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Рассмотрено вязкое течение жидкости между двумя волнистыми горизонтальными по-
верхностями, не ограниченными в продольном и поперечном направлениях. С использо-
ванием полных уравнений Навье — Стокса исследована линейная устойчивость такого
течения относительно различных трехмерных возмущений. Изучены два типа волнис-
тости стенок: продольное и поперечное периодическое гофрирование. На первом этапе
находится основное решение и проводится линеаризация исходных уравнений в окрест-
ности этого решения. На втором этапе решается обобщенная задача определения соб-
ственных значений и анализируется весь возможный спектр возмущений. Варьируемы-
ми параметрами являются число Рейнольдса, амплитуда, период и форма гофрирова-
ния. Возмущения полей скорости и давления в общем случае характеризуются двумя
волновыми числами, которые являются дополнительными параметрами. Исследовано
влияние параметров и формы волнистости стенок на область, в которой начинается
ламинарно-турбулентный переход.

Ключевые слова: вязкое течение, гофрированные и волнистые стенки, устойчивость,
ламинарно-турбулентный переход

Введение. Течение в каналах с гофрированными стенками встречается во многих
технических приложениях [1–6], например в топливных элементах, компактных теплооб-
менниках, устройствах охлаждения компонентов микроэлектроники и т. д. Изменение вол-
нистости стенок является одним из способов управления одно- и двухфазными течениями
в каналах и используется, например, для уменьшения сопротивления и задержки пере-
хода к турбулентному режиму при обтекании крыльев [7–9]. Эффективность разделения
нефти на фракции или воздуха на компоненты в дистилляционных колоннах, заполненных
структурированными насадками, во многом определяется интенсивностью перемешивания
пара в каналах насадки. На поверхности раздела фаз, формируемой при растекании по ней
жидкой пленки, образуются волнистые структуры, расположенные вдоль течения паровой
фазы [10–14]. При их наличии процесс перемешивания в паровой фазе может происходить
более интенсивно.

Работа [3] является одной из первых работ, в которых численно исследовано стаци-
онарное ламинарное течение в канале со стенками, поверхность которых задается сину-
соидой большой амплитуды. Основной поток пересекал как гребни, так и впадины на

поверхности стенки. Предсказанные в [3] отрывные структуры наблюдались в экспери-
ментах [4]. В работах [15–17] при изучении течения в таком же канале установлено су-
ществование нестационарных колебаний отрывных зон. В [18–20] показана возможность
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перехода к турбулентному режиму вследствие появления апериодических колебаний от-
рывных зон. Задача об устойчивости течения в канале, в случае когда основной поток
пересекает гребни и впадины волнистой поверхности стенки, рассматривалась в работах
[21–23]. Для случая поперечного гофрирования, когда основной поток не пересекает гребни
и впадины волнистой поверхности стенки, устойчивость рассчитывалась в работах [7, 8,
24, 25]. В указанных выше работах устойчивость анализировалась в рамках нестационар-
ного расчета, что предполагает “перебор” начальных данных. Как следствие, расчеты
ограничивались вариацией параметров задачи в небольших диапазонах.

В настоящей работе при решении уравнений Навье — Стокса находится основное

решение и проводится линеаризация исходных нелинейных уравнений в окрестности это-
го решения. Возмущения полей скорости и давления полагаются трехмерными с двумя
волновыми числами. Далее, путем решения обобщенной задачи определения собственных
значений анализируется весь возможный спектр возмущений. Это позволяет исследовать
устойчивость в широком диапазоне параметров задачи. Математический и вычислитель-
ный аппарат исследования был разработан при изучении двухфазного течения на глад-
ких и волнистых поверхностях [26–28] и адаптирован к решению задач, рассматриваемых
в данной работе при других граничных условиях на верхней стенке и в отсутствие поверх-
ности раздела.

Данная работа является продолжением работ [29, 30], в которых гофрированной явля-
лась поверхность нижней стенки канала (поверхность верхней стенки была гладкой), при-
чем форма гофрирования была синусоидальной. В настоящей работе исследуется линейная
устойчивость течения в каналах с пятью различными формами гофрирования. Для каж-
дого из пяти каналов рассмотрены два типа гофрирования: вдоль потока и поперек него.
В зависимости от амплитуды, периода и формы гофрирования рассчитано критическое

число Рейнольдса, при превышении которого основное течение становится неустойчивым
и возникают нарастающие во времени трехмерные возмущения различного типа.

