УДК 641.454.2

Исследование деструкции капель жидкости в вихревом следе за пилоном при высоких скоростях набегающего воздушного потока

К.Ю. Арефьев^{1,2,3}, А.Н. Прохоров^{1,2}, А.С. Савельев^{1,4}

¹Московский физико-технический институт, Долгопрудный, Московская область

²Центральный институт авиационного моторостроения им. П.И. Баранова, Москва

³Московский государственный технический университет им. Н.Э. Баумана, Москва

⁴Объединенный институт высоких температур РАН, Москва

E-mail: arefyev@ciam.ru, prokhorov@ciam.ru, fisteh@mail.ru

Работа посвящена определению закономерностей деструкции капель жидкости в вихревом следе за пилоном при высоких дозвуковых скоростях набегающего воздушного потока. В статье приведена схема лабораторной установки, описаны средства диагностики и изложена методика проведения эксперимента. Исследована структура нестационарного газодинамического течения за пилоном и определены основные характеристики возникающего вихревого следа. Получены экспериментальные данные по изменению диаметров капель в результате газодинамического дробления в зависимости от параметров потока и режимов инжекции жидкости. Представлены характерные распределения диаметров и скоростей капель в вихревом следе за пилоном. Определены конечные диаметры капель, получаемые в результате газодинамического дробления. Проведено сравнение экспериментальных данных по интенсивности газодинамического дробления с расчетами, выполненными в соответствии с ранее разработанными методиками. Результаты исследования могут быть использованы на этапе выбора конфигурации систем инжекции жидкости в высокоскоростной поток, а также для валидации математических моделей, используемых при расчетах параметров двухфазных течений.

Ключевые слова: высокоскоростной поток, вихревой след, инжекция жидкости, двухфазное течение, дробление капель.

Введение

Известно [1–4], что при инжекции жидкости в высокоскоростной поток реализуется постепенная деструкция образующихся капель в результате их газодинамического дробления. Исследование газодинамического дробления капель в высокоскоростных потоках воздуха является важной научно-технической задачей, актуальность которой обусловлена тесной связью качества распыла жидкости с комплексной эффективностью энергосиловых установок и технологических устройств различного назначения [5, 6].

Учитывая высокую сложность и многостадийность термо- и газодинамических процессов распыла и смесеобразования жидкого горючего с высокоскоростным воздушным потоком, требуется проводить комплексные расчетно-экспериментальные исследования. Следует отметить, что предварительные расчетные исследования [7, 8] позволили

© Арефьев К.Ю., Прохоров А.Н., Савельев А.С., 2018

выявить тенденции, показывающие значительное влияние режимов взаимодействия капель жидкости с потоком воздуха на интенсивность газодинамического дробления и распределение дисперсности капель в проточных трактах энергосиловых установок. Проведенные исследования основывались на использовании комбинированного метода Лагранжа–Эйлера. В этом случае течение газа моделируется с помощью решения осредненных уравнений Навье-Стокса в пространственной нестационарной постановке, а дисперсная фаза — траекторным методом [9]. Влияние капель на поток учитывается путем использования источниковых членов в уравнениях сохранения массы, энергии и количества движения. В свою очередь, источниковые члены определяются в каждой точке траекторий движения капель и зависят от газодинамических сил, интенсивности дробления, нагрева и испарения капель. Такой подход оправдан с точки зрения возможности широкой параметризации исследования процесса и оптимизации затрат машинного времени на проведение численных расчетов. Однако математическая модель, применяемая для описания динамики изменения массы и размеров капель при их газодинамическом дроблении, основана на разрозненных эмпирических данных [1-4, 10-13], полученных для одиночных капель в потоках с высокими кратковременными градиентами давления. Использование такой модели для условий, близких к реализуемым в энергосиловых установках, требует применения методов интерполяции, которые могут давать значительное различие между сложным физическим процессом газодинамического дробления капель и результатами его моделирования. В связи с этим требуется валидация разработанной математической модели по экспериментальным данным, полученным при реализации режимов газодинамического дробления капель жидкости, близких к натурным. Кроме того, в энергосиловых установках жидкость обычно подается через форсунки, установленные на специальных пилонах. Наличие таких пилонов вносит локальное изменение в структуру газового потока [14], что может значительно сказаться на интенсивности газодинамического дробления.

