ПЛОСКИЕ ДЕТОНАЦИОННЫЕ ВОЛНЫ В ГАЗОЗВЕЗДЯХ УНИТАРНОГО ТОПЛИВА С ПРОСТРАНСТВЕННО-НЕОДНОРОДНЫМ РАСПРЕДЕЛЕНИЕМ ЧАСТИЦ

А. Г. Кутушев, С. П. Родионов

Тюменский филиал Института теоретической и прикладной механики СО РАН, 625000 Тюмень

Приведены результаты численного исследования процесса ударного инициирования гетерогенной детонации в канале прямоугольной формы, частично или полностью заполненном неоднородной моноолишерной газовзвесь унитарного топлива. Изучено влияние параметров инициирующей ударной волны, дисперсной смеси и закона пространственно-неоднородного распределения концентрации частиц в двухфазной среде на детонационную способность слоя газовзвесь унитарного топлива. Показано, что при прочих одинаковых условиях увеличение степени неоднородности пространственного распределения концентрации дисперсной фазы приводит к снижению детонационной способности слоя частиц.


Анализ некоторых результатов по ударному возбуждению гетерогенной детонации в аэровзвездах пороха приведен в [4]. Закономерности протекания процессов удара инициирования сферических и цилиндрических детонационных волн в моноолишерных газовзвездах унитарного топлива изучен в [5]. В работе [6] исследована особенность ударного возбуждения однородных детонационных волн в полидисперсных газовзвездах с частицами, содержащими окислитель. Критические условия возникновения плоской детонационной волны в условиях ударного воздействия на реагирующую дисперсную среду изучены в [7].

В настоящей работе сообщаются результаты численного исследования ударного инициирования волн гетерогенной детонации в канале прямоугольной формы, полностью или частично заполненном слоем пространственно-неоднородной газовзвезде унитарного топлива.

УРАВНЕНИЯ ДВИЖЕНИЯ РЕАГИРУЮЩЕЙ ГАЗОЗВЕЗДИ

Пусть имеется газовзвесь унитарного топлива, представляющая собой в невозвышении исходном состоянии смесь химически инертного газа и твердых взвешенных моноолишерных частиц унитарного топлива. Для описания ее движения используются обычные для механики гетерогенных дисперсных сред допущения [8]. Дополнительно предполагается [9], что процесс воспламенения и горения осуществляется при температуре частиц, равной температуре разложения унитарного топлива, и продукты горения взвеси, образующиеся в зоне химической реакции, являются идеальным калорическим совершенным газом. В рамках принятых допущений система дифференциальных уравнений двухмерного плоского нестационарного движения газа и частиц унитарного топлива может быть записана в следующем виде [3, 5]:

$$\frac{\partial \rho_{1,k}}{\partial t} + \frac{\partial \rho_{1,k}v_{1,x}}{\partial x} + \frac{\partial \rho_{1,k}v_{1,y}}{\partial y} = (k - 1)J,$$

$$\rho_{1} = \sum_{k=1}^{2} \rho_{1,k}, \quad \frac{\partial \rho_{2}}{\partial t} + \frac{\partial \rho_{2}v_{2,x}}{\partial x} + \frac{\partial \rho_{2}v_{2,y}}{\partial y} = -J,$$

$$\frac{\partial n}{\partial t} + \frac{\partial n_{v_{2,x}}}{\partial x} + \frac{\partial n_{v_{2,y}}}{\partial y} = 0,$$

$$\frac{\partial \rho_{i}\rho_{v_{i,x}}}{\partial t} + \frac{\partial \rho_{i}\rho_{v_{i,x}}v_{i,x}}{\partial x} + \frac{\partial \rho_{i}\rho_{v_{i,y}}v_{i,y}}{\partial y} + (2 - i) \frac{\partial \rho_{p}}{\partial x} =$$