1. Основные уравнения. Течение жидкости между двумя горизонтальными гофри-
рованными поверхностями, не ограниченными в x- и z-направлениях (рис. 1), описывается
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Рис. 1. Схемы расчетных областей:
а — гофрирование вдоль потока, б — гофрирование поперек потока
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системой уравнений Навье — Стокса с соответствующими граничными условиями:
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u = v = w = 0, y = y−(ζ), y = y+(ζ); (5)
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〉

= 1. (6)

Здесь x = x∗/L, y = 2y∗/D, z = z∗/L, t = u0t
∗/L — безразмерные координаты и время;

u = u∗/u0, v = v∗/(εu0), w = w∗/u0, P = (P ∗ + ρgy∗)/(ρu2
0) — безразмерные компоненты

скорости в x-, y- и z-направлениях и давление соответственно; индекс “∗” соответствует
размерным величинам; Re = u0D/(2ν) — число Рейнольдса; ε = D/(2L); L — период

гофрирования; D — высота канала; u0 = 2UV S ; UV S — средняя по высоте канала скорость

потока; y−(ζ), y+(ζ) — форма гофрирования нижней и верхней стенок соответственно; ν —
кинематическая вязкость; ρ — плотность жидкости; g — ускорение свободного падения;
〈 · 〉 — среднее в z-направлении.

Рассмотрены два типа гофрирования: вдоль потока и поперек него. В обоих случаях
основной поток жидкости направлен вдоль оси x. В первом случае форма гофрирования
стенки y±(ζ) зависит от координаты x (ζ = x), во втором случае — от координаты z
(ζ = z).

Верхняя и нижняя стенки являются периодическими либо в x-направлении для случая,
показанного на рис. 1,а, либо в z-направлении для случая, показанного на рис. 1,б.

Из уравнения неразрывности (4) и условий прилипания (5) следует
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Отсюда в отсутствие среднего потока в z-направлении следует уравнение (6), которое в
размерных переменных имеет вид

〈 y∗+∫
y∗−

u∗ dy∗
〉

= const = UVSD.
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После выполнения преобразования координат x = x, z = z, η = (y − f+)/f−, где
f+ = (y+ + y−)/2; f− ≡ y+ − f+ = (y+ − y−)/2; η ∈ [−1, 1] — область течения в новых

переменных, получаем уравнения
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Здесь ζ = x или ζ = z; k̃ = 1 или k̃ = 0; ũ = u или ũ = w; P = Zx + P̄ ; ηy = 1/f−;
ηζ = −[η(f−)ζ + (f+)ζ ]/f−; ηζη = −(f−)ζ/f−; ηζξ = −(ηζ(f−)ζ + η(f−)ζζ + (f+)ζζ)/f−.

Далее рассматривается течение в каналах с пятью различными формами гофрирова-
ния стенки S1–S5 (рис. 2):

S1: y+ = 1, y− = −1 + ε1f(ζ),

S2: y+ = 1− ε1f(ζ), y− = −1 + ε1f(ζ),

S3: y+ = 1− ε1f(ζ + 1/2), y− = −1 + ε1f(ζ),

Si, i = 4, 5: y+ = 1, y− = −1 + ε1

{
1/(1 + e−2β(ζ+ζi−1/2)), ζ < 1/2,

1/(1 + e−2β(−ζ+ζi+1/2)), ζ > 1/2.

Здесь f(ζ) = (1 − cos (2πζ))/2; ε1 = 2A/D. В расчетах величины β, ζ4, ζ5 являются по-
стоянными: β = 50, ζ4 = 0,25, ζ5 = 0,05. Величина ε1, представляющая собой параметр
задачи, варьируется в широком диапазоне (на рис. 2 ε1 = 0,4). Для каждого из двух типов
гофрирования (вдоль потока и поперек него) исследована устойчивость течения в кана-
лах с формой поверхности S1–S5 при различных значениях числа Рейнольдса, периода и
амплитуды гофрирования.



