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В статье представлены результаты экспериментального исследования нестационарного пузырькового 
кипения на поверхности нагревателя с быстро растущей температурой поверхности. Анализ результатов высо-
коскоростной видеосъемки с частотой 180000 кадров в секунду и пространственным разрешением 5,5 мкм 
на пиксель показал, что входные данные для существующих моделей теплоотдачи при пузырьковом кипении 
подлежат уточнению с учетом существования кластерных и пульсирующих пузырьков. Установлено, что пу-
зырьки, взаимодействуя путем обмена импульсом, теплом и массой пара, ускоряют активацию соседних цен-
тров парообразования, поэтому кластеры пузырьков могут формироваться на начальной стадии покрытия 
паром поверхности нагревателя. Исследованы основные характеристики изолированных, кластерных и пуль-
сирующих пузырьков при перегреве стенки от 0 до 14 K выше температуры начала нуклеации и недогреве 
потока от 23 до 103 K. 

Ключевые слова: пузырьковое кипение в потоке недогретой жидкости, нестационарное тепловыделе-
ние, кластеры пузырьков, пульсирующие пузырьки. 

Введение 

Использование низкой начальной температуры жидкости играет существенную 
роль в повышении эффективности переноса теплоты. Однако глубокий уровень недогре-
ва жидкости заставляет обращаться к нерешенной до сих пор в теоретическом плане 
задаче описания динамического процесса зарождения паровой фазы и устойчивости об-
разующихся паровых объектов. Особенную проблему представляют задачи с нестацио-
нарным выделением теплоты [1], так как быстро изменяющаяся температура поверхнос-
ти существенно ограничивает использование большинства имеющихся теоретических 
результатов. Авторы исследования [2] представили обобщенную модель тепловых пото-
ков при пузырьковом кипении для различных вариантов эволюции пузырьков. В этой 
модели взаимодействие пузырьков было представлено путем учета механизма подав-
ления новых нуклеаций в зоне влияния существующего пузырька за счет снижения ло-
кального уровня перегрева поверхности, а также слияния пузырьков при их касании. 
                                                                        
* Работа выполнена в рамках гранта РНФ (код проекта 22-19-00092), https://rscf.ru/project/22-19-00092. 
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В работе [3] были уточнены размеры областей влияния пузырьков на теплообмен, при 
этом отмечалась существенная неравномерность распределения пузырьков на поверхнос-
ти и, как следствие, необходимость объединения перекрывающихся областей влияния 
пузырьков вместо их прямого суммирования. Авторы [4] со ссылкой на ряд предше-
ственников и результаты собственных экспериментов показали, что при определенных 
условиях пузырьки могут подавлять или, наоборот, активировать соседние центры нук-
леации. Новейшее экспериментальное исследование [5] показало, что вновь появившийся 
пузырек может существенно сократить время роста ранее существовавшего пузырька 
за счет гидродинамического воздействия на его микрослой, осуществляемого без прямо-
го контакта. Настоящее исследование посвящено получению экспериментальных дан-
ных о свойствах пузырьков с учетом их взаимодействия в широком диапазоне перегрева 
стенки и недогрева потока. 

Экспериментальная установка 

Эксперименты проводились на вертикальном прозрачном рабочем участке [6], 
имеющем в сечении форму квадрата со стороной 18 мм, по центру которого располагал-
ся нагреватель в виде полого цилиндра с толщиной стенок 1 мм и внешним диаметром 
12 мм. Помимо рабочего участка, экспериментальная установка включала в себя предва-
рительный нагреватель, бак-дегазатор, насос и систему автоматизированного управле-
ния условиями эксперимента. Средняя шероховатость Ra составляла 0,9 мкм, а макси-
мальная — 9 мкм. Средняя скорость потока жидкости составляла 0,52 м/с. Через сталь-
ной нагреватель пропускался прямоугольный импульс 180 мс с силой тока, обеспечива-
ющей скорость роста температуры поверхности нагревателя 3000 – 3500 K/с. На внут-
ренней стороне цилиндрического нагревателя в стенку было заделано несколько термо-
пар, что позволило измерить максимальное значение температуры нагревателя и ско-
рость роста температуры. До начала эксперимента вода в контуре подвергалась кипяче-
нию в течение нескольких часов для освобождения от растворенных в ней газов. Давле-
ние на рабочем участке составляло 0,3 МПа, что соответствует температуре насыщения 
133 °С. Измерения проводились с недогревом входящего потока ∆Tsub = 23 и 103 K. 
Погрешности измерения диаметров пузырьков, температуры, давления и скорости пото-
ка составили соответственно ± 5,5 мкм, ± 0,5 K, ±3 кПа и ± 0,01 м/с. Видеосъемка прово-
дилась через прозрачную стенку канала, расположенную напротив поверхности нагрева-
теля, с частотой 180257 кадров в секунду, c длительностью экспозиции 5 мкс и про-
странственным разрешением 5,5 мкм на пиксель при размере кадра 256×256 пикселей.  

