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Разработана методика выбора подходящей модели льда и ее параметров методами чис-
ленного моделирования. Исследуется процесс низкоскоростного столкновения шарового
индентора с ледяной пластиной, проводится сравнение результатов численных расчетов
с результатами лабораторного эксперимента. Рассмотрены известные реологические
модели упругопластичности с критериями текучести Мизеса и Мизеса — Шлейхера, а
также модель упругости с упругопластическим включением постоянного размера. В ка-
честве определяющей системы уравнений используется система уравнений изотропной
линейной теории упругости, которая решается сеточно-характеристическим методом.
Исследуется влияние параметров моделей на рассчитанные мгновенные значения ско-
рости и координаты шара. Формулируются критерии выбора характеристик моделей,
строятся аппроксимации зависимостей этих критериев от различных параметров.
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Введение. Численное исследование реакции льда на действие сил, превышающих пре-
дел упругости, необходимо при решении прикладных задач для Арктической области [1].
Однако проблема корректного описания поведения льда до сих пор остается не решен-
ной. Природный лед формируется в различных условиях, определяющих его структуру,
в зависимости от которой изменяются его прочностные и реологические характеристи-
ки [2, 3]. Кроме того, лед существует преимущественно при температуре, близкой к его
температуре плавления, вследствие чего актуальная температура оказывает значительное
влияние на его механическое поведение [4, 5]. Поэтому параметры реологической модели
льда должны уточняться непосредственно для исследуемой структуры льда.

Значительная часть природных процессов, происходящих в присутствии льда, проте-
кают при достаточно малых характерных скоростях (менее 5 м/с), однако поведение льда
при данных условиях изучено недостаточно. Линейно-упругая модель [6] часто использу-
ется при моделировании разнообразных волновых процессов [7], в том числе при решении
прямых задач сейсморазведки в шельфовой зоне [8]. Тем не менее применительно ко льду
эта модель оказывается недостаточной для полного описания даже квазистатического на-
гружения. Например, в работе [9] при переходе от вдавливания индентора к удару при

Работа выполнена при финансовой поддержке Российского научного фонда (код проекта 23-21-00384).

c© Гусева Е. К., Голубев В. И., Епифанов В. П., Петров И. Б., 2024



182 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 6

различных скоростях выявлено изменение поведения льда от вязкого разрушения [10] к
хрупкому разрушению [11].

Большой объем экспериментальных данных был получен при больших скоростях

ударников в работах [12–14], в которых в основном описываются вмятины, глубокие тре-
щины и картины разрушений. Однако при квазистатическом вдавливании индентора в
лед [15, 16] получаются более важные результаты. В указанных условиях наблюдаются
процессы рекристаллизации и образования микротрещин [17], выделяются области, в ко-
торых формируется аморфная структура льда. Для описания данных явлений во многих
работах (см., например, [18, 19]) используются модели пластичности. Тем не менее в слу-
чае малых скоростей удара ситуация осложняется тем, что состояние льда оказывается
близким к точке перехода от пластичного разрушения к хрупкому. В ряде работ предложе-
ны модели, учитывающие этот переход [20–22]. Однако в данном случае возникает вопрос
об области применимости полученных результатов.

В настоящей работе подробно изучаются модели упругопластичности (УП) с извест-
ным критерием текучести Мизеса [23] и его модификацией, а также с критерием Мизеса—
Шлейхера [24]. Дополнительно рассматривается составная модель упругости с упругопла-
стическим включением (УПВ) постоянного размера, по которому наносится удар. Данная
модель учитывает отмеченное в работах [15, 16] разделение льда на зоны. Целью рабо-
ты является выявление закономерностей изменения характеристик моделей и изучение их

влияния на результаты вычислений. Для проведения систематических исследований разра-
батывается методика выбора оптимальных параметров моделей путем сравнения с экспе-
риментальными данными, полученными в случае медленного удара шаровым индентором
по гранулированному поликристаллическому ледяному образцу. Эксперимент проводился
в Институте проблем механики РАН.

В настоящее время не существует общепринятого подхода к моделированию поведения

льда [25], поэтому при решении данной задачи адаптируются и применяются различные
методы. В связи с этим в настоящей работе определяющая система уравнений решает-
ся сеточно-характеристическим методом на структурированных сетках [26, 27]. Данный
метод позволяет точно воспроизводить волновые процессы в достаточно сложных зада-
чах [28], а также может применяться для изучения ударных взаимодействий различного
типа [29]. Таким образом, появляется возможность детального изучения волновых явлений,
вызванных ударом. Расчеты выполнялись с помощью программного комплекса, разрабо-
танного в Московском физико-техническом институте.