196 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 5

_0,8

_0,4

0

0,4

0,8

0 0,2 0,4 0,6 0,8 1,0 z*/L

y+(z), y_(z)

_0,8

_0,4

0

0,4

0,8

0 0,2 0,4 0,6 0,8 1,0 z*/L

y+(z), y_(z) áà

ãâ

ä

_0,8

_0,4

0

0,4

0,8

0 0,2 0,4 0,6 0,8 1,0 z*/L

y+(z), y_(z)

_0,8

_0,4

0

0,4

0,8

0 0,2 0,4 0,6 0,8 1,0 z*/L

y+(z), y_(z)

_0,8

_0,4

0

0,4

0,8

0 0,2 0,4 0,6 0,8 1,0 z*/L

y+(z), y_(z)

Рис. 2. Формы одного периода гофри-
рованных стенок каналов S1 (а), S2 (б),
S3 (в), S4 (г), S5 (д) при ε1 = 0,4

Таким образом, в задаче имеются три параметра: ε, ε1, Re и безразмерная функ-
ция f(ζ) для описания формы гофрирования. Ниже с использованием полиномов Чебышева
и ряда Фурье получены стационарные решения уравнений (7)–(12).

Для каналов с гофрированием вдоль потока (см. рис. 1,a) основное течение имеет две
компоненты скорости:

[u(x, z, η), v(x, z, η), w(x, z, η), P̄ (x, z, η), Z] = [ub(x, η), vb(x, η), 0, P̄b(x, η), Z],
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1

2
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M∑
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Um(x)Tm−1(η),

Um(x) = U0
m +

N/2−1∑
k=−N/2+1, k 6=0

Uk
m e2πikx, (U−k

m )к.с = Uk
m, m = 1, . . . ,M.

Здесь Tm(η) — полиномы Чебышева; индекс “к.с” означает комплексное сопряжение.
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При известной аппроксимации продольной скорости ub(x, η) вторая компонента скоро-
сти vb(x, η) однозначно определяется уравнением (10), а поле давления P̄b(x, η) — уравне-
нием (8):
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В случае гофрирования вдоль потока (см. рис. 1,a) общее число неизвестных в уравнениях
(7)–(12) составляет (M + 1)(N − 1), включая M(N − 1) гармоник поля скорости ub(x, η),
градиент давления Z и N − 2 гармоник P̄ 0

b (x). Для решения задачи задается начальное

приближение Uk
m, Z, (P̄ 0

b )k. В качестве начального приближения может быть использо-
вано решение Пуазейля для случая течения в гладком канале. За счет увеличения ам-
плитуды гофрирования и изменения значений других параметров находятся решения для

каналов с волнистыми стенками. Для уточнения начального приближения используются
итерационный метод Ньютона и уравнения (7), (11), (12). Производные и интегралы в

уравнениях (7)–(12) рассчитываются в (n,m)-пространстве с использованием стандарт-
ных библиотечных процедур для рядов Фурье и полиномов Чебышева. Матрица Якоби в
методе Ньютона рассчитывается по разностной схеме первого порядка. На каждой итера-
ции методом исключения решается система линейных уравнений с использованием стан-
дартных библиотечных процедур. С учетом граничных условий прилипания (11) исходная
система уравнений переопределена. Для определения (M + 1)(N − 1) неизвестных имеем
(M + 3)(N − 1) уравнений в (n,m)-пространстве — уравнения (7), (11). Далее отбрасы-
ваются 2(N − 1) уравнений, соответствующих последним двум полиномам Чебышева в
разложении уравнения (7), аналогично тому как это сделано, например, в работах [26–29]
с использованием спектрального метода. Полученные результаты справедливы в случае
удовлетворительной аппроксимации функции ub(x, η) рядом Фурье и полиномами Чебы-

шева. Условия |UN/2−1
m |/ sup |Uk

m| < 10−3 для всех m и |Uk
M |/ sup |Uk

m| < 10−3 для всех k
выполнялись при соответствующем увеличении параметров N и M при движении по па-
раметрам задачи.

Для каналов с гофрированием поперек потока (см. рис. 1,б) основное течение имеет
одну компоненту скорости:

[u(x, z, η), v(x, z, η), w(x, z, η), P̄ (x, z, η), Z] = [ub(x, η), 0, 0, 0, Z],

ub(z, η) =
1

2
U1(z) +

M∑
m=2

Um(z)Tm−1(η),

Um(z) = U0
m +

N/2−1∑
k=−N/2+1, k 6=0

Uk
m e2πikz, (U−k

m )к.с = Uk
m, m = 1, . . . ,M.

В данном случае общее число неизвестных в уравнениях (7)–(12) составляет M(N − 1),
включая M(N − 2) гармоник поля скорости ub(x, η) и градиент давления Z. Для решения
задачи задается начальное приближение Uk

m, Z. Далее для уточнения начального прибли-
жения используются итерационный метод Ньютона и уравнения (7), (11), (12).
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Подставляя величины

u = ub(ζ, η) + û(x, η, z) e−γt + к. с., v = vb(ζ, η) + v̂(x, η, z) e−γt + к. с.,

w = ŵ(x, η, z) e−γt + к. с., P = Pb(ζ, η) + P̂ (x, η, z) e−γt + к. с.