Взаимодействие пузырьков  

В проведенных экспериментах температура поверхности нагревателя (Tw) с течени-
ем времени росла, так как выделяющаяся при пропускании электрического тока энергия 
намного превосходила возможность отведения теплоты. При достижении температурой 
поверхности температуры начала нуклеации TONB, большей, чем температура насыще-
ния, появлялись пузырьки пара на поверхности нагревателя. По мере дальнейшего роста 
температуры число активирующихся центров парообразования на единицу площади (Na) 
и площадь поверхности, занятой паром (Fv), росли. В случае близкого расположения 
пузырей они образовывали кластеры, внутри которых наблюдалось механическое, тепло-
вое и массообменное взаимодействие. Как показали наблюдения, кластеры появля-
ются даже при заполнении паром всего 2 % поверхности нагревателя, поскольку вслед 
за появлением одного пузырька рядом появляется еще несколько из-за локального 
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повышения температуры пристенного слоя либо увеличения локальной скорости дви-
жения жидкости. Кроме того, при отрыве пузыря на поверхности нагревателя могут 
оставаться фрагменты пара субмикронных размеров, которые служат центрами парооб-
разования. В полученных авторами результатах эффект ускорения активации соседних 
центров парообразования преобладает над описанным в работе [2] эффектом подавления 
соседних центров нуклеации. Основные отличия условий рассматриваемых эксперимен-
тов от условий проведения исследования [2] заключаются в толщине стенки и материале 
нагревателя, высокой скорости роста температуры нагревателя и глубоком недогреве 
жидкости. В работе [2] в качестве нагревателя использовался слой оксидов индия и олова 
толщиной менее 1 мкм, нанесенный поверх подложки из сапфира толщиной 1 мм, 
а измеренные диаметры пузырьков составляли от 0,07 до 0,5 мм. Можно предположить, 
что подавление соседних центров нуклеации, описанное в [2], наиболее характерно 
для тонкостенных нагревателей, температура которых подвержена существенным коле-
баниям в окрестности центров нуклеации под воздействием относительно крупных пу-
зырьков. Следует отметить, что авторы более ранней работы [4] указывали на зависи-
мость характера влияния присутствия пузырька: на подавление либо интенсификацию 
соседних центров парообразования в зависимости от расстояний между центрами. В на-
стоящем исследовании также наблюдается увеличение плотности центров нуклеации 
в окрестности существующих на поверхности пузырьков, в результате чего возникают 
характерные паровые структуры — кластеры пузырьков. 

Измеренные скорости роста пузырьков достигали 10 м/с, поэтому очевидно, что 
скорость движения выталкиваемой жидкости от места нуклеации может легко превы-
сить скорость вынужденного движения жидкости. При росте крупного пузырька сосед-
ние мелкие смещаются в направлении от него, а при конденсации — к нему. В обоих 
случаях происходит их отрыв и конденсация. Так проявляется механическое взаимодей-
ствие пузырьков. Взаимодействие путем передачи теплоты и массы пара обычно имеет 
место при непосредственном контакте пузырьков в направлении более активно растуще-
го на данный момент контакта, который связан, как правило, с пузырем, появившимся 
позднее. При этом время жизни старого пузыря сокращается, а новый достигает более 
крупного размера. При больших значениях недогрева потока на начальном этапе 
пузырькового кипения толщина перегретого слоя жидкости мала, вследствие чего малы 
и максимальные размеры пузырей. Поэтому при больших недогревах жидкости взаимо-
действие пузырей является менее интенсивным, а передача теплоты между ними проис-
ходит без объединения пузырей и передачи массы — через тонкую прослойку жидкости. 
При малом недогреве или на более поздних этапах пузырькового кипения, когда темпе-
ратура пристенного слоя жидкости растет, соприкосновение пузырьков чаще всего при-
водит к их слиянию. При построении моделей теплоотдачи следует учитывать такие пу-
зырьки отдельно от изолированных, поскольку не весь объем нового пузырька получен 
путем испарения жидкости и отвода теплоты от нагревателя. Пример формирования 
кластера с передачей пара показан на рис. 1 для недогрева потока 83 K и перегрева стен-
ки относительно TONB  9 K. 

