ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ ОСЕСИММЕТРИЧНОГО ДВИЖЕНИЯ ГАЗА

A. V. Ильюшенко, C. A. Холин

(Москва)

В качестве невозмущенного движения возьмем автомодельное решение

\[\rho = \rho_0 \rho^2, \quad u = \frac{r}{t}, \]

где \(r \) — эйлерово расстояние до оси \(z \); \(\rho_0, \ t_0 \) — константы; \(t \to + \infty \) при расширении; \(t \to - 0 \) при сжатии.

В дальнейшем движение считаем аддиабатическим с показателем адиабаты \(\gamma > 1 \). Такое невозмущенное движение соответствует цилиндрическому сжатию (или расширению) столба газа с давлением на границе газа, меняющемся по степенному закону

\[p = A \rho^\gamma = \rho_0(t_0/t)^{2\gamma}. \]

Качественно неустойчивость возникает из-за того, что в задаче есть две скорости: скорость газа \(u = \frac{r}{t} \), зависящая от радиуса, и скорость звука \(c \), постоянная по пространству. Возмущение движения представим в виде

\[\rho = \rho_0 \left(\frac{r_0}{r} \right)^2 \left[1 + \omega(r, t) \right], \quad u = \left(\frac{r}{t} \right) \left[1 + v(r, t) \right]. \]

Будем также считать возмущение малым и в уравнениях оставим только члены, линейные по \(\omega \) и \(v \). Если в уравнении неразрывности и Эйлера

\[\frac{\partial \rho}{\partial t} + \text{div} \ \rho u = 0, \quad \frac{\partial u}{\partial t} + (uv)u = -(1/\rho)vp, \]

перейти к лагранжевым координатам \(t, R = rt \), то для возмущения плотности и скорости получим следующие выражения:

\[\frac{\partial \omega}{\partial t} + v = -(c^2/R)\partial \omega/\partial R, \quad \frac{\partial v}{\partial t} + (1/R)\partial R^2v/\partial R = 0. \]

Комбинируя эти уравнения, можно получить одно уравнение для \(\omega(R, t) \)

\[t^2\partial^2 \omega/\partial t^2 + 2t\partial \omega/\partial t - c^2(\partial^2 \omega/\partial R^2 + (1/R)\partial \omega/\partial R) = 0, \]

решение которого разложим в ряд по функциям Бесселя

\[\omega(R, t) = \sum \omega(k, t) J_0(kR). \]

Функция \(\omega(k, t) \) удовлетворяет уравнению

\[t^2\partial^2 \omega/\partial t^2 + 2t\partial \omega/\partial t + c^2k^2\omega = 0. \]

Так как в данном уравнении \(c^2 = c_0^2 |t|^{-2(\gamma - 1)} \), где \(c_0 \) — константа, то при \(\gamma \neq 1 \) его решение имеет вид \(\omega(k, t) = |t|^{-1/2} \{ A J_{\nu}(x) + B J_{-\nu}(x) \} \), где

\[\nu = 1/2(\gamma - 1); \quad x = (c_0k/(\gamma - 1)) |t|^{-(\gamma - 1)}; \quad A, B, D — \text{константы}. \]

При \(t \to -0 \)

\[\omega(k, t) \to D |t|^{1/2(\gamma - 2)} \cos (x + x\nu/2 - \pi/4). \]

Отсюда видно, что при сжатии, если \(\gamma < 2 \), движение неустойчиво. Амплитуда стоячей волны, колеблясь, растет. При \(\gamma > 2 \) движение устойчиво.

В изотермическом случае (\(\gamma = 1 \)) \(\omega(k, t) \) зависит от времени степенным образом:

\[\omega(k, t) = C_1 t^{\alpha_1} + C_2 t^{\alpha_2}, \]

где \(\alpha_1, \alpha_2 = 1/2 \pm \sqrt{4/4 - c_0^2k^2}; \quad C_1 \) и \(C_2 \) — константы. Когда значение \(\alpha \)

83
комплексно, то $C_1 = \bar{C}_2$. В изотермическом случае движение неустойчиво, и рост амплитуды зависит от длины волны.

Если выразить рост возмущений через величину относительного сжатия ρ/p_0, то имеем

$$(\Delta p/\rho)/(\Delta \rho/p)_0 \leq (\rho/p_0)^{(1/4)(2-\gamma)} \leq (\rho/p_0)^{1/4},$$

так как для реальных газов $1 \leq \gamma \leq 2$.

Поступила 20 III 1981

ЛИТЕРАТУРА

УДК 535.593: 535.539

РАСПРОСТРАНЕНИЕ ВОЗМУЩЕНИЙ ДАВЛЕНИЯ КОНЧЕЧНОЙ АМПЛИТУДЫ В ПУЗЫРЬКОВОЙ ПАРОЖИДКОСТНОЙ СРЕДЕ

В. Е. Накоряков, В. Г. Покусаев, Н. А. Прибатурун, И. Р. Шрейбер

(Новосибирск)

Изучение проблемы распространения возмущений давления в жидкости, насыщенной паровыми пузырьками, приводит к двум различным моделям, описывающим этот процесс. В [1] эволюция волн рассматривается с точки зрения термодинамически равновесной модели, в которой характерная скорость звука рассчитывается в виде [2]

$$c_+ = \mu r p_0 \left(B p_1 T_0 \left(c p_1 T_0 \right)^{1/2} \right),$$

где $
ho$, T — давление и температура среды; ρ — плотность; c_p — теплоемкость; r — скрытая теплота фазового перехода; B — газовая постоянная; μ — молекулярный вес. Здесь и далее индексы 1 и 2 относятся к жидкости и пару соответственно, а 0 — к невозмущенному состоянию. Однако из экспериментов [3—5] следует вывод о том, что газодинамика парожидкостной среды пузырьковой структуры должна строиться на основе неравновесного подхода. В [6] предложена модель распространения возмущений давления, учитывающая нестационарный характер тепломассообмена на межфазной границе пузырьков — жидкость во время прохождения импульса давления. За характерную скорость в этой модели принята «замороженная» скорость звука c_0, значение которой может быть найдено из выражения

$$\frac{1}{c_0^2} = \frac{(1-\varphi_0)^2}{c^2_1} + \frac{\varphi_0 (1-\varphi_0) \rho_1}{\gamma \rho_0},$$

где φ_0 — начальное паросодержание; γ — показатель адабата для пара. Как показали эксперименты [5], используя в [6] модель теплообмена парового пузырька с жидкостью хорошо описывает динамику пузырьков при произвольном изменении внешних условий (давления или температуры). Эти же эксперименты показывают также, что поведение пузырьков в волне давления существенно отражается на структуре и эволюции воли. Ранее [4] было обнаружено, что в определенных условиях, кроме межфазного тепломассообмена, на формирование возмущения давления в жидкости с пузырьками пара могут влиять нелинейные и дисперсионные эффекты, характерные для пузырьковой газожидкостной среды [7].

84