(к. с. — комплексно-сопряженная величина) в уравнения (7)–(12) и линеаризуя их в окрест-
ности основного решения, получаем систему уравнений с периодическими коэффициента-
ми для нахождения спектра собственных значений и решения задачи о линейной устойчи-
вости стационарного решения:

v̂(x, z, η) = [η(f−)ζ + (f+)ζ ]ũ(x, z, η)−

− ∂

∂x

(
f−

η∫
−1

û(x, z, η′) dη′
)
− ∂

∂z

(
f−

η∫
−1

ŵ(x, z, η′) dη′
)
; (13)

ηy(P̂ − P̂0) =

η∫
−1

{
γε2v̂ +

ε

Re

[
η2
y

∂2v̂

∂η′2
+ ε2 ∂2v̂

∂x2
+ ε2 ∂2v̂

∂z2
+

+ ε2
(
η2
ζ

∂2v̂

∂η′2
+ 2ηζ

∂2v̂

∂ζ ∂η′
+ (ηζξ + ηζηζη′)

∂v̂

∂η′

)]
−

− ε2
(
ub

∂v̂

∂x
+ (ũbηζ + vbηy)

∂v̂

∂η′
+ û

∂vb

∂x
+ (ũηζ + v̂ηy)

∂vb

∂η′

)}
dη′; (14)

−γû = −∂ (P̂ − P̂0)

∂x
− ∂P̂0

∂x
− k̃ηζ

∂ (P̂ − P̂0)

∂η
+

+
1

ε Re

[
η2
y

∂2û

∂η2
+ ε2 ∂2û

∂x2
+ ε2 ∂2û

∂z2
+ ε2

(
η2
ζ

∂2û

∂η2
+ 2ηζ

∂2û

∂ζ ∂η
+ (ηζξ + ηζηζη)

∂û

∂η

)]
−

−
(
ub

∂û

∂x
+ (ũbηζ + vbηy)

∂û

∂η
+ û

∂ub

∂x
+ (ũηζ + v̂ηy)

∂ub

∂η

)
; (15)

−γŵ = −∂ (P̂ − P̂0)

∂z
− ∂P̂0

∂z
− (1− k̃)ηζ

∂P̂

∂η
+

+
1

ε Re

[
η2
y

∂2ŵ

∂η2
+ ε2 ∂2ŵ

∂x2
+ ε2 ∂2ŵ

∂z2
+ ε2

(
η2
ζ

∂2ŵ

∂η2
+ 2ηζ

∂2ŵ

∂ζ ∂η
+ (ηζξ + ηζηζη)

∂ŵ

∂η

)]
−

−
(
ub

∂ŵ

∂x
+ (ũbηζ + vbηy)

∂ŵ

∂η

)
; (16)

û(x, η) = ŵ(x, η) = 0, η = −1, η = 1; (17)

∂

∂x

(
f−

1∫
−1

û dη′
)

+
∂

∂z

(
f−

1∫
−1

ŵ dη′
)

= 0. (18)

Здесь ũb = ub или ũb = wb; ũ = û или ũ = ŵ; P̂0(x, z) = P̂ (x, z, η)|η=−1 — возмущенное

давление на нижней стенке.
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В соответствии с теоремой Флоке решения линейной системы уравнений с периодиче-
скими коэффициентами могут быть представлены в следующем виде:

 û(x, z, η)
ŵ(x, z, η)

P̂0(x, z)

=



1

2

N/2−1∑
k=−N/2+1

Ûk
1 e2πikζ +

M∑
m=2

Tm−1(η)

N/2−1∑
k=−N/2+1

Ûk
m e2πikζ

1

2

N/2−1∑
k=−N/2+1

Ŵ k
1 e2πikζ +

M∑
m=2

Tm−1(η)

N/2−1∑
k=−N/2+1

Ŵ k
m e2πikζ

N/2−1∑
k=−N/2+1

P̂ k
0 e2πikζ


e2πi(Qx+Qzz) (19)

(Q, Qz — положительные вещественные параметры). Для канала с гофрированием вдоль
потока (см. рис. 1,a) Q является параметром Флоке QF : QF = Q ∈ [0, 0,5], для канала с
гофрированием поперек потока (см. рис. 1,б) Qz является параметром Флоке: QF = Qz ∈
[0, 0,5].