$$= (-1)^{i}(F_{x} - Jv_{2,x}).$$
\[
\frac{\partial \rho_1 v_{i,y}}{\partial t} + \frac{\partial \rho_1 v_{i,y} v_{i,x}}{\partial x} + \frac{\partial \rho_1 v_{i,y} v_{i,y}}{\partial y} + \frac{(2 - \gamma)}{\partial y} \frac{\partial \rho}{\partial y} = \]
\[
= (-1)^i(F_y - J v_{2,y}), \quad (1)
\]
\[
\frac{\partial \rho_2 e_2}{\partial t} + \frac{\partial \rho_2 e_2 v_{2,x}}{\partial x} + \frac{\partial \rho_2 e_2 v_{2,y}}{\partial y} = Q\eta(-J) - J e_2,
\]
\[
\sum_{i=1}^{n} \frac{\partial \rho_i E_i}{\partial t} + \frac{\partial (\rho_i E_i + \alpha_i p) v_{i,x}}{\partial x} + \frac{\partial (\rho_i E_i + \alpha_i p) v_{i,y}}{\partial y} = 0,
\]
\[
\rho_{1,k} = \rho_{1,k}^0 \alpha_1, \quad \rho_i = \rho_i^0 \alpha_i, \quad \rho_{1}^{2} = \sum_{k=1}^{2} \rho_{1,k}^0
\]
\[
E_i = e_i + 0.5 v_i^2, \quad v_i^2 = v_{i,x}^2 + v_{i,y}^2 \quad (i, k = 1, 2),
\]
\[
\alpha_2 = \frac{1}{6} \pi d^3 n, \quad \alpha_1 + \alpha_2 = 1,
\]
\[
\eta(z) = \begin{cases} 0, & z < 0, \\ 1, & z \geq 0. \end{cases}
\]

Здесь представлены уравнения сохранения масс инертного газа \((k = 1)\), газообразных продуктов горения \((k = 2)\) и частич топлива, уравнение сохранения количества дисперсных включений, уравнения сохранения импульсов фаз в проектах на оси декартовой системы координат \(Ox\) и \(Oy\), уравнение притока тепла к дисперсной фазе и уравнение сохранения полной энергии смеси. Индекс внизу \(i = 1, 2\) относятся к параметрам газовой и дисперсной фаз; \(p_{1,k}\) и \(\rho_{1,k}^0\) — средняя и истинная плотность \(k\)-го компонента газовой фазы; \(p_i, \rho_i^0, v_i, \alpha_i, e_i, E_i\) — соответственно средняя и истинная плотность, массовая скорость, объемное содержание, удельная внутренняя и полная энергия \(i\)-й фазы \((i = 1, 2)\); \(v_{i,x}\) и \(v_{i,y}\) — компоненты скорости \(v_i\); \(n\) — количество дисперсных частиц в единице объема смеси; \(d\) — диаметр частиц; \(p\) — давление газовой смеси; \(F_x\) и \(F_y\) — составляющие силы межфазного трения; \(Q\) — интенсивность теплообмена между газовой и дисперсной фазами; \(J\) — интенсивность межфазного массообмена; \(\eta\) — единичная функция Хевисайда.

Уравнения состояния компонентов газовой фазы и газовой смеси в целом, а также несжимаемых дисперсных частиц имеют вид [5, 10]

\[
p_{1,k} = \rho_{1,k}^0 R_{1,k} T_{1}, \quad p = \sum_{k=1}^{2} p_{1,k} = \rho_{1}^0 R_{1} T_{1},
\]
\[
\rho_{2}^0 = \text{const}, \quad e_{1,k} = (e_{v,1} k)(T_1 - T_0) + e_{1,k}^0,
\]
\[
e_{1} = \sum_{k=1}^{2} x_{1,k} e_{1,k} = e_{v,1}(T_1 - T_0) + e_{1,k}^0,
\]
\[
R_{1} = \sum_{k=1}^{2} x_{1,k} R_{1,k} \quad c_{v,1} = \sum_{k=1}^{2} x_{1,k} (c_{v,1} k)_{k},
\]
\[
e_{1}^0 = \sum_{k=1}^{2} x_{1,k} e_{1,k}^0 \quad x_{1,k} = \frac{\rho_{1,k}}{\rho_{1}} \quad (2)
\]
\[
(R_{1,k}, (e_{v,1} k), e_{1,k}^0, T_0 = \text{const}; \quad k = 1, 2),
\]
\[
e_{2} = e_{2}(T_2 - T_0) + e_{2}^0 \quad (e_{2}, e_{2}^0 = \text{const}),
\]
\[
0 - e_{1,2}^0 = Q - \int_{0}^{p_0} \frac{p_{1,2}^0}{(p_{1,2}^0)^2}.
\]