Цель настоящей работы — получение новых экспериментальных данных, которые позволят уточнить закономерности двухфазного смесеобразования и выявить особенности физических процессов в высокоскоростном двухфазном потоке при инжекции жидкости через форсунки, установленные на пилоне.

Лабораторная установка и средства диагностики

Для экспериментального исследования процесса дробления капель в высокоскоростном потоке была создана лабораторная установка на базе атмосферно-вакуумного стенда СТ-4 лаборатории гиперзвуковых и плазменных технологий МФТИ. Схема лабораторной установки представлена на рис. 1. Установка работает следующим образом.

Рис. 1. Схема лабораторной установки.

1 — пневмозадвижка, 2 — входной участок (ресивер), 3 — выравнивающая решетка, 4 — турбулизирующая сетка, 5 — модельная камера, 6 — пилон, 7 — форсунка, 8 — прозрачные окна, 9 — сопло, 10 — барокамера, 11 — датчики давления, 12 — гребенка полного давления. Барокамера 10 соединена с системой вакуумирования газгольдерного типа. Перед экспериментом производится откачка вакуумными насосами газгольдеров до давления, при котором обеспечивается необходимое время работы установки с постоянными параметрами течения в модельной камере 5. Запуск установки осуществляется путем открытия пневмозадвижки *1*. После открытия пневмозадвижки *1* воздух из атмосферы начинает поступать в модельную камеру 5 и создает в ней высокоскоростной поток. Проточный тракт модельной камеры имеет постоянное поперечное сечение квадратной формы с площадью $F_{\kappa} = 5,63 \cdot 10^{-3} \text{ м}^2$. В тракте установлен пилон 6 с форсункой 7, через которую осуществляется инжекция жидкости. Толщина пилона h по отношению к высоте модельной камеры H составляет h/H = 0,2. В выходном сечении модельной камеры 5 установлено сопло 9 с дискретно изменяемой площадью критического сечения F_{кр}. Скорость потока в модельной камере 5 определяется соотношением площадей F_к и F_{кр}. Для выравнивания поля скорости и нормирования масштаба турбулентности набегающего на пилон 6 воздушного потока в области входного участка 2 модельной камеры 5 расположена решетка 3 и сетка 4. Размеры ячеек для решетки составляют 5 × 5 мм, для сетки — 0.8×0.8 мм. Для контроля над скоростью потока перед пилоном расположена съемная гребенка из 12-ти датчиков полного давления. Вдоль тракта размещены датчики статического давления 11. Получение необходимых экспериментальных данных о характеристиках газового потока за пилоном и параметрах капель обеспечивается использованием современных средств диагностики. Исследование двухфазного потока осуществляется оптическими методами через прозрачные окна 8.

Для определения мгновенного поля скорости газового потока в области за пилоном (без инжекции жидкости) был применен метод цифровой трассерной визуализации (Particle Image Velocimetry — PIV) [15]. Принцип действия PIV заключается в измерении перемещения вводимых в поток трассеров, находящихся в плоскости сечения лазерного ножа, за фиксированный интервал времени. В используемой лабораторной установке для создания трассеров применялся генератор масляной аэрозоли с диаметром частиц не более 1 мкм. Для регистрации частиц использовалась цифровая видеокамера с разрешением 1600 × 1200 пикселей, работающая в режиме двойной экспозиции с задержкой 3÷8 мкс. Для подсветки частиц масла применялся сдвоенный Nd:YAG-лазер с генератором второй гармоники 532 нм и энергией в одном импульсе до 125 мДж. Частота проведения измерений составляла до 10 Гц.

Для измерения размеров капель жидкости в экспериментах могут быть использованы оптические методы: интерференционный [16] или теневой [17]. Анализ характеристик вышеуказанных методов и результаты их предварительного тестирования [18] показали, что в рассматриваемых условиях (при высоких скоростях потока и диаметрах капель менее 100 мкм) интерференционный метод имеет недостатки, в том числе низкую долю обнаружения капель и селективность их регистрации в зависимости от диаметра. Учитывая это, для диагностики потока в рамках настоящего исследования был выбран теневой метод.