В результате задача сводится к обобщенной задаче определения собственных значений

для комплексных матриц общего вида

Ax̂ = γBx̂, x̂ = (Ûk
m, Ŵ k

m, P̂ k
0 )т. (20)

Матрицы A, B имеют размерность (2M+1)(N−1) в случаеQ+Qz 6= 0 и (2M+1)(N−1)−1 в
случае Q+Qz = 0. Элементы этих матриц определяются численно путем перебора единич-
ных векторов возмущений û, ŵ, P̂0 и подстановки их в уравнения (13)–(18). Для каждого

такого вектора поле v̂(x, z, η) однозначно определяется уравнением (13), а поле P̂ (x, z, η) —
уравнениями (13), (14). Далее отбрасываем 2(N −1) уравнений, соответствующих послед-
ним двум полиномам Чебышева в разложении уравнений (15), (16), и вместо них исполь-

зуем условия прилипания (17). Уравнение (18) используется для определения P̂0(x, z). По-
лучаемые результаты справедливы в случае удовлетворительной аппроксимации функций

û, ŵ, P̂0. Условия |ÛN/2−1
m |/ sup |Ûk

m| < 10−3 для всех m и |Ûk
M |/ sup |Ûk

m| < 10−3 для всех k
выполняются при соответствующем увеличении параметровN иM при движении по пара-
метрам задачи (аналогичные условия выполняются для полей ŵ и P̂0). Обобщенная задача
определения собственных значений для комплексных матриц общего вида решалась чис-
ленно с использованием стандартной библиотечной процедуры QZ-алгоритма, аналогично
тому как это сделано, например, в работах [26–30], посвященных исследованию устойчи-
вости.

В общем случае возмущения (19) имеют две несоизмеримые длины волны λ∗1 = L,
λ∗2 = L/QF в ζ-направлении (ζ = x или ζ = z) и одну длину волны L/Qz или L/Q в попе-
речном направлении. Для исследования устойчивости стационарного решения необходимо
проанализировать (2M + 1)(N − 1) собственных чисел задачи (20), варьируя волновые
числа возмущений α = 2πQε и αz = 2πQzε. Решение устойчиво, если вещественные части
всех собственных значений больше или равны нулю при всех положительных значениях

волновых чисел. Возмущение является нейтральным, если вещественная часть соответ-
ствующего ему собственного значения равна нулю: Real (γ) = 0.

Следует отметить, что при Q + Qz = 0 возмущения являются выделенными. Такие
возмущения являются периодическими в ζ-направлении, их длина волны совпадает с пери-
одом гофрирования стенки. Рост возмущений при Q+Qz = 0 свидетельствует о переходе к
режиму течения с более сложным, чем в режиме основного течения, характером изменения
во времени.
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Для тестирования алгоритма решения задачи (20) в работах [29, 30] были воспро-
изведены расчеты, выполненные в работах [17, 21, 31]. В работе [31] рассматривалась
устойчивость течения жидкости в канале с гладкими стенками, в [17, 21] исследовалось
течение в канале с двумя стенками, поверхность которых задается синусоидой (ε = 0,36,
ε1 = 0,70). Проведенное в работах [29, 30] сопоставление полученных результатов с дан-
ными работ [17, 21, 31] показывает, что они хорошо согласуются, и свидетельствует о
корректности численного алгоритма решения задачи (20).

2. Результаты расчетов. Ниже приводятся результаты расчетов параметров тече-
ния при различных направлениях гофрирования стенки канала.

2.1. Продольное гофрирование. На первом этапе была исследована устойчивость стаци-
онарного решения [ub(x, η), vb(x, η), 0, P̄b(x, η), Z] относительно периодических возмущений
с Q = Qz = 0 (длина волны этих возмущений равна периоду основного решения L). В зада-
че имеется три параметра: 2A/D, D/(2L) и число Рейнольдса или ε1, ε, Re. Устойчивость
решений изучалась в диапазоне значений параметра 2A/D = 0,001÷ 0,400. В этом диапа-
зоне рассматривались четыре точки. Исследование проводилось в диапазоне значений чис-
ла Рейнольдса Re = 100÷10 000 с шагом, равным 200. При изменении параметра D/(2L) в
диапазоне 0,05÷ 1,25 с шагом 0,05 решалась задача (20) для параметров ε1, ε, Re и анали-
зировался спектр собственных значений γ. В случае смены знака Real (γ) методом деления
пополам уточнялось значение параметраD/(2L) и строились нейтральные кривые (рис. 3).
На этих кривых вещественная часть одного из собственных значений обращается в нуль:
Real (γ) = 0 при Q = Qz = 0. Для четырех значений 2A/D данные кривые ограничива-
ют область параметров (D/(2L), Re) ∈ Ωi