Здесь \(p_{1,k}, R_{1,k}, (e_{v,1} k), e_{1,k}\) — парциальное давление, газовая постоянная, удельная теплоемкость при постоянном объеме, удельная внутренняя энергия \(k\)-го газового компонента; \(x_{1,k}\) — массовая концентрация \(k\)-й составляющей газовой смеси; \(R_{1}, c_{v,1}, e_{2}\) — газовая постоянная и удельная теплоемкость при постоянном объеме газовой смеси в целом, а также удельная теплоемкость частиц; \(T_{1}\) — температура \(i\)-й фазы; \(Q\) — теплопроводная способность унитарного топлива. Индексом снизу ноль отмечены параметры фаз и компонентов при температуре \(T_0\).

Законы силового и теплового взаимодействия faz задаются на основе соотношений [10]

\[
F_{j} = \frac{1}{2} C_{d} p_{0} |v_{1} - v_{2}| |v_{1,j} - v_{2,j}| \frac{\pi d^2}{4} n \quad (j = x, y),
\]
\[
v_{1} - v_{2} = \sqrt{(v_{1,x} - v_{2,x})^2 + (v_{1,y} - v_{2,y})^2},
\]
\[
C_{d} = \frac{24}{Re} + \frac{4}{Re} + 0.4, \quad Re = \frac{p_{0} |v_{1} - v_{2}| d}{\mu_{1}} \quad (3)
\]
\[
\mu_{1} = \sum_{k=1}^{2} x_{1,k} \mu_{1,k}, \quad Q = \pi \lambda_{1} \text{Nu}(T_{1} - T_{2}) n,
\]
\[
\text{Nu} = 2 + 0.6 Re^{1/2} Pr^{1/3}, \quad Pr = \frac{c_{p,1} \mu_{1}}{\lambda_{1}}
\]
\[
c_{p,1} = \sum_{k=1}^{2} x_{1,k} (c_{p,1} k)_{k}, \quad \lambda_{1} = \sum_{k=1}^{2} x_{1,k} \lambda_{1,k}.
\]

Здесь \(C_{d}\) — коэффициент трения твердой сферической частицы; \(Re, Nu, Pr\) — числа Рейнольдса, Нуссельта, Прандтля; \(c_{p,1}\) и \((c_{p,1} k)\), \(\mu_{1}\) и \(\mu_{1,k}\), \(\lambda_{1}\) и \(\lambda_{1,k}\) — удельные теплоемкости при постоянном давлении, динамические вязкости и коэффициенты теплопроводности газовой смеси в целом и ее компонентов.
Интенсивность образования газообразных продуктов горения частиц угарного топлива определяется в виде [11, 12]

\[ J = \rho \alpha \frac{v_{1,0}}{p_0} n v_p \left( \frac{P}{p_0} \right)^\varphi \eta(T_2 - T_x) \]  

(4)

Здесь \( v_p \) и \( \varphi \) — эмпирические константы; \( T_x \) — температура разложения угарного топлива.

ПОСТАНОВКА ЗАДАЧИ

Длинный канал прямоугольной формы \((0 \leq x \leq \infty, 0 \leq y \leq \infty)\) заполнен газом, частью \((x_f < x \leq \infty, 0 \leq y \leq y_0)\) смесью газа и взвешенных монодисперсных частиц угарного топлива. В начальный момент времени \( t = 0 \) в области канала \( 0 \leq x \leq x_f, 0 \leq y \leq \infty \) вводится взвешенной газ в виде ударной волны. При \( t > 0 \) ударная волна взаимодействует с взвешенными частицами. Требуется учесть влияние закона пространственного распределения концентрации на коэффициенты передачи на процесс газа и газовых образований, возникших под воздействием ударной волны.