1. Постановка задачи. Для проведения исследований поведения льда при низко-
скоростном ударе был выполнен лабораторный эксперимент в соответствии с методикой,
предложенной в работе [30] (рис. 1). Лабораторная установка помещалась в термостат с
поддерживаемой температурой −10 ◦C. Образец гранулированного поликристаллического
льда размещался на металлическом диске и мог скользить по его поверхности. На нижней
поверхности ледяного диска в точке на оси удара размещался пьезоэлектрический акселе-
рометр. Металлический сферический индентор диаметром 0,076 м и массой 1,76 кг из за-
каленной стали марки ШХ-15 с жестко закрепленным внутри вторым датчиком подвеши-
вался на нерастяжимой нити к кронштейну. Сброс шара на лед осуществлялся с помощью
электромагнитного спускового устройства. Начальная скорость удара равна 0,56 м/с, удар
был прямой. Сигналы с пьезоакселерометров записывались цифровым осциллографом, их
обработка выполнялась на компьютере. В результате были построены осциллограммы

удара, представленные на рис. 2.
Для экономии вычислительных ресурсов моделирование проводилось для двумерного

случая, что позволило выполнить большое количество расчетов. На основе лабораторного
эксперимента была создана модель расчетной области, представленная на рис. 3. В обла-
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Рис. 1. Схема лабораторной установки:
1 — спусковое устройство, 2 — сферический индентор с пьезоакселерометром, 3 —
образец льда, 4 — металлический диск, 5 — подложка, 6 — кронштейн, 7 — второй

датчик

Рис. 2. Осциллограммы удара:
1 — данные, полученные с акселерометра в шаре (зависимость осевой силы от времени),
2 — данные, полученные с акселерометра на нижней поверхности льда (зависимость
напряжения от времени)

1 22*

2

2

3

4

70
 ì

ì

400 ìì

10
0 

ì
ì

76
 ì

ì

286 ìì

Рис. 3. Расчетная область:
1, 2 — стальной шар, 3 — образец льда, 4 — металлический диск

сти 1 число ячеек вдоль горизонтальной и вертикальной осей составляло Nx = 60, Ny = 60,
в области 2 — Nx = 30, Ny = 60, в области 3 — Nx = 286, Ny = 70, в области 4 — Nx = 400,
Ny = 100, шаг по времени равен 5 · 10−8 с. Сетки 2 формировались путем вращения сетки
2∗. В ходе расчетов сетки сдвигались с использованием метода Лагранжа. Между обла-
стями 1 и 2 ставилось контактное условие полного слипания, между областями 2 и 3,
3 и 4 — условие проскальзывания в области контакта. На боковых и нижней границах
подставки использовалось условие поглощения, на поверхности шара, льда, выступающей
верхней поверхности подставки ставилось условие свободной границы. В начале расчета
в шаре, находящемся над поверхностью льда на высоте 0,05 мм, задавалась скорость, рав-
ная начальной скорости удара в эксперименте. Узлы расчетной сетки, соответствующие
шару и льду и расположенные на расстоянии менее 0,05 мм, считались контактирующими.
Вычисления продолжались до момента прекращения контакта.

2. Реологические модели. В качестве основной определяющей системы уравнений
использовалась гиперболическая система уравнений изотропной линейной теории упруго-
сти [6] с неизвестными тензором напряжений σ и скоростью точек среды v. Данная модель
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применяется для описания поведения гранулированного поликристаллического льда [31]:

ρv̇ = ∇ · σ + f ; (1)

σ̇ = λ(∇ · v)I + µ(∇⊗ v + (∇⊗ v)т). (2)

Здесь f — вектор массовых сил; ρ — плотность среды; λ, µ — упругие параметры Ламе.
В данной модели скорости продольных и поперечных волн вычисляются по формулам

cp =

√
λ + 2µ

ρ
, cs =

√
µ

ρ
.

