.E. Subducting carbon // Nature, 2019, v. 574 (7778), p. 343—352, doi: 10.1038/ s41586-019-1643-z.

Ryan J.G., Langmuir C.H. The systematics of lithium abundances in young volcanic rocks // Geochim. Cosmochim. Acta, 1987, v. 51 (6), p. 1727—1741, doi: 10.1016/0016-7037(87)90351-6.

Schmidt M., Poli S. Devolatilization during subduction // Treatise on geochemistry. 2nd ed. Amsterdam, Elsevier, 2014, v. 4, p. 669—701, doi: 10.1016/B978-0-08-095975-7.00321-1.

Schmidt M.W., Vielzeuf D., Auzanneau E. Melting and dissolution of subducting crust at high pressures: the key role of white mica // Earth Planet. Sci. Lett., 2004, v. 228 (1–2), p. 65–84, doi: 10.1016/j. epsl.2004.09.020.

Shen A.H., Keppler H. Direct observation of complete miscibility in the albite–H₂O system // Nature, 1997, v. 385, p. 710–712, doi: 10.1038/385710a0.

Skora S., Blundy J. High-pressure hydrous phase relations of radiolarian clay and implications for the involvement of subducted sediment in arc magmatism // J. Petrol., 2010, v. 51, p. 2211—2243, doi: 10.1093/ petrology/egq054.

Sokol A.G., Borzdov Yu.M., Palyanov Yu.N., Khokhryakov A.F. High-temperature calibration of a multi-anvil high pressure apparatus // High Pressure Res., 2015, v. 35 (2), p. 139—147, doi: 10.1080/08957959.2015.1017819.

Sokol E., Kokh S., Kozmenko O., Novikova S., Khvorov P., Nigmatulina E., Belogub E., Kirillov M. Mineralogy and geochemistry of mud volcanic ejecta: a new look at old issues (a case study from the Bulganak field, Northern Black Sea) // Minerals, 2018, v. 8 (8), p. 344, doi: 10.3390/min8080344.

Stalder R., Foley S.F., Brey G.P., Horn I. Mineral-aqueous fluid partitioning of trace elements at 900–1200 °C and 3.0–5.7 GPa: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism // Geochim. Cosmochim. Acta, 1998, v. 62 (10), p. 1781—1801, doi: 10.1016/S0016-7037(98)00101-X.

Syracuse E.M., van Keken P.E., Abers G.A. The global range of subduction zone thermal models // Phys. Earth Planet. Int., 2010, v. 183 (1–2), p. 73–90, doi: 10.1016/j.pepi.2010.02.004.

Tiggelman J.J., Oukes F.J., De Loos-Vollebregt M.T.C. Signal compensation for the inductively coupled plasma-atomic emission spectrometry analysis of high-solid solutions // Spectrochim. Acta, Part B, 1990, v. 45 (8), p. 927—932, doi: 10.1016/0584-8547(90)80147-B.