Математическая постановка сформулированной выше задачи сводится к заданию начальных и граничных условий для системы уравнений движения (1)–(4). Начальные условия имеют вид [6]:

\[ v_{1,x} = v_{1,y} = 0, \quad p = p_f, \quad a_1 = 1, \quad T_i = \frac{p}{\rho_0 R_{i,1}}, \]

\[ \sigma = \left[ 1 - \left( \frac{\gamma_{1,1} - 1}{2} \right) \frac{v_{1,f}}{a_{1,f}} \left( 1 - \frac{x}{x_f} \right) \right]^{1/(\gamma_{1,1} - 1)}, \]

\[ a_{1,f} - \gamma_{1,1} \frac{p_f}{\rho_1,0} \left( \frac{v_{1,f}}{a_{1,f}} - \frac{2}{\gamma_{1,1} + 1} \right) \left( \frac{M_0}{M_0} \right)^{-1} \]

(5)

\[ \frac{P_f}{p_0} = 1 + 2 \frac{\gamma_{1,1}}{\gamma_{1,1} + 1} (M_0 - 1) \frac{T_f}{T_0} \left( \frac{P_f}{p_0} \right)^{1 - \rho_{1,0}} \]

\[ (0 \leq x \leq x_f, 0 \leq y \leq y_0), \]

\[ v_{1,x} = v_{1,y} = 0, \quad p = p_0, \quad T_1 = T_0, \quad \rho_1 = \rho_{1,0}, \]

\[ v_{2,x} = v_{2,y} = 0, \quad T_2 = T_0, \quad \alpha_1 = 1 - \alpha_2, \quad \rho_2 = \rho_0 \alpha_2, \quad \alpha_2 = \alpha_{2,0} f(x, y, A), \quad n = n_0 \]

\[ (x_f < x \leq \infty, 0 \leq y \leq y_0), \]

\[ v_{1,x} = v_{1,y} = 0, \quad p = p_0, \quad T_1 = T_0, \quad \rho_1 = \rho_{1,0}, \]

\[ \rho_{1,2} = 1, \quad T_2 = T_0, \quad \rho_2 = \rho_{2,0}, \quad \alpha_2 = \alpha_{2,0} f(x, y, A), \quad n = n_0 \]

\[ (0 \leq x \leq \infty, 0 \leq y \leq y_0), \]

\[ f(x, y, A) = \left( 1 - \eta \left( \frac{\gamma_{1,0} - y}{y} \right) \right) \left( \frac{\gamma_{1,0} - y}{y} \right) \varepsilon(x, y, A) \]

\[ (0 \leq x \leq \infty, 0 \leq y \leq y_0). \]

Здесь \( \rho_2, \rho_{0,1} \) — числа Маха набегающей ударной волны и адиабатической скорости звука в газе за ударной скачком; \( \gamma_{1,1} \) — показатель адиабаты нормального газа.

Граничные условия задачи задаются в виде равенства нуля нормальных составляющих скоростей фаз на стенках канала:

\[ v_{1,x}(0, y, t) = v_{1,y}(x, 0, t) = v_{1,y}(x, y, t) = 0, \]

\[ v_{2,x}(0, y, t) = v_{2,y}(x, 0, t) = v_{2,y}(x, y, t) = 0 \]

\[ (0 \leq x \leq \infty, 0 \leq y \leq y_0). \]

На правой границе расчетной области \((x = \infty)\) граничные условия не ставились, так как расчеты прекращались раньше момента прихода возмущений к данной границе.

