КРАТКОЕ СООБЩЕНИЕ

УДК 536.23

Теплопроводность хладагента R-415а в паровой фазе*

О.И. Верба, Е.П. Расчектаева, С.В. Станкус

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: stankus@itp.nsc.ru

Стационарным методом коаксиальных цилиндров исследована теплопроводность хладагента R-415A в паровой фазе в интервале температур 308–415 K и давлений 0,12–1,68 МПа. Определена аппроксимирующая зависимость теплопроводности от давления и температуры. Рассчитана теплопроводность на линии конденсации и в идеально-газовом состоянии.

Ключевые слова: теплопроводность, хладагент, R-415A, паровая фаза.

Смесь R-415A (50 мас. % CHCIF₂ (R-22), 50 мас.% CHF₂CH₃ (R-152a)) относится к группе переходных хладагентов. Она является эффективным заменителем для фреона R-12 с точки зрения простоты, быстроты замены, низкой стоимости и улучшения рабочих характеристик. Этот хладагент используют для ретрофита средне- и низкотемпературных холодильных систем: транспортных холодильных и водоохлаждающих установок, установок для охлаждения продуктов питания и молока, фармацевтических продуктов, торговых автоматов. Проведение точных научных и инженерных расчетов невозможно без экспериментальных данных по теплофизическим свойствам R-415A в однофазных областях.

В настоящей работе представлены результаты экспериментального исследования теплопроводности (λ) хладагента R-415A в паровой фазе и определены температурные зависимости λ на линии конденсации и в идеально-газовом состоянии.

Теплопроводность паров R-415A исследовалась стационарным методом коаксиальных цилиндров. Описание методики измерений и экспериментальной техники приведены в работах [1, 2]. Измерительная ячейка состояла из двух вертикально расположенных соосных никелевых цилиндров: внешнего и внутреннего, длиной 140 и 101,3 мм соответственно. Ширина кольцевого зазора между цилиндрами составляла 0.366 ± 0.005 мм. Измерения абсолютной температуры цилиндров и температурного перепада между ними выполнялись медьконстантановыми термопарами. Влияние свободных торцов в работе учитывалось введением поправок [1]. Установка тарировалась на аргоне чистотой 99,998 об. %. Расхождение со справочными данными не превышало 1 %. Перед началом эксперимента установка вакуумировалась до давления $(2-3)\times10^{-2}$ Торр. Заполнение

-

^{*} Работа выполнена при финансовой поддержке РФФИ (грант № 11-08-00065).

[©] Верба О.И., Расчектаева Е.П., Станкус С.В., 2013

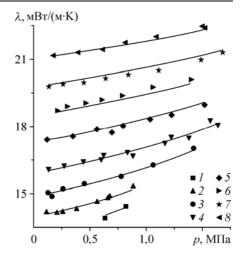
измерительной ячейки происходило из жидкой фазы, чтобы избежать изменения в составе смеси. Погрешность экспериментальных данных по теплопроводности составляла 1,5-2,5%, погрешности измерения температуры и давления не превышали 0,05 К и 4 к Π a соответственно.

Исследовался коммерческий хладагент R-415A производства КНР в интервале температур 308–415 К и давлений 0,12–1,68 МПа парообразного состояния (табл. 1). Измерения выполнены вдоль восьми квазиизотерм. До начала опытов смесь очищалась от воздуха и летучих примесей замораживанием образца жидким азотом с последующей откачкой до давления 3×10^{-2} Topp.

Первичные данные обрабатывались эмпирической зависимостью [1]:

$$\lambda(p,T) = a_0 + a_{10} \frac{T}{100} + a_{20} \frac{100}{T} + p(a_{11} \frac{T}{100} + a_{21} \frac{100}{T}) + p^2(a_{12} \frac{T}{100} + a_{22} \frac{100}{T}), \tag{1}$$

где T — температура в K, p — давление в МПа, λ — в мВт/(м·К). Значения параметров уравнения a_{ij} приведены в табл. 2. Среднеквадратичное отклонение полученных экспериментальных значений от сглаженных по уравнению (1) не превышает 0,7 %. На рисунке показаны экспериментальные данные, приведенные к постоянным температурам (изотермам), и результаты аппроксимации по уравнению (1). Как видно, теплопроводность газообразного R-415A на изотермах практически линейно увеличивается с ростом давления.