Для шара и подставки задавались следующие значения параметров cp, cs, ρ, полностью
описывающих поведение упругого материала: cp = 5700 м/с, cs = 3100 м/с, ρ = 7800 кг/м3.
Эти параметры для льда вычислялись по формуле Берденникова (E = 8760−21T−0,17T 2,
T = −10 ◦C [32], коэффициент Пуассона ν = 0,295, ρ = 917 кг/м3). В результате получены
значения cp = 3600 м/с, cs = 1942 м/с.

Для решения системы (1), (2) использовался сеточно-характеристический ме-
тод [26, 27], в соответствии с которым сначала проводится расщепление по физическим
процессам, а затем выполняются замена переменных и переход к инвариантам Римана.
В итоге начальная система преобразуется в систему независимых уравнений переноса.
Для решения каждого уравнения применялась схема Русанова третьего порядка, из ко-
торой с помощью сеточно-характеристического критерия монотонности была получена
монотонная схема [33, 34].

Для учета пластического поведения (УП) использовалась модификация модели

Прандтля — Рейса [23], в которой после каждого шага расчета проводилась коррекция
девиатора тензора напряжения sij = σij − (σll/δmm)δij при выполнении критерия текуче-
сти

sij = s0
ij

√
2 k

√
selsel

.

В качестве критериев текучести использовались критерий Мизеса (1/2)sijsij − k2 > 0
(k — предел текучести) [23] и критерий Мизеса — Шлейхера k = k0 + ap [24], в котором
предел текучести зависит от давления p = −σll/δmm.

В модели упругости с УПВ используется предположение, что лед деформируется пла-
стически в небольшой области в зоне удара. Считается, что эта область имеет форму
полукруга заданного радиуса r с центром на оси удара (рис. 4). В ячейках, находящих-
ся внутри полукруга, используется описанная выше модель УП, в остальных ячейках —
модель упругости. В расчетах варьировались предел текучести k, параметры в критерии
Мизеса — Шлейхера k0, a, радиус УПВ r.

1

2

Рис. 4. Модель упругости льда (1) с УПВ в форме полукруга заданного ради-
уса (2)
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3. Результаты моделирования. В результате численного моделирования получены
волновые картины, приведенные на рис. 5. В случае модели упругости с УПВ (см. рис. 5,а)
появляются структуры, подобные зубцам, возникающим при формировании кольцевых

трещин [35]. Кроме того, в момент времени t = 0,375 мс после начала расчета в этих зонах
появляется характерная вмятина, которая полностью формируется к моменту t = 0,75 мс.
Таким образом, удается качественно воспроизвести наблюдаемые в эксперименте явления.
Отсутствие подобных картин на рис. 5,д–з является основным недостатком модели УП с
условием Мизеса — Шлейхера.

Проведение сравнения результатов численных расчетов с экспериментальными дан-
ными (кривая 1 на рис. 2) затруднено, поэтому скорость шара была рассчитана по силе F
и массе шара m с использованием формулы

v(t) = 0,56 +
1

m

t∫
0

F (τ) dτ.

При этом скорость не достигает нуля, а имеет минимальное значение, равное 0,098 74 м/с.
Это может быть обусловлено тем, что поверхность льда неравномерна, вследствие чего
горизонтальные компоненты скорости оказываются ненулевыми. В результате преобразо-
вания

v(t) = 0,56
(
1− v − 0,56

min (v − 0,56)

)
скорость сводится к нулю. Дополнительно для расчета глубины осадки шара (коорди-
наты его нижней точки в момент времени, когда модуль скорости минимален) рассчи-
танный модуль скорости умножался на функцию sign (v(τ)). Полученная преобразованная
вертикальная проекция скорости интегрировалась по формуле Симпсона для получения

координаты:

x(t) =

t∫
0

v(τ) sign (v(τ)) dτ.

На рис. 6–8 представлены расчетные зависимости компоненты тензора напряже-
ний σyy, координаты x и скорости vy от времени в нижней точке шара. Кривые ско-
рости, полученные в расчете и эксперименте, качественно различаются. В качестве од-
ного из критериев для подбора параметров был выбран момент времени t0, когда уско-
рение шара меняет знак и модуль скорости шара достигает минимума. В эксперименте
t0 ≈ 0,7 мс. В качестве второго критерия была выбрана максимальная глубина осадки
xmax. Расчетные параметры подбирались таким образом, чтобы в момент времени t0 по-
лучить xmax = 0,2253 мм.