Теневой метод исследования распыла (схема реализации метода показана на рис. 2*a*) осуществляется следующим образом. Напротив видеокамеры с микроскопом устанавливается оптический диффузно рассеивающий экран, который необходим для преобразования когерентного лазерного излучения в некогерентное и освещения им двухфазного потока. Некогерентный световой поток проходит через прозрачные окна и область секции модельной камеры, после чего попадает в микроскоп видеокамеры. Наличие в модельной камере капель приводит к тому, что на матрицу видеокамеры проецируется световой поток с локальными изменениями интенсивности. При этом области затемнения повторяют форму капель. Использование сдвоенного лазера позволяет получать две фотографии с короткой задержкой по времени, что, в свою очередь, дает возможность

Рис. 2. Схема реализации теневого метода исследования (а) и характерные фотографии двухфазного течения с указанием размеров капель (мкм) на удалении 60 мм (b) и на удалении 250 мм (c) от места инжекции жидкости.
 1 — секция модельной камеры, 2 — прозрачные вставки, 3 — оптический диффузно рассевающий экран, 4 — видеокамера с микроскопом.

измерять компоненты вектора скорости капель в водяном распыле (аналогично методу PIV). На рис. 2*b* и 2*c* представлены фрагменты характерных фотографий двухфазного течения на удалении 60 и 250 мм от места инжекции жидкости соответственно.

Параметры воздушного потока

На первом этапе исследования определяются параметры газового течения при различных значениях относительной площади критического сечения сопла $F_{\rm kp}/F_{\rm k}$ лабораторной установки. Рассматривается диапазон $F_{\rm kp}/F_{\rm k} = 0.40 \div 0.80$. Расчетное значение среднего числа Маха набегающего потока $M_{\rm HII}$ в канале связано с соотношением $F_{\rm kp}/F_{\rm k}$ при помощи газодинамической функции следующего вида [19]:

$$\frac{F_{\kappa p}}{F_{\kappa}} = M_{\rm HI} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} M_{\rm HI}^2 \right) \right]^{-(\gamma + 1)/(2(\gamma - 1))},$$
(1)

где γ— показатель адиабаты для воздуха. Для подтверждения указанных параметров и определения степени неравномерности потока по сечению канала были проведены измерения с использованием гребенки полного давления. Для пересчета измеренных с помощью гребенки давлений использовалось соотношение

$$\frac{p}{p_0} = \left(1 + \frac{\gamma - 1}{2} M_{\rm HII}^2\right)^{-\gamma/(\gamma - 1)},\tag{2}$$

где *р* — статическое давление, *p*₀ — полное давление.

После определения числа Маха может быть вычислено значение модуля вектора средней скорости набегающего на пилон потока u_0 по уравнению

$$|\boldsymbol{u}_{0}| = \mathbf{M}_{\rm HII} \cdot \sqrt{\left(1 + \frac{\gamma - 1}{2} \mathbf{M}_{\rm HII}^{2}\right)^{-1} \cdot \frac{\gamma \cdot R \cdot T_{0}}{\mu}},\tag{3}$$

где R — универсальная газовая постоянная, μ — молярная масса воздуха, $T_0 \approx 298$ К — температура торможения воздуха в экспериментах.

Для рассмотренных конфигураций модельной камеры диапазон изменения параметров набегающего на пилон потока определяется следующими значениями: числа Маха $M_{\rm HII} = 0,24 \div 0,55$, модули скорости $|u_0| = 82 \div 186$ м/с, числа Рейнольдса ${\rm Re} = |u_0| \cdot hp\mu/(R \cdot T \cdot \eta) =$ = (7,9÷15,2)·10⁴ (здесь η — коэффициент динамической вязкости воздуха). Следует отметить, что наибольшее влияние на вихревой след оказывает толщина пилона, поэтому она принята в качестве базового линейного размера при расчете Re.

Установлено, что ядро набегающего на пилон воздушного потока занимает более 85 % площади поперечного сечения модельной камеры. При этом неравномерность скорости в ядре составляет не более 4 %. Результаты обработки данных по измерениям полного давления удовлетворительно согласуются с рассчитанными по соотношению (1). Сравнение расчетных и экспериментальных данных приведено в табл. 1. Следует отметить, что конструкция лабораторной установки обеспечивает реализацию в ее проточном тракте практически плоскопараллельного потока.