Q=Qz=0, i = 1, . . . , 4, в которой основное течение
является неустойчивым относительно двумерных возмущений с Q = Qz = 0. Значения па-
раметров находятся справа от соответствующих линий. Кривые 1–4 на рис. 3 построены
для пяти различных форм гофрирования стенки S1–S5 (см. рис. 2). При малом значении
амплитуды гофрирования (линии 1 на рис. 3) нейтральные кривые для форм гофрирования
стенки канала S1–S5 подобны и представляют собой объединение области (D/(2λ∗), Re) и
областей “неустойчивых субгармоник” (D/(4λ∗), Re), (D/(6λ∗), Re), . . . (λ∗(Re) — длина

волны нейтрального возмущения в случае течения Пуазейля в гладком канале [31]). Такое
объединение впервые было выявлено в работе [29] для канала с синусоидальной формой
гофрирования стенок S1. С увеличением амплитуды гофрирования области Ωi

Q=Qz=0 (ли-

нии 2–4 на рис. 3) распространяются в области меньших значений как числа Рейнольдса,
так и периода гофрирования L и объединяются в одну область. Заметим также, что суще-
ствуют параметры гофрирования, при которых основное течение устойчиво относительно
возмущений с Q = Qz = 0 вплоть до наибольших чисел Рейнольдса, рассмотренных в ра-
боте. Например, для значений амплитуды гофрирования 2A/D 6 0,2 (линии 1–3 на рис. 3)
течение вдоль каналов различной формы с периодом гофрирования D/(2L) > 0,35 устой-
чиво относительно двумерных возмущений с Q = Qz = 0 вплоть до Re ≈ 104 (исключение
составляет линия 3 для формы гофрирования S5 на рис. 3).

Можно сделать вывод, что форма и амплитуда гофрирования как количественно, так
и качественно изменяют ход нейтральной кривой (см. рис. 3). Например, сравним случаи
S1 и S5 (см. рис. 2). Заметим, что случай S5 моделирует совместное течение газа и волновой

пленки жидкости в горизонтальном канале. Линии 3 и 4, соответствующие этим случаям,
качественно различны, линии 1 и 2 различаются количественно.

На втором этапе исследовалась устойчивость стационарного решения

[ub(x, η), vb(x, η), 0, P̄b(x, η), Z] по отношению к двумерным возмущениям с конечны-
ми значениями параметра Флоке Q ∈ [0,001, 0,500] (Qz = 0). Рассматривался тот же
диапазон значений амплитуды гофрирования и числа Рейнольдса, что и при изучении
устойчивости по отношению к возмущениям с Q = Qz = 0. На рис. 4 представлены
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Рис. 3. Нейтральные кривые для за-
дачи об устойчивости течения в кана-
ле с продольным гофрированием формы

S1 (а), S2 (б), S3 (в), S4 (г), S5 (д) отно-
сительно двумерных возмущений (Q =
Qz = 0):
1 — 2A/D = 0,05, 2 — 2A/D = 0,1, 3 —
2A/D = 0,2, 4 — 2A/D = 0,4

нейтральные кривые для задачи об устойчивости течения в канале с продольным гоф-
рированием различной формы относительно двупериодических двумерных возмущений.
При расчетах устойчивости для каждого значения параметра D/(2L), который менялся в
диапазоне 0,05÷ 1,25 с шагом 0,05, вычислялось значение параметра Флоке, при котором
значение Real (γ) было минимальным. При больших значениях числа Рейнольдса такое
значение Real (γ) было отрицательным и для каждого набора ε1, ε, Re существовал диа-
пазон значений параметра Флоке с неустойчивыми плоскими возмущениями. При малых
значениях числа Рейнольдса такое значение Real (γ) было положительным и основное

решение с набором параметров ε1, ε, Re было устойчивым относительно всех возмущений
с конечными значениями Q (Qz = 0). Для линий 1–4 на рис. 4 как Real (γ) = 0, так и
∂ Real (γ)/∂Q = 0. Эти линии ограничивают области параметров Ωi