В результате расчетов по модели упругости получены наибольшее значение амплиту-
ды σyy, наименьшее значение амплитуды координаты xmax, а также наименьшее время t0
(см. рис. 6). При использовании модели УП с критерием текучести Мизеса значительно

уменьшается значение σyy и увеличиваются значения xmax и t0. При увеличении преде-
ла текучести результаты расчетов близки к результатам, полученным с помощью моде-
ли упругости, т. е. критерий текучести не выполняется. В результате путем варьирова-
ния данного параметра можно приблизить расчетные данные к экспериментальным. При
k = 0,75 МПа, t0 = 0,7065 мс максимальная глубина осадки xmax = 0,2281 мм близка к
экспериментальной, однако в расчете не удается достичь совпадения по параметру t0. На
волновых картинах, полученных с использованием данной модели, наблюдаются структу-
ры, подобные приведенным на рис. 5 для момента времени t = 0,125 мс. Согласно резуль-
татам расчета образуется вмятина, размеры которой меньше, чем в эксперименте. Таким
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Рис. 5. Волновые картины деформирования ледяного диска при ударе в раз-
личные моменты времени:
а–г — модель упругости с УПВ радиусом 7,5 мм при k = 0,3 МПа (а — t = 0,125 мс,
б — t = 0,375 мс, в — t = 0,500 мс, г — t = 0,750 мс); д–з — модель УП с условием

Мизеса — Шлейхера в центральной области льда при k0 = 0,3 МПа, a = 0,5 (д —
t = 0,05 мс, е — t = 0,10 мс, ж — t = 0,25 мс, з — t = 0,40 мс)
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Рис. 6. Зависимости модуля вертикальной проекции тензора напряже-
ний σyy (а), координаты x (б) и скорости vy (в) от времени в нижней точке
шара, полученные с использованием модели УП с критерием Мизеса — Шлей-
хера:
1 — k0 = 0,3 МПа, a = 0,5, 2 — k0 = 0,3 МПа, a = 0,75, 3 — k0 = 0,3 МПа, a = 0,9, 4 —
k0 = 0,3 МПа, a = 1, 5 — k0 = 0,3 МПа, a = 1,5, 6 — k0 = 0,3 МПа, a = 2; точки —
экспериментальные данные
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Рис. 7. Зависимости модуля вертикальной проекции тензора напряжений (а),
координаты x (б) и скорости (в) от времени в нижней точке шара, полученные
с использованием модели упругости с УПВ с критерием Мизеса:
1 — k = 0,3 МПа, r = 2 мм, 2 — k = 0,3 МПа, r = 6 мм, 3 — k = 0,3 МПа, r = 10 мм,
4 — k = 0,3 МПа, r = 14 мм; точки — экспериментальные данные
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Рис. 8. Зависимости модуля вертикальной проекции тензора напряжений (а),
координаты x (б) и скорости (в) от времени в нижней точке шара, полученные
с использованием модели упругости с УПВ с критериями Мизеса и Мизеса —
Шлейхера:
1 — r = 8 мм, k = 0,3 МПа, 2 — r = 8 мм, k0 = 0,3 МПа, a = 0,1, 3 — r = 8 мм, k0 =
0,05 МПа, a = 0,1, 4 — r = 8 мм, k0 = 0,08 МПа, a = 0,1, 5 — r = 9 мм, k0 = 0,3 МПа,
a = 0,25, 6 — r = 10 мм, k0 = 0,3 МПа, a = 0,3; точки — экспериментальные данные
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Та бли ц а 1
Значения параметров, полученных с использованием моделей УП и упругости с УПВ

Модель k, МПа k0, МПа a r, мм xmax, мм t0, мс

УП 0,75 — — — 0,2281 0,7065
УП — 0,30 0,50 — 0,2139 0,6935
УПВ 0,60 — — 8 0,2302 0,6805
УПВ 0,65 — — 9 0,2340 0,7045
УПВ 0,70 — — 9 0,2259 0,6785
УПВ 0,70 — — 10 0,2308 0,7035
УПВ 0,75 — — 11 0,2251 0,6925
УПВ 0,75 — — 12 0,2262 0,7030
УПВ — 0,08 0,10 8 0,2818 0,6985
УПВ — 0,30 0,10 8 0,2523 0,6950
УПВ — 0,50 0,01 8 0,2425 0,7050
УПВ — 0,30 0,25 9 0,2523 0,6950
УПВ — 0,50 0,10 9 0,2329 0,6905
УПВ — 0,30 0,30 10 0,2226 0,6830
УПВ — 0,50 0,15 10 0,2235 0,6855

образом, для улучшения согласия с экспериментальными данными модель необходимо мо-
дифицировать с помощью другого критерия текучести.