Замкнутую систему уравнений движения реагирующей газовзвеси (1)–(4) вместе с начальными (5) и граничными (6) условиями численно интегрировали методом конечных элементов на IBM PC A 486 с использованием разностной сетки, содержащей 22 × 1002 ячеек. Время счета одного варианта составило \( \approx 1 \div 5 \) ч. Результаты проводили для смеси воздуха и частиц пороха H. При этом использовали следующие значения термодинамических параметров фаз и их компонентов [5, 6]:

\[ T_0 = 300 \text{ К}, \quad p_0 = 0,1 \text{ МПа}, \quad \gamma_{1,1} = 1,4, \quad R_{1,1} = 287 \text{ м}^2/(	ext{с}^2 \cdot \text{К}), \quad \mu_{1,1} = 1,7 \cdot 10^{-5} \text{ кг/(м \cdot с)}, \]

\[ \lambda_{1,1} = 2,57 \cdot 10^{-2} \text{ кг \cdot м/(с}^2 \cdot \text{К}), \quad \rho_{1,0}(1) = 1,29 \text{ кг/м}^3, \quad \gamma_{1,2} = 1,24, \quad R_{1,2} = 328 \text{ м}^2/(	ext{с}^2 \cdot \text{К}), \]

\[ \rho_{1,0}(2) = 1,03 \text{ кг/м}^3, \quad \mu_{1,2} = 1,7 \cdot 10^{-5} \text{ кг/(м \cdot с)}, \]

\[ \lambda_{1,2} = 8,37 \cdot 10^{-2} \text{ кг \cdot м/(с}^2 \cdot \text{К)}, \quad \rho_{1,2} = 1550 \text{ кг/м}^3, \quad c_2 = 1466 \text{ м}^2/(	ext{с}^2 \cdot \text{К}), \quad T_s = 473 \text{ К}, \quad \varphi = 0,7, \quad v_e = 6,5 \cdot 10^{-4} \text{ м/с}, \quad Q^0 = 1,93 \text{ МДж/кг}. \]

Все вычисления осуществлялись для длины инициирующей ударной волны \( x_f = 0,5 \text{ м} \) и поперечного сечения канала \( Y = 0,2 \text{ м}. \)
В расчетах использованы следующие законы пространственного распределения концентрации частиц в канале:

\[
\varepsilon(x, y, A) = 1 + A \cos \left( 2\pi \frac{x}{l} \right) \quad (0 \leq y \leq y_0 = Y),
\]

\[
\varepsilon(x, y, A) = 1 - 2A \left( \frac{y}{Y} - 0.5 \right) \quad (0 \leq y \leq y_0 = Y),
\]

\[
\varepsilon(x, y, A) = 1 \quad (0 \leq y \leq y_0 = (1 - A)Y, \quad 0 \leq A < 1).
\]

Зависимости (7) и (8) описывают продольную и поперечную пространственные неоднородности распределения концентрации взвеси в канале, соответствующие косинусоидальному и линейно-убывающему законам. Зависимость (9) соответствует ступенчатому пространственному распределению концентрации частиц, в котором параметр \( y_0 \) представляет собой расстояние от нижней \( (y = 0) \) до верхней \( (y = y_0) \) границы слоя облака газовзвеси. Параметры \( 0 \leq A \leq 1 \) в зависимостях (7), (8) характеризуют степень неоднородности пространственного распределения концентрации частиц. При этом предельные значения \( A = 0 \) и \( A = 1 \) соответствуют наименьшей (нулевой) и наибольшей степеням неоднородности распределения концентрации дисперсной фазы. Параметр \( l \) в зависимости (7) характеризует пространственный масштаб периода изменения концентрации частиц в продольном направлении.