Исследование потока, проведенное с помощью метода PIV, показало, что за пилоном образуется вихревой след (дорожка Кармана) [14]. Следует отметить, что возникающие в вихревом следе колебания модуля вектора скорости $|u| = (u_x^2 + u_y^2)^{0.5}$ и его направления могут являться причиной интенсификации механизмов деструкции капель жидкости, поэтому определение интенсивности этих колебаний при рассматриваемых условиях является важной частью настоящей работы. Здесь u_x — составляющая скорости вдоль оси x; u_y — составляющая скорости по оси y.

Для количественного анализа интенсивности колебаний скорости в вихревом следе будем использовать следующие параметры: приведенное среднеквадратичное отклонение модуля скорости $\sigma/|u_0|$ и относительную величину поперечной скорости потока $|u_y|_{\text{max}}/|u_0|$, где $|u_y|_{\text{max}}$ — максимальное значение модуля скорости потока по оси *y*. Среднеквадратичное отклонение σ рассчитывается по формуле

$$\sigma = \sqrt{\sum_{i=1}^{N} \left(\left| \boldsymbol{u} \right|_{i} - \sum_{i=1}^{N} \frac{\left| \boldsymbol{u} \right|_{i}}{N} \right)^{2} / N}, \qquad (4)$$

где $|u_i|$ — значение модуля скорости в *i*-й момент времени, N — количество обрабатываемых величин модуля осевой скорости.

Пример характерной мгновенной структуры течения, полученной с помощью метода PIV, показан на рис. 3.

Таблица 1

Параметры газодинамического течения перед пилоном

$F_{\rm kp}/F_{\rm k}$		Экспериментальные данные					
	M _{нп}	u ₀ /, м/с	p/p_0	Re	M _{нп}	u ₀ /, м/с	p/p_0
0,40	0,24	82	0,960	$7,9.10^{4}$	0,25	86	0,957
0,53	0,33	113	0,927	$10,5 \cdot 10^4$	0,35	119	0,918
0,67	0,43	146	0,881	$12,7.10^{4}$	0,43	147	0,880
0,80	0,55	186	0,813	$15,2.10^{4}$	0,54	181	0,819

Рис. 3. Характерная мгновенная структура течения за пилоном, полученная с помощью метода PIV.

Характерные эпюры осредненного по времени модуля скорости потока и его среднеквадратичного отклонения по оси модельной камеры и в различных поперечных сечениях показаны на рис. 4. На эпюрах отмечены максимальные значения осредненного по времени модуля скорости $|u|_{max}$, разница между минимальным и максимальным значениями осредненного по времени модуля скорости $\Delta |u|$, а также максимальные значения среднеквадратичного отклонения модуля скорости σ_{max} .

Минимальное значение |u| в ядре потока наблюдается по оси канала, что связано с торможением потока в донной области за пилоном. Вследствие значительной нестационарности течения вдоль оси канала наблюдаются значительные величины σ . При этом на удалении x от торца пилона, соответствующем относительной координате $x/h = 2 \div 4$, среднеквадратичное отклонение модуля скорости достигает своего максимального значения σ_{max} . В рассматриваемом поперечном сечении за пилоном максимальное значение модуля скорости $|u/_{max}$ на $8 \div 14$ % больше $|u_0|$, что связано с перераспределением расходонапряженности воздушного потока вследствие образования вихревого следа. Значения $|u/_{max}/|u_0/$ и $\Delta |u|/|u_0|$ в двух поперечных сечениях модельной камеры для рассмотренных чисел Маха набегающего потока представлены в табл. 2. Также в ней указаны значения модуля относительной максимальной поперечной составляющей скорости потока $|u_y|_{max}/|u_0/$. Детально рассмотрены сечения, соответствующие продольной координате x/h = 4,2 и x/h = 17,6, для которых проводилась диагностика параметров капель.

Рис. 4. Эпюры осредненного по времени модуля скорости и среднеквадратичного отклонения модуля скорости потока за пилоном по оси канала (*a*) и в поперечных сечениях (*b*).