При использовании критерия Мизеса — Шлейхера наблюдаются такие же размеры

вмятины при увеличении параметров k0 и a, как и при использовании критерия Мизеса.
Однако в данном случае при постоянном значении k0 увеличение параметра a приводит к
появлению дополнительных осцилляций на кривых зависимости |σyy| от времени. Подоб-
ные эффекты наблюдаются на деформационных кривых, полученных в экспериментах [36].
Таким образом проявляются упругопластические свойства льда. При этом значительное
увеличение данных параметров не всегда приводит к сближению кривых, построенных по
модели УП с критерием Мизеса — Шлейхера, и кривых, построенных с использованием
модели упругости. Так, при фиксированном значении k0 = 0,3 МПа и увеличении a вплоть
до a = 1 уменьшаются значение координаты шара и t0 и увеличивается амплитуда σyy.
При a = 1 на кривой напряжений появляется второй максимум.

Следует отметить, что параметр a можно подобрать таким образом, чтобы макси-
мальное значение напряжения при различных значениях k0 было одним и тем же, напри-
мер, при k = 3 МПа и k0 = 0,8 МПа, a = 0,5, или k0 = 0,8 МПа, a = 0,1, или k0 = 0,3 МПа,
a = 0,5. Однако в расчетах по моделям УП момент времени, в который модуль скорости
достигает минимума, и глубина осадки различаются. Модель УП с критерием Мизеса —
Шлейхера также имеет ограничение, связанное с тем, что в случае использования крите-
рия Мизеса при k = 0,75 МПа расчетные кривые наиболее близки к экспериментальным.
Если положить k0 = 0,75МПа, то дальнейшее увеличение a будет приводить к ухудшению
результатов. Таким образом, подходящие параметры необходимо подбирать в диапазоне
k0 6 0,75 МПа. При k0 = 0,3 МПа удалось найти параметр a, при котором значение
t0 близко к экспериментальному. Однако совпадения координаты нижней точки шара с

экспериментальным значением не наблюдается (табл. 1).

При использовании модели упругости с УПВ с критерием Мизеса при фиксированном

пределе текучести k = 0,3 МПа и увеличении радиуса включения r результаты расчетов
более существенно отличаются от результатов расчетов по модели упругости (см. рис. 7).
В данном случае значение t0, близкое к экспериментальному, должно получаться при зна-
чении радиуса 7,5÷8,0 мм. Однако в этом случае отсутствует совпадение по координате x.
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Приблизительно при таких же значениях радиуса меняется поведение кривых σyy в случае

варьирования предела текучести. При меньших радиусах с увеличением k на начальном
этапе соударения значения σyy, x, vy не меняются, но затем увеличиваются существенно.
При этом момент времени, в который начинается увеличение амплитуды, с увеличением k
уменьшается.

Не удается получить параметры, при которых достигается совпадение результатов
расчетов и экспериментов по обоим критериям. При r = 11 ÷ 12 мм были подобраны

параметры, при которых полученные значения t0 и x близки к экспериментальным (см.
табл. 1). Однако при радиусах r < 8 мм не получается подобрать подходящий предел
текучести. Для этого необходимо уменьшать k, однако даже при k порядка 104 Па харак-
тер кривых изменяется незначительно. Таким образом, достигается предел, при котором
критерий текучести выполняется во всех ячейках упругопластической зоны включения

начиная с момента времени, близкого к моменту столкновения.
Из проведенного анализа следует, что очень сложно подобрать параметры рассмот-

ренных выше моделей таким образом, чтобы результаты расчетов совпадали с экспери-
ментальными данными и по времени t0 и по координате x. В связи с этим возникла идея
объединить модели УП и упругости с УПВ и рассмотреть модель упругости с УПВ с кри-
терием Мизеса — Шлейхера (см. рис. 8). В данном случае волновые картины качественно
подобны волновым картинам в случае, когда применяется критерий Мизеса и имеется
характерная вмятина.