Q6=0, Qz=0(D/(2L), Re),

i = 1, . . . , 4 (значения параметров находятся справа от соответствующих линий), в кото-
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Рис. 4. Нейтральные кривые для задачи об
устойчивости течения в канале с продоль-
ным гофрированием формы S1 (а), S2 (б),
S3 (в), S4 (г), S5 (д) относительно двупери-
одических двумерных возмущений Q 6= 0,
Qz = 0:
0 — 2A/D = 0,02, 1 — 2A/D = 0,05, 2 —
2A/D = 0,1, 3 — 2A/D = 0,2, 4 — 2A/D = 0,4

рых основное течение является неустойчивым относительно двупериодических плоских

возмущений с конечными значениями параметра Q (Qz = 0). Эти области значительно
больше соответствующих областей устойчивости относительно плоских периодических

возмущений с Q = Qz = 0. В целом можно сделать вывод, что форма гофрирования не
меняет вид нейтральных кривых на рис. 4.

Далее исследовалась устойчивость относительно трехмерных возмущений (19) при
различных значениях параметра Qz (Q = 0). В этом случае возмущения скорости име-
ют три компоненты. Линии 1–4 на рис. 5 ограничивают области Ωi

Q=0, Qz 6=0(D/(2L), Re),

i = 1, . . . , 4 (значения параметров находятся справа от соответствующих линий), в ко-
торых существуют нарастающие во времени пространственные возмущения с конеч-
ными значениями параметра Qz (Q = 0). Для этих линий как Real (γ) = 0, так и
∂ Real (γ)/∂Qz = 0. При расчетах устойчивости для каждого значения параметра D/(2L)
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Рис. 5. Нейтральные кривые для задачи об устойчивости течения в канале

с продольным гофрированием формы S1 (а), S2 (б), S3 (в), S4 (г) относительно
двупериодических трехмерных возмущений Qz 6= 0, Q = 0:
0 — 2A/D = 0,02, 1 — 2A/D = 0,05, 2 — 2A/D = 0,1, 3 — 2A/D = 0,2, 4 — 2A/D = 0,4

вычислялось значение параметра Qz, при котором значение Real (γ) было минимальным.
При уменьшении амплитуды гофрирования линии на рис. 5 смещаются в область боль-
ших чисел Рейнольдса для всех рассмотренных форм гофрирования. Результаты сравне-
ния рис. 4 и 5 позволяют сделать вывод, что с точки зрения устойчивости течения вдоль
канала трехмерные возмущения с конечными значениями параметра Qz (Q = 0) являются
более опасными, чем двумерные. Сравнение проводилось для одинаковых форм и парамет-
ров гофрирования. Неустойчивость по отношению к трехмерным возмущениям возникает
при меньшем значении числа Рейнольдса. При малых значениях амплитуды гофрирования
двумерные возмущения становятся более опасными (линия 0 рис. 4,а, 5,а).

2.2. Поперечное гофрирование. На первом этапе была исследована устойчивость ста-
ционарного решения [ub(z, η), 0, 0, 0, Z] относительно периодических возмущений с Q =
Qz = 0 (длина волны таких возмущений равна периоду основного решения L). Неустой-
чивость основного течения к таким возмущениям означает невозможность его реализации

при рассматриваемых параметрах и свидетельствует о переходе к режиму течения с более

сложным, чем в режиме основного течения, характером изменения во времени. В задаче
имеется три параметра: A/L, D/(2L) и число Рейнольдса или ε1, ε, Re (A/L = ε1ε). Эти
параметры выбирались такими же, как при исследовании устойчивости течения в канале
с продольным гофрированием.

На втором этапе исследовалась устойчивость течения относительно возмущений с ко-
нечными значениями параметра Флоке Qz ∈ [0, 0,5] (Q = 0). Шаг по этому параметру
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Рис. 6. Нейтральные кривые для за-
дачи об устойчивости течения в кана-
ле с поперечным гофрированием фор-
мы S1 (а), S2 (б), S3 (в), S4 (г), S5 (д)
относительно трехмерных возмущений

Q > 0 (Qz = 0):
1 — A/L = 0,05, 2 — A/L = 0,1, 3 — A/L =
0,2, 4 — A/L = 0,3, 5 — A/L = 0,4

составлял 0,01. Расчеты были проведены для пяти различных форм поперечного гофри-
рования стенки S1–S5 (см. рис. 2). Установлено, что в исследованном диапазоне парамет-
ров стационарное течение [ub(z, η), 0, 0, 0, Z] в каналах S1–S5 с поперечным гофрированием

устойчиво по отношению к возмущениям как с Qz = 0 (Q = 0), так и с конечными значе-
ниями Qz (Q = 0).