Таблица 2

M _{HII}	$\sigma_{ m max}/ u_0 $	x/h = 4,2			x/h = 17,6		
		$ \boldsymbol{u} _{\max}/ \boldsymbol{u}_0 $	$\Delta \boldsymbol{u}/ \boldsymbol{u}_0 $	$ u_{y \max}/ u_0 $	$ \boldsymbol{u} _{\max}/ \boldsymbol{u}_0 $	$\Delta \boldsymbol{u}/ \boldsymbol{u}_0 $	$ u_y/_{\rm max}/ u_0 $
0,24	0,48	1,14	0,33	0,075	1,02	0,21	0,043
0,33	0,45	1,11	0,34	0,063	1,02	0,21	0,034
0,43	0,45	1,10	0,32	0,057	1,02	0,16	0,021
0,55	0,44	1,08	0,39	0,051	1,01	0,17	0,020

Параметры газодинамического течения

Из анализа газодинамического течения следует, что вблизи торцевой области пилона среднеквадратичное отклонение скорости может составлять до 48 % от скорости набегающего воздушного потока. По мере удаления от пилона интенсивность вихрей падает, на что указывает снижение относительных среднеквадратичных отклонений, а также уменьшение значений относительной поперечной скорости $|u_y|_{\max}/|u_0|$. Следует отметить, что на удалении от пилона x/h = 17,6 значения $\sigma/|u_0|$ снижаются более чем в два раза по сравнению с аналогичными значениями при x/h = 4,2. Модуль поперечной составляющей скорости потока не превышает 7,5 % от значения $|u_0|$ при x/h = 4,2 и не более 4 % при x/h = 17,6. Также следует отметить, что по мере удаления от пилона разность между максимальным и минимальным значениями скорости в ядре потока уменьшается, и распределение скорости становится более равномерным. Это является следствием внутреннего трения и турбулентного перемешивания в газе.

В рассматриваемом диапазоне параметров течения относительная интенсивность вихрей снижается с увеличением $M_{\rm HII}$. В частности, при повышении $M_{\rm HII}$ в 2,3 раза, значения $|u_y|_{\rm max}/|u_0|$ уменьшается на 30÷50 %, причем по мере удаления от пилона влияние $M_{\rm HII}$ возрастает.

Полученные данные по структуре и параметрам воздушного потока в канале без подачи жидкости далее использованы при анализе механизмов интенсификации деструкции капель в вихревом следе за пилоном.

Анализ деструкции капель

На основе анализа литературных данных [1–4, 10–13], проведенных ранее расчетно-теоретических исследований [7, 8] и результатов предварительных экспериментов [18] установлено, что наиболее значительное влияние на интенсивность дробления капель оказывают следующие факторы:

 – начальный диаметр и скорость капель, образующихся при первичном распаде струи из форсунки;

 величина и распределение осредненного по времени модуля скорости газового потока;

амплитуда пульсаций скорости газа вблизи места инжекции жидкости.

Для определения закономерностей влияния указанных факторов было проведено физическое моделирование деструкции капель воды при ее инжекции через струйную форсунку с диаметром сопла $d_{\phi} = 0,4\div0,8$ мм. В экспериментах инжекция жидкости осуществлялась спутно с воздушным потоком, перепад давления воды в форсунке варьировался в диапазоне $\Delta p_{\phi} = 0,45\div1,55$ МПа. Инжекция воды проводилась при числах Маха набегающего воздушного потока $M_{\rm HII} = 0,24\div0,55$. Для реализуемых перепадов давления в сопле форсунки начальные диаметры капель составляли $80\div400$ мкм. С целью упрощения толкования полученных результатов введем следующие термины: первичная капля — капля, образовавшаяся в результате распада струи вблизи сопла форсунки при инжекции жидкости; вторичная капля — капля, отделившаяся от первичной в процессе газодина-мического дробления.

Рис. 5. Пример гистограмм счетного распределения диаметров капель при x/h = 4,2 (*a*), 17,6 (*b*).

В результате распада струи подаваемой жидкости на удалении от форсунки $(10\div100)\cdot d_{\phi}$ (d_{ϕ} — диаметр сопла форсунки) образуются первичные капли [5]. Примем, что скорость первичных капель практически совпадает со скоростью течения жидкости в форсунке и определяется зависимостью

$$u_{\kappa 0} = \sqrt{2\Delta p_{\phi} / \rho_{\pi}}, \qquad (5)$$

где $\rho_{\rm m}$ — плотность жидкости.