В результате расчетов, полученных с использованием данной модели, наблюдаются
увеличение σyy, уменьшение x и t0 при увеличении k0 и a, возникновение осцилляций при
увеличении a. При проведении расчетов имеется больше возможностей подобрать парамет-
ры для совпадения по времени t0. Это удается осуществить при r = 8 мм, однако в дан-
ном случае значения xmax не согласуются с экспериментальными данными. При r = 9 мм
расчетные значения координаты и скорости лучше согласуются с экспериментальными

данными в окрестности точки x ≈ xmax, однако их полного совпадения достичь не уда-
ется. При r = 10 мм расчетные и экспериментальные значения t0 согласуются хуже (см.
табл. 1).

Следует отметить, что обнаруженный предел текучести, при котором в случае ис-
пользования модели упругости с УПВ с критерием Мизеса невозможно определить подхо-
дящие значения k, не меняется. Так же как и в модели УП, в модели с критерием Мизеса
подобранные значения k определяют верхнюю границу искомых параметров k0. Таким
образом, несмотря на увеличение области поиска подходящих параметров, появляются
дополнительные ограничения.

В результате анализа расчетных данных с использованием исследуемых моделей по-
строены аппроксимирующие кривые для xmax и t0 при различных значениях параметров
модели УП a, k0, k, r. Для модели УП с критерием Мизеса — Шлейхера зависимости xmax,
t0 от k0 являются гиперболическими (обратно пропорциональными), а зависимости xmax,
t0 от a — экспоненциально убывающими. При больших значениях k0 и малых a, а также
при больших значениях a и малых k0 зависимости стремятся к постоянным значениям,
превышающим значения t0 и xmax, полученные по модели упругости. В случае когда зна-
чения обоих параметров k0 и a большие, предельные значения t0 и xmax уменьшаются до

значений, полученных по модели упругости.
В случае использования критерия Мизеса для моделей УП и упругости с УПВ зависи-

мости t0 и xmax от k также убывают, но более плавно, чем в случае использования модели
УП с критерием Мизеса — Шлейхера. Появляется возможность линейной аппроксимации
зависимостей при малых значениях r. Для модели упругости с УПВ зависимости t0 и xmax

от r аппроксимируются обратной тригонометрической функцией arctg r.
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Та бли ц а 2
Параметры моделей УП и упругости с УПВ, полученные с использованием известных величин

Модель Заданный параметр

Параметр, полученный с использованием
экспериментального значения

xmax t0

УП k0 = 0,50 МПа a = 0,1746 a = 0,1702

a = 0,01 k0 = 0,7440 МПа k0 = 0,7400 МПа
УП a = 0,10 k0 = 0,6260 МПа k0 = 0,6140 МПа

a = 0,20 k0 = 0,4800 МПа k0 = 0,4750 МПа

k = 0,08 МПа r = 6,7080 мм r = 8,0340 мм
k = 0,30 МПа r = 6,9040 мм r = 7,7880 мм

УПВ k = 0,50 МПа r = 7,2780 мм r = 7,8530 мм
k = 0,70 МПа r = 9,1570 мм r = 10,0250 мм
k = 0,80 МПа r = 23,2410 мм r = 24,8950 мм

В случае применения модели упругости с УПВ с критерием Мизеса—Шлейхера функ-
ции t0(a) и xmax(a) в окрестности экспериментальных значений оказываются практически
линейными. Прямые имеют приблизительно одинаковые углы наклона, при уменьшении r
и увеличении k0 кривые сдвигаются влево по оси a. На основе совпадения построенных ап-
проксимаций с экспериментальными значениями xmax и t0 были определены оптимальные
параметры моделей (табл. 2).

Заключение. В работе методами численного моделирования изучено поведение льда
при низкоскоростном ударе шаровым индентором. Подробно исследованы модели упру-
гости и упругопластичности с критериями Мизеса и Мизеса — Шлейхера, а также мо-
дель упругости с упругопластическим включением постоянного размера. Характеристики
моделей подбирались с использованием значений скорости и глубины осадки шара в мо-
мент столкновения. Из рассмотренного набора параметров были выбраны значения, при
которых расчетные кривые наиболее близки к экспериментальным. Построены графики
зависимостей критериев отбора от параметров, для которых удалось подобрать аппрок-
симирующие функции. На основе данных функций предсказаны искомые характеристики
моделей. Таким образом, предложена методика определения подходящей модели льда и ее
параметров. В качестве направления дальнейших исследований можно указать применение
предложенной методики при изучении других реологических моделей, а также обобщение
ее на трехмерный случай.
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