Случайный характер шероховатости на технической поверхности, а также влияние 
пузырьков как на соседние, так и на появляющиеся позднее, приводят к исключитель-
ному разнообразию в их эволюции и предельных размерах. Для изолированных пузырь-
ков дальнейшее повышение температуры стенки относительно температуры насыщения 
вызывает активацию центров нуклеации с определенными значениями критического 
радиуса [7], а максимальный диаметр пузырька по завершении тепловой стадии роста 
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коррелирует с толщиной перегретого слоя, которая в случае нестационарного тепловы-
деления растет со временем [8]. Однако для нестационарного нагрева со значительным 
недогревом потока также характерен рост пузырьков на инерционной фазе с достиже-
нием размеров, значительно превышающих толщину перегретого слоя [9]. В этом случае 
размер пузырька определяется главным образом степенью локального перегрева жид-
кости в метастабильном состоянии. В процессе развития кипения на неровностях по-
верхности, однажды затронутых паровой фазой, остаются паровые зародыши, значи-
тельно облегчающие формирование новых пузырей. В результате вторично образую-
щихся пузырьков становится больше, но их размеры, достигаемые на инерционной фазе, 
уменьшаются. При этом возможно увеличение максимального размера пузырька за счет 
слияния кластерных пузырьков.  

В настоящем исследовании обнаружены центры нуклеации, на которых паровые 
пузырьки после своего образования циклически претерпевают стадии роста и конденса-
ции без полного исчезновения. Такие пузырьки, называемые далее пульсирующими, 
по сравнению с изолированными и кластерными пузырьками того же размера, передают 
от нагревателя в жидкость существенно меньшее количество энергии. Таким образом, 
помимо классических изолированных пузырьков выявлено присутствие пузырьков двух 
других типов: кластерных и пульсирующих. Игнорирование их особенностей может 
привести к значительным погрешностям в предсказании объема паровой фазы и оценки 
влияния пузырьков на теплообмен. С одной стороны, использование корреляций для плот-
ности центров нуклеации или доли площади, занятой паром, полученных исключитель-
но для изолированных пузырьков, может дать заниженные оценки этих величин, так как 
кластерные пузырьки благодаря взаимной активации быстрее заполняют поверхность 

 
 

Рис. 1. Картина формирования кластера. 
Размер кадра — 0,54×0,54 мм; шаг по времени — 5,54 мкс. 
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нагревателя, а у пульсирующих пузырьков отсутствует время покоя между отрывом 
и конденсацией старого пузырька и появлением нового в том же центре. С другой сто-
роны, если предсказание количества и размеров пузырьков будет корректным, но осо-
бенности их тепломассообмена учитываться не будут (повторное использование тепло-
ты, однажды отнятой у нагревателя), величина вклада пузырьков в теплоотдачу будет 
завышена. 

Обобщение результатов 

Анализ и обобщение результатов проводились отдельно для изолированных (single, S), 
кластерных (cluster, C) и пульсирующих пузырьков (pulse, P), а также для всех пузырь-
ков вместе (All). Поскольку вклад пузырька в теплообмен за счет фазового перехода 
пропорционален его объему, при обобщении результатов экспериментов будем исполь-
зовать средневзвешенное по объему значение максимального диаметра пузырьков [6]: 

( ) ( )4 3
vol m, m, ,i iD D D= ∑ ∑                                               (1) 

где суммирование ведется по всем пузырькам, появившимся на заданном интервале 
времени (0,3 мс), а m,iD  — максимальный диаметр i-го пузырька. Полученные с шагом 

0,055 мс значения Dvol были обобщены для различных групп пузырьков в виде следую-
щих корреляций:  

( ) ( ) 5
vol,S sub w ONB sub0,000104 1,44 0,0328 4,67 10 ,D T T T T − = ∆ + ⋅ − − ∆ + ⋅   

( ) ( ) 5
vol,C sub w ONB sub0,0165 2,25 0,163 1,32 10 ,D T T T T − = − ∆ + ⋅ − + ∆ − ⋅   

( ) ( ) 5
vol,P sub w ONB sub0,00981 0,739 0,0329 6,20 10 ,D T T T T − = − ∆ + ⋅ − − ∆ + ⋅          (2) 