Следует отметить, что счетное распределение диаметров первичных капель может быть описано узкополосным гамма-распределением [5]. В этом случае сделаем допущение, что в основном при распаде струи образуются монодисперсные первичные капли. Начальный диаметр первичных капель $D_{\kappa 0}$ может быть рассчитан с использованием зависимости [20], которая имеет удовлетворительное совпадение с экспериментами [21], проведенными в широком диапазоне режимных параметров и размеров форсунок:

$$D_{\kappa 0} = 385, 5 \cdot \left(\frac{\eta_{\kappa}}{u_{\kappa 0} \cdot \rho_{\kappa}}\right)^{0, /4} \cdot d_{\phi}^{0, 26},$$
(6)

здесь η_{π} — коэффициент динамической вязкости жидкости. Для исследованных режимов инжекции жидкости диаметры первичных капель соответствуют диапазону $D_{\kappa 0} = 90 \div 170$ мкм.

При движении первичных капель в потоке происходит их газодинамическое дробление с образованием вторичных мелкодисперсных капель. Примеры количественного и объемного распределений капель по их размерам в различных сечениях представлены соответственно на рис. 5 и 6. Здесь *n* — количественная доля капель и *g* — массовая доля капель соответствующей фракции. Данные представлены для капель с начальными

Рис. 6. Пример гистограмм распределения диаметров капель при x/h = 4,2 (*a*), 17,6 (*b*).

размерами $D_{\kappa 0} \sim 120$ мкм. В рассматриваемом потоке капли малых размеров (с диаметрами менее 10 мкм) преимущественно являются вторичными. Следует отметить, что по мере удаления от места инжекции жидкости количественная (*n*) и объемная (*g*) доли капель малых размеров увеличиваются в следствие газодинамического дробления первичных капель.

Капли малых размеров (диаметром менее 10 мкм) преимущественно являются вторичными. При этом плотность вероятности P образования капель диаметром $D \ge 2$ мкм может быть описана функцией Гаусса (правой ветвью) следующего вида:

$$P = \frac{1}{\sqrt{2 \cdot \pi \cdot \varepsilon}} \cdot \exp\left(\frac{-D^2}{2 \cdot \varepsilon}\right),\tag{7}$$

где *є* — дисперсия распределения.

На рис. 7 показана зависимость скорости капель от их размера на различном удалении от места инжекции жидкости. Видно, что модуль вектора скорости капель $|u_{\kappa}|$ для малых D близок к модулю вектора скорости газа, однако для капель больших размеров может реализовываться значительная скоростная неравновесность. По мере удаления от места инжекции жидкости скоростная неравновесность между каплями и газом нивелируется.

Для анализа дисперсности и скорости капель на каждом из исследуемых режимов в течение одного эксперимента регистрировалось около 30 тысяч капель всех размеров. Следует отметить, что используемое оборудование не позволяет регистрировать капли диаметрами D < 2 мкм. Поэтому для описания вероятности образования капель соответствующих субмикронной области размеров требуется дополнительное исследование. Однако в рассматриваемом диапазоне технического применения экспериментальных данных наличие субмикронных частиц слабо влияет на интегральную оценку эффективности двухфазного смесеобразования. Это объясняется тем, что в условиях, близких к рассматриваемым, скорость и температура субмикронных капель практически совпадают с аналогичными параметрами газовой фазы, а их общая масса не превышает 5÷10 % от массы подаваемой жидкости, что следует из анализа данных предварительных расчетных исследований [7, 8].

При анализе размеров дисперсной фазы наиболее распространенными параметрами являются средний арифметический и средний объемно-поверхностный диаметры капель, которые рассчитываются следующим образом:

$$D_{10} = \sum_{i=1}^{N} D_i / N, \quad D_{32} = \sum_{i=1}^{N} D_i^3 / \sum_{i=1}^{N} D_i^2, \qquad (8)$$

здесь *N*— количество зарегистрированных капель, *D_i*— диаметр *i*-й зарегистрированной капли.