**НЕКОТОРЫЕ РЕЗУЛЬТАТЫ**

Обратимся к данным численного исследования сформулированной выше задачи. На рис. 1, a показано формирование волны гетерогенной детонации в слое неоднородной газовзвеси унитарного толкача в случае косинусоидального закона распределения концентрации частиц в продольном направлении канала (7). Сплошными линиями показаны характерные расчетные профили давления газа в моменты времени \( t_i = 3.3i \) мс \( (i = 1 \div 5) \), пунктирной и штриховой линией — соответствующие огибающие пикиковых давлений для случаев неоднородного \( (\alpha_2 = \alpha_{2,0} f(x, y, A)) \) и однородного \( (\alpha_2 = \alpha_{2,0}) \) начальных распределений концентрации частиц в слоях двухфазной среды. Число Маха инициирующей ударной волны \( M_0 = 9 \), начальный диаметр частиц \( d_0 = 30 \) мкм. Осредненное по длине канала \( X \) относительное массовое содержание взвеси в неоднородной \( (m = (m)_X) \) и однородной \( (m_0 = m = \rho_{2,0}/\rho_{1,0}) \) смеси равно 5. Параметры \( A \) и \( l \) равны соответственно 1,0 и 0,5 м.

Как следует из рис. 1, а, пикировое давление в детонационной волне, распространяющейся в неоднородной газовзвеси, испытывает периодические пульсации около среднего значения в соответствии с начальным распределением концентрации частиц вдоль оси \( x \). При этом огибающие максимального и минимального значений пикиковых давлений асимптотически стремятся к предельным значениям, зависящим от начального диаметра частиц, их массового содержания в смеси и параметра \( A \).
На рис. 1,б показаны зависимости относительной амплитуды пульсаций пикового давления газа в детонационной волне (\(\delta = \frac{\Delta p_s}{p_s}\)), от параметра пространственной неоднородности распределения концентрации взвеси при различных значениях среднего относительно массового содержания и начального диаметра смеси. Здесь через \(\Delta p_s\) обозначена разность максимального и минимального давлений в химическом пике детонационной волны, \(\Delta p_s = (p_{\text{max}} - p_{\text{min}})\), а через \(p_s\) — среднее давление, \(p_s = 0,5(p_{\text{max}} + p_{\text{min}})\), которое, как показали расчеты, практически совпадает с пиковым давлением \(p_{s,0}\) в спонтанной детонационной волне в однородных газовзводах. Пунктирными, сплошными и штриховыми линиями изображены зависимости \(\delta(A)\), соответствующие взвесям с \(d_0 = 10, 30\) и \(100\) мкм; кривые 1 и 2 — решения, соответствующие \(m_0 = 10\) и 5.

Как следует из рис. 1,б, относительная амплитуда пульсаций давления (\(\delta\)) увеличивается с ростом массового содержания взвеси и пространственной неоднородности концентрации дисперсной фазы, а также с уменьшением начального диаметра частиц. Указанное поведение зависимости \(\delta\) от параметров \(A, m_0\) и \(d_0\) означает, что \(\delta \sim A A^\Lambda\) (\(n = \text{const}\)), где \(\Lambda\) — безразмерный параметр, характеризующий отношение расстояния между соседними «горбами» плотности взвеси \((l)\) к характерной длине зоны релаксации фаз \((l_v)\),

\[\Lambda = \frac{l}{l_v}, \quad l_v \approx \left(a_{1,1}\right)_0\frac{\rho_0^2\frac{d^2}{d_0^2}}{18(\mu_{1,1})_0(1 + m_0)}.\]

В работе [7], посвященной численному исследованию процесса ударного инициирования одномерных волн детонации в однородных газовзводах упругого топлива, показано, что в пространстве параметров \(M_0, m_0, d_0\), характеризующих детонируемую систему, существует поверхность \(M_0^* = M_0^*(m_0, d_0)\), которая разделяет области гетерогенной детонации \((M_0 \geq M_0^*)\) и затающего горения \((M_0 < M_0^*)\). При этом значения параметров \(M_0^*, m_{0,0}, d_{0,0}\), принадлежащих границе двух областей, названы критическими.

В случае неоднородного распределения концентрации частиц в поперечном сечении канала также возможно существование этих двух характерных режимов детонации. Ниже рассматривается влияние неоднородности распределения частиц в поперечном сечении канала на закономерности развития процесса ударного инициирования гетерогенной детонации \((M_0 \geq M_0^*)\).