Таблица 1 Результаты измерений теплопроводности хладагента R-415A в паровой фазе

* * * * * * * * * * * * * * * * * * * *						
T, K	p, МПа	λ, мВт/(м·K)	<i>T</i> , K	р, МПа	λ, мВт/(м·К)	
308,22	0,638	13,9	372,24	0,123	17,6	
308,30	0,638	13,9	372,24	0,350	17,7	
308,50	0,822	14,5	372,23	0,567	18,0	
308,52	0,822	14,5	366,78	0,694	17,5	
321,04	0,120	14,1	370,08	0,800	18,0	
321,32	0,207	14,1	369,92	1,045	18,3	
324,07	0,258	14,3	370,30	1,231	18,5	
324,18	0,382	14,4	370,07	1,523	18,9	
324,04	0,570	14,7	386,31	0,210	18,8	
323,89	0,662	14,9	385,08	0,300	18,9	
320,89	0,678	14,8	384,48	0,467	19,0	
321,07	0,886	15,2	384,55	0,604	19,1	
336,90	0,131	15,1	386,08	0,786	19,4	
336,76	0,167	14,9	385,94	1,059	19,8	
337,10	0,261	15,3	385,94	1,397	20,1	
336,76	0,457	15,5	400,49	0,133	19,8	
336,61	0,782	15,8	400,32	0,263	19,9	
336,25	1,069	16,3	400,37	0,450	20,0	
336,27	1,426	17,0	400,31	0,641	20,1	
352,16	0,134	16,2	400,24	0,848	20,3	
352,01	0,272	16,3	400,69	1,111	20,5	
352,49	0,445	16,5	400,50	1,491	21,0	
351,24	0,607	16,5	401,23	1,684	21,4	
352,09	0,631	16,8	415,40	0,180	21,2	
351,33	0,831	16,8	415,33	0,405	21,4	
351,46	0,887	16,7	415,27	0,620	21,5	
351,28	1,137	17,1	415,04	0,824	21,7	
351,37	1,227	17,5	415,55	1,097	22,1	
351,25	1,380	17,5	415,41	1,509	22,5	
351,31	1,573	18,3	414,67	1,527	22,4	
351,01	1,644	18,1				

Рис. Изотермы теплопроводности пара R-415A. Символы — экспериментальные данные, линии — уравнение (1). T=308,5 (I), 322,5 (I), 336,5 (I), 351,5 (I), 370,5 (I), 385,5 (I), 400,5 (I), 415,0 (I) К.

Таблица 2 Коэффициенты уравнения (1)

ij	a_{ij}
0	-52,707
10	13,355
20	76,195
11	-0,0916
21	3,969
12	-0,117
22	2,679

При помощи уравнения (1) определены теплопроводность на линии конденсации λ_d и в идеально-газовом состоянии λ_0 (при $p_0=0,101325$ МПа). Данные по давлению пара на линии конденсации были взяты из работы [3]. Зависимости $\lambda_d(T)$ и $\lambda_0(T)$ описываются уравнениями:

$$\lambda_d = b_1 + b_2 \cdot T + b_3 \cdot T^2, \tag{2}$$

$$\lambda_0 = c_1 + c_2 \cdot T + c_3 / T, \tag{3}$$

где
$$b_1 = 78,305$$
, $b_2 = -0,5073$, $b_3 = 9,750 \cdot 10^{-4}$, $c_1 = -52,707$, $c_2 = 0,1334$, $c_3 = 7662,4$.

Сопоставление уравнения (3) с идеально-газовой теплопроводностью, рассчитанной в аддитивном приближении по экспериментальным данным [3] для чистых компонентов R-22 и R-152a, показало согласование в пределах 0,6–4,5 %. Это дает оценку возможной погрешности расчета $\lambda_0(T)$ по законам идеальных растворов для данного класса смесевых хладагентов.

Список литературы

- **1. Верба О.И., Груздев В.А.** Теплопроводность гептафторпропана HFC-227ea // Теплофизика и аэромеханика. 2002. Т. 9, № 3. С. 467–476.
- 2. Верба О.И., Расчектаева Е.П., Станкус С.В. Экспериментальное исследование теплопроводности хладагента R-407C в паровой фазе // Теплофизика высоких температур. 2012. Т. 50, № 2. С. 218–221.
- Lemmon E.W., McLinden M.O., Huber M.L. NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 8.0. National Inst. of Standards and Technology, Standard Reference Data Program, Gaithersburg, Maryland, 2002.

Статья поступила в редакцию 25 марта 2013 г.