Определяющим критерием интенсивности процесса деструкции капель жидкости является число Вебера. С учетом нестационарности течения за пилоном введем характерное начальное адаптированное число Вебера We₀:

$$We_{0} = \frac{\rho_{r} \cdot D_{\kappa 0} \cdot \left[\left(\left| \boldsymbol{u}_{0} \right| - {\boldsymbol{u}_{\kappa 0}} \right)^{2} + {\boldsymbol{\sigma}_{\max}}^{2} \right]}{\lambda}, \qquad (9)$$

где λ — коэффициент поверхностного натяжения, $\rho_{\rm r}$ — плотность газа. Отметим, что адаптированное число Вебера We₀ является критерием, который позволяет оценить комплексную интенсивность газодинамического воздействия на капли в вихревом следе за пилоном. Использование такого комплексного критерия особенно важно при интенсивных пульсациях скорости потока. Кроме того, величина We₀ дает возможность обобщить и проанализировать результаты эксперимента, полученные в широком диапазоне режимных параметров.

Для определения областей двухфазного течения с наиболее интенсивным газодинамическим дроблением капель введем локальное осредненное число Вебера We для регистрируемых капель, рассчитываемое в произвольной области потока в соответствии с уравнением следующего вида:

$$We = \frac{\rho_{\Gamma} \cdot \int_{0}^{\infty} P \cdot D^{3} \cdot (\boldsymbol{u} - \boldsymbol{u}_{\kappa})^{2} dD}{\lambda \cdot \int_{0}^{\infty} P \cdot D^{2} dD} = \frac{\rho_{\Gamma} \cdot \sum_{i=1}^{N} D_{i}^{3} \cdot (\boldsymbol{u} - \boldsymbol{u}_{\kappa i})^{2}}{\lambda \cdot \sum_{i=1}^{N} D_{i}^{2}},$$
(10)

где u_{κ} — вектор скорости капель с диаметром $D, u_{\kappa i}$ — вектор скорости *i*-ой капли.

На рис. 8 показаны характеры изменения диаметров капель D_{32} и числа Вебера We, полученные в экспериментах, а также кривые, рассчитанные с помощью методик [7, 8]. Значения на рис. 8 представлены в относительных величинах и получены для набегающего потока воздуха с числом Maxa M = 0,55 в диапазоне We₀ = 20÷60. Сопоставление расчетных и экспериментальных данных показывает удовлетворительное согласование (различия не превышают 15 %), что подтверждает возможность использования предложенных ранее математических моделей для описания изменения массы капель в результате их газодинамического дробления при рассматриваемых условиях.

Анализ показывает, что наиболее интенсивное дробление капель происходит на расстоянии x < 5h от места инжекции жидкости. Это является следствием больших локальных осредненных чисел Вебера We = $(0,7\div0,5)$ ·We₀ в этой области (рис. 8b). При дальнейшем удалении от места инжекции интенсивность газодинамического дробления

Рис. 8. Зависимости изменения $D_{32}/D_{\kappa 0}(a)$ и We/We₀(b) в вихревом следе за пилоном. We₀ ~ 20 (1), 40 (2), 60 (3).

Рис. 9. Зависимости относительных среднего арифметического и среднего объемноповерхностного диаметров капель. $1 - D_{10x}/D_{k0}, 2 - D_{32x}/D_{k0}.$

капель снижается, и при $x = (10 \div 15) h$ числа We становятся меньше критических значений We_{кр} (для воды We_{кр} = = $8 \div 10$ [1, 3]), вследствие чего газодинамическое дробление большинства капель практически прекращается. Из этого следует, что экспериментально зарегистрированные на удалении от места инжекции жидкости x = 17,6 h средние размеры капель слабо изменяются при

дальнейшем движении в потоке. Однако следует отметить, что отдельные крупные капли могут продолжать дробиться и далее по потоку, но ввиду их небольшого количества дробление крупных капель незначительно влияет на среднестатистические данные.