Далее исследовалась устойчивость относительно продольных возмущений (19) при
различных значениях параметра Q (Qz = 0). Линии 1–5 на рис. 6 ограничивают области
Ωi

Q>0, Qz=0(2A/D, Re), i = 1, . . . , 5 (значения параметров находятся справа от соответству-

ющих линий), в которых существуют нарастающие во времени пространственные возму-
щения с конечными значениями параметра Q (Qz = 0). Для этих линий как Real (γ) = 0,
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так и ∂ Real (γ)/∂Q = 0. При расчетах устойчивости для каждого значения параметра
2A/D вычислялось значение параметра Q, при котором значение Real (γ) было минималь-
ным. В результате для пяти различных форм поперечного гофрирования стенки S1–S5 (см.
рис. 2) были построены нейтральные кривые (линии 1–5 на рис. 6).

Можно сделать вывод, что форма и параметры поперечного гофрирования как количе-
ственно, так и качественно изменяют ход нейтральной кривой (см. рис. 6). Среди случаев
гофрирования S1–S5, рассмотренных в данной работе, кривые нейтральной устойчивости
для поверхности с формой гофрирования S3 наиболее существенно отличаются от соответ-
ствующих кривых для случая S1. Для каждого рассмотренного значения A/L ∈ [0,05÷0,40]
обнаружены две области значений параметра 2A/D ∈ [0,05 ÷ 0,60], в которых зависимо-
сти критического числа Рейнольдса от амплитуды гофрирования качественно различны:
1) 2A/D < (2A/D)∗; 2) 2A/D > (2A/D)∗. В первой области зависимость Recr(A/L, 2A/D)
от параметра 2A/D является немонотонной, во второй области вплоть до малых значений
Recr ≈ 100÷ 200 зависимость Recr(A/L, 2A/D) монотонно убывает при увеличении 2A/D.
Величина (2A/D)∗ зависит только от параметра A/L и увеличивается с его ростом. Зна-
чения этой величины были вычислены для шести значений A/L = 0,05; 0,10; 0,20; 0,25;
0,30; 0,40 и пяти различных форм гофрирования S1, . . . , S5.

Заключение. С использованием полных уравнений Навье — Стокса рассмотрена ли-
нейная устойчивость плоского течения в канале с гофрированными стенками. В рамках
единого подхода исследованы два типа гофрирования: вдоль потока (основное течение име-
ет две компоненты скорости) и поперек потока (основное течение имеет одну компоненту
скорости). В широком диапазоне значений числа Рейнольдса и параметров гофрирования
проанализированы нейтральные кривые для задачи линейной устойчивости. В зависимо-
сти от параметров и формы гофрирования рассчитано критическое число Рейнольдса Recr,
при превышении которого основное течение неустойчиво и существуют нарастающие во

времени возмущения.

В случае продольного гофрирования найдены параметры, при которых основное ста-
ционарное течение неустойчиво по отношению к плоским периодическим возмущениям

и переходит в режим с более сложным характером изменения во времени. При малых
значениях амплитуды гофрирования области таких параметров (D/(2L), Re) для кана-
лов различной формы близки и представляют собой формальное объединение области

неустойчивости гладкого канала (D/(2λ∗), Re) и областей “неустойчивых субгармоник”
(D/(4λ∗), Re), (D/(6λ∗), Re), (D/(8λ∗), Re), . . .. При увеличении амплитуды гофрирования
формальное объединение трансформируется в одну область (D/(2L), Re). Форма и ампли-
туда гофрирования как количественно, так и качественно влияют на эту трансформацию.

Исследована также устойчивость по отношению к более общим плоским возмущениям

с конечным значением параметра Флоке и к пространственным возмущениям.

В случае поперечного гофрирования установлено, что основное стационарное течение
устойчиво по отношению к плоским как периодическим, так и двупериодическим (конеч-
ное значение параметра Флоке) возмущениям при всех рассмотренных формах и парамет-
рах гофрирования вплоть до наибольших значений числа Рейнольдса. Проанализирована
устойчивость течения по отношению к пространственным возмущениям для каждого зна-
чения A/L, рассмотренного в работе. Обнаружены две области значений параметра 2A/D,
в которых зависимости для критического числа Рейнольдса качественно различны.

Автор выражает благодарность А. З. Квон и Ю. С. Апостол за обсуждение работы и
помощь при ее оформлении.
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