( ) ( ) 5
vol,All sub w ONB sub0,00741 1,42 0,0709 6,27 10 .D T T T T − = − ∆ + ⋅ − + ∆ + ⋅   

В полученных обобщениях все коэффициенты размерные, разницы температур выраже-
ны в K, а результат — в метрах. Из полученных корреляций следует, что Dvol растет 
с ростом недогрева ∆Tsub  для кластерных пузырьков и уменьшается для изолированных 
и пульсирующих. При этом коэффициент при (Tw – TONB) растет с ростом ∆Tsub  для изо-
лированных пузырьков и уменьшается для кластерных и пульсирующих. Значения Dvol , 
рассчитанные по корреляциям (2), показаны на рис. 2 для пузырьков всех типов в срав-
нении с измеренными значениями максимальных диаметров Dm для отдельных пузырь-
ков. Сплошные красные линии и красные квадраты относятся к недогреву 23 K, а синие 
пунктирные линии и синие треугольники — к недогреву 103 K. Видно, что кластерные 
пузырьки имеют наибольший размер, а пульсирующие — наименьший. 

При сравнении доли пузырьков различных типов по числу активных центров нук-
леации Na в среднем за период прогрева стенки от TONB до TONB + 14 K (рис. 3а, 3b) мож-
но отметить, что при малых значениях недогрева (рис. 3а) преобладают пульсирующие 
пузырьки, а при больших (рис. 3b) — изолированные. Сопоставление тех же экспери-
ментальных данных по доле поверхности Fv , занятой пузырьками указанного типа 
(рис. 3c, 3d), также показывает уменьшение доли пульсирующих пузырьков и увели-
чение доли изолированных с ростом недогрева потока. Однако при любом недогреве 
потока наибольшую площадь занимают кластерные пузырьки, как самые крупные. 
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 Заключение 

В результате экспериментального 
исследования нестационарного кипения 
недогретого потока жидкости выявлено на-
личие пузырьков трех типов: изолирован-
ных, кластерных и пульсирующих. Опыты 
проводились при перегреве поверхности 

нагревателя от 0 до 14 K выше температуры начала нуклеации и недогреве потока от 23 
до 103 K. Приведены описания различных механизмов взаимодействия пузырьков в кла-
стерах и их влияния на теплообмен с поверхностью нагревателя. Показаны отличия 
в условиях теплообмена изолированных и пульсирующих пузырьков. Установлено, что 

 
 

 
 

Рис. 2. Зависимость измеренного максимального диаметра пузырьков Dm (маркеры) 
и рассчитанного по формулам (2) средневзвешенного по объему диаметра Dvol (линии) 

от перегрева стенки относительно TONB при различных значениях недогрева потока ∆Tsub. 
Приведенные на рисунках значения коэффициента детерминации R 2 относятся 

к рассчитанным по (1) массивам значений Dvol для пузырьков данного типа в сопоставлении с моделью (2) 
при всех значениях недогрева; типы пузырьков: а — все, R 2 = 0,47;  b — изолированные, R 2 = 0,35; 

c — кластерные, R 2 = 0,34;  d — пульсирующие, R 2 = 0,79;  ∆Tsub = 23,1 (1), 103 (2) K.  

Рис. 3. Доля пузырьков каждого типа, 
определенная по числу центров 

нуклеации (а, b) и по занимаемой площади (c, d), 
для недогрева 23 K (a, c) и 103 K (b, d) 

за время достижения перегрева 14 K над TONB. 
Типы пузырьков: 1 — изолированные, 
2 — кластерные, 3 — пульсирующие. 
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пульсирующие пузырьки имеют в среднем наименьшие размеры, в то время как кла-
стерные пузырьки оказались самыми крупными во всем диапазоне условий. Анализируя 
влияние недогрева жидкости на плотность центров нуклеации различного типа, можно 
сделать вывод, что при малом недогреве потока преобладают пульсирующие пузырьки, 
а при большом недогреве потока –— изолированные. В то же время площадь поверхно-
сти, покрытая кластерными пузырьками, больше соответствующих площадей изолиро-
ванных и пульсирующих пузырьков, так как размеры пузырьков в кластере заметно 
больше. В целом можно заключить, что кластерные и пульсирующие пузырьки состав-
ляют существенную долю от общего числа пузырьков и их характеристики значительно 
отличаются от изолированных. Поэтому различия в типах регистрируемых в экспери-
ментах пузырьков необходимо учитывать при получении замыкающих соотношений 
для моделей теплообмена при пузырьковом кипении. 
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