В качестве примера на рис. 2,а представлены расчетные профили давления газа в процессе формирования волны детонации в слое неоднородной газовзводы с линейным распределением концентрации частиц в поперечном сечении канала (8). Кривые \((i = 1 \div 4)\) соответствуют моментам времени \(t = 1,75(2i - 1)\) мс. Сплошными, штриховыми и пунктирными линиями показаны решения для сечений канала \(y = 0, Y/2\) и \(Y\) соответственно при \(M_0 = 9, d_0 = 30\) мкм; среднее по сечению \(x = \text{const}\) относительное массовое содержание частиц в смеси равно \(m = \langle m \rangle Y = m_0 = 5; A = 1\).
Как видно из рис. 2,а, неоднородность пространственного распределения концентрации частиц в поперечном сечении канала приводит к развитию двумерного детонационного процесса в слое газовзвеси. Свидетельством этого является наблюдаемое различие величин пиков давлений за детонационной волной в газовзвеси в разных поперечных сечениях канала \((y = 0, Y/2, Y)\).

Более заметное влияние поперечной неоднородности распределения концентрации частиц на развитие детонационного процесса прослеживается в случае ступенчатого изменения объемного содержания частиц в сечении канала \((9)\), что показано на рис. 2,б. На нем все обозначения, момента времени, параметры инициирующей ударной волны и смеси такие же, как на рис. 2,а, за исключением того, что здесь \(y_0 = Y/2\) и \(m = \langle m \rangle_Y = m_0 y_0 / Y\) \((m_0 = 10)\). Из рис. 2,б видно, что наибольшие давления за детонационной волной реализуются в нижней части облака частиц, у стенки \((y = 0)\). По мере увеличения координаты \(y \leq Y/2\) давление в смеси уменьшается. В области газа выше слоя частиц \((Y/2 < y \leq Y)\) давление за детонационной волной примерно такое же, как на верхней границе облака взвеси. Скорость распространения волны давления над слоем частиц больше скорости детонационной волны в нижней части облака взвеси. За передним фронтом волны детонации наблюдается цуг следующих друг за другом волн сжатия и разрежения. Они образуются в результате многократных отражений от стенок канала двумерных возмущений газа, развиившихся на левой и верхней контактных границах облака частиц вследствие искривления поверхности ударной волны и расширения продуктов горения унитарного толпива в поперечном направлении. Аналогичный пульсационный характер изменения давления за плоской волной гетерогенной детонации в реагирующих газовзвесях отмечен в работе \([14]\).

**ВЛИЯНИЕ ПАРАМЕТРОВ ДИСПЕРСНОЙ ФАЗЫ НА ДЕТОНАЦИОННУЮ СПОСОБНОСТЬ ГАЗОЗВЕСЕЙ**

Выше отмечалось, что в случае неоднородного пространственного распределения концентрации частиц в поперечном сечении канала появляется дополнительный параметр \(A\), или \(y_0/Y = 1 - A\), характеризующий зависимость \(a_2 = a_2(y, y, A)\) от координаты \(y\). Поэтому представляет интерес рассмотреть влияние этого параметра на детонационную способность слоя неоднородной газовзвеси унитарного толпива при различных значениях исходного относительного массового содержания и начального диаметра частиц в смеси.

На рис. 3,а показано зависимости критического (минимального) числа Маха, инициирующей ударной волны от начального диаметра частиц унитарного толпива в слоях с фиксированным \(m_0 = 5\) в случае ступенчатого распределения концентрации дисперсной фазы \((A = 1 - y_0/Y = 0; 0.25; 0.5)\). Решение с \(A = 0\) соответствует однородному пространственному распределению концентрации взвеси при полном заполнении канала \((y_0/Y = 1)\) в сечении \(x = \text{const}\) и приведено для сравнения с...
решениями для случаев неполного заполнения канала двухфазной средой \((y_0/Y < 1, A > 0)\).

Из рис. 3, а следует, что для смесей с \(x_{2,0} = \text{const}\) при уменьшении высоты слоя взвешенных частиц (или при увеличении параметра \(A\)) критическое число Маха ударной волны возрастает и превышает предельное значение \(M_0^*\) для однородного слоя, заполняющего все сечение канала \((A = 0)\). Различие значений \(M_0^*\) для \(A > 0\) и \(A = 0\) возрастает с увеличением размера частиц. Указанное поведение решений можно объяснить тем, что в случае неполного заполнения сечения канала дисперсной смесью \((A > 0)\) инициирующая ударная волна и следующий за ней газовый поток огибают слой газовзвеси и тем самым уменьшают передаваемую им сцену энергию по сравнению со случаем полного заполнения канала \((A = 0)\). Отмеченное обстоятельство выполняется несмотря на то, что в случае \(A > 0\) поверхность взаимодействия газового потока и газовзвеси больше, чем в случае \(A = 0\).

На рис. 3, б показаны зависимости критического числа Маха инициирующей ударной волны от относительного массового содержания частиц топлива в слоях газовзвеси \((d_0 = 30 \text{ мкм})\) различной высоты, соответствующей значениям параметра \(A = 0; 0,25; 0,4; 0,5\). Из рис. 3, б видно, что при \(A > 0,4 (y_0/Y < 0,6)\) с ростом величины \(m_0\) в интервале значений \(0 \div 10\) критическое число Маха инициирующей ударной волны монотонно уменьшается. При \(A < 0,4 (y_0/Y > 0,6)\) зависимости \(M_0^*(m_0)\) немонотонные с минимумами при \(m_0 \approx 5\). Немонотонный характер поведения зависимости \(M_0^*(m_0)\) для случая одномерной плоской детонационной волны в газовзвеси унитарного топлива \((y_0/Y = 1)\) ранее обсуждался в работе [6]. На рис. 4, а изображены зависимости \(M_0^*(m_0)\) от степени заполнения поперечного сечения канала \((A = 1 - y_0/Y)\) монодисперсной газовзвеси унитарного топлива \((d_0 = 30 \text{ мкм})\) при \(m = \langle m \rangle y = m_0 y_0/Y = 7,5\) и \(10\). Из рис. 4, а видно, что детонационная способность смеси с фиксированными значениями концентрации и размера частиц дисперсной фазы уменьшается с ростом параметра \(A\) (или с убыванием высоты слоя).

Рис. 4, б иллюстрирует влияние закона пространственного распределения концентрации частиц в сечении канала \(x = \text{const}\) на дето-

![Diagram](image_url)
национную способность слоя реагирующей газовзвеси. Кривые 1 и 2 соответствуют ступенчатому (9) и линейному (8) законам изменения начальной концентрации частиц $d_0 = 30 \text{ мкм}$ вдоль поперечной координаты $y$; $m = m_0 = 5$. Как следует из рис. 4,6, при указанных опи- наковых параметрах смеси детонационная спо- собность слоев газовзвеси возрастает с увеличением «живого» сечения двухфазного потока. 

На рис. 5 изображены зависимости крити- ческого (максимального) диаметра частиц уни- тарного топлива от их относительного массо- вого содержания в слое в случае ступенчатого распределения концентрации частиц (9) в по- перечном сечении камеры; $M_0 = 5$; $A = 0$; $0,25$ и $0,5$. Из рис. 5 видно, что при фиксированной высоте слоя газовзвеси величина крити- ческого (максимального) размера частиц уве- личивается с ростом концентрации дисперс- ной фазы. При фиксированном относительном массовом содержании взвеш частицы уменьшение высоты слоя дисперсной среды приводит к умень- шению критического (максимального) размера частиц.

Таким образом, основное выполненного численного исследования показано, что неодно- родность пространственного распределения концентрации частиц унитарного топлива сни- жает способность слоя к детонационному при ударном инициировании.

ЛИТЕРАТУРА

4. Яненко Н. Н., Фомин В. М., Федоров А. В. и др. Структура ударных, детонационных волн и комбинированных разрывов в смесях га- за и частиц // Механика реагирующих сред и ее приложения. Новосибирск: Наука, 1989. С. 133–143.

Поступила в редакцию 15/VII 1997 г.