Установлено, что приведенные к D_{k0} значения среднего арифметического ($D_{10\infty}$) и среднего объемно-поверхностного ($D_{32\infty}$) диаметров капель, находящихся на большом удалении от места инжекции жидкости и не способных к газодинамическому дроблению, в значительной степени зависят от We₀. На диаграмме (рис. 9) представлены экспериментальные данные и результаты расчетов по методикам [7, 8]. Различия между расчетными и экспериментальными значениями $D_{10\infty}$ и $D_{32\infty}$ не превышают 8 %. При этом экспериментальные результаты могут быть аппроксимированы следующими эмпирическими уравнениями, которые позволяют оценить $D_{10\infty}$ и $D_{32\infty}$:

$$D_{10\infty}/D_{\kappa 0} = 0.3 \cdot \exp\left[-0.017\left(We_{\kappa 0} - We_{\kappa p}\right)\right],$$
 (11)

$$D_{32\infty}/D_{\kappa 0} = \exp\left[-0.024\left(We_{\kappa 0} - We_{\kappa p}\right)\right].$$
 (12)

Для исследованного диапазона $We_0 - We_{\kappa p} = 13,5 \div 71,2$ экспериментально получено, что в результате газодинамического дробления средний объемно-поверхностный диаметр капель уменьшается на $25 \div 79$ % относительно $D_{\kappa 0}$. Такое изменение диаметров капель в результате газодинамического дробления значительно влияет на интенсивность последующего смесеобразования, скорость макрокинетических процессов и времена фазовых переходов в потоке. Оценки по эмпирическим формулам (11) и (12) и сопоставление данных с результатами расчетного исследования [8] показывают, что вследствие интенсивных пульсаций газа в вихревом следе за пилоном газодинамическое дробление капель происходит более интенсивно относительно стационарного потока с равными скоростями течения.

Из представленных данных следует, что при оценке эффективности рабочего процесса важным является надлежащий учет газодинамического дробления капель инжектируемой в поток жидкости.

Выводы

В результате экспериментального исследования процесса деструкции капель воды посредством их газодинамического дробления в вихревом следе за пилоном при параметрах набегающего воздушного потока, соответствующих числам Маха $M_{HII} = 0,24 \div 0,55$ и числам Рейнольдса $Re = (7,9 \div 15,2) \cdot 10^4$, установлено следующее. 1. Максимальное значение среднеквадратичного отклонения модуля скорости в вихревом следе за пилоном составляет до 48 % относительно модуля скорости набегающего воздушного потока. Величина поперечной составляющей скорости потока может достигать 7,5 % от значения модуля скорости набегающего потока.

2. Для анализа и обобщения экспериментальных данных может быть использовано начальное адаптированное число Вебера We₀, учитывающее предельную скоростную неравновесность капель относительно нестационарного течения газа.

3. В результате газодинамического дробления (при $We_0 = 13,5\div71,2$) диаметр первичных капель уменьшается на 25÷79 % относительно их начального значения. Экспериментальные значения среднего диаметра капель, образующихся по завершении газодинамического дробления в вихревом следе за пилоном, могут быть аппроксимированы степенной зависимостью относительно We_0 .

4. Наиболее интенсивное дробление капель при рассматриваемых условиях происходит на расстоянии менее 5h (h— толщина пилона) от места инжекции жидкости, где локальные осредненные числа Вебера составляют (0,7÷0,5) We₀. При дальнейшем удалении от места инжекции интенсивность деструкции капель снижается, и при x = (10÷15)hгазодинамическое дробление практически прекращается.

5. Сравнение экспериментальных данных с расчетами, выполненными на основе ранее разработанных методик, показывает удовлетворительное согласование. При этом различия между расчетными и экспериментальными значениями конечных средних диаметров капель не превышает 8 %.

Полученные данные могут быть использованы на этапе выбора конфигурации и систем инжекции жидкости в высокоскоростной поток, а также для валидации математических моделей газодинамического дробления капель.

Список литературы

- 1. Бойко В.М., Поплавский С.В. Экспериментальное исследование двух типов срывного разрушения капли в потоке за ударной волной // Физика горения и взрыва. 2012. № 4. С. 76–82.
- Gelfand B.E. Droplet breakup phenomena in flows with velocity lag // Progr. Energy Combust. Sci. 1996. Vol. 22, No. 3. P. 201–265.
- 3. Гельфанд Б.Е., Вьель Б., Гекальп И., Шаво К. Безударное дробление капель. Временные характеристики // Прикл. механика и технич. физика. 2001. Т. 42, № 1. С. 72–76.
- **4.** Лопарев В.П. Экспериметальное исследование дробления капель жидкости в условиях постепенного нарастания внешних сил // Изв. АН СССР. Механика жидкости и газа. 1975. № 3. С. 174–178.
- 5. Лефевр А. Процессы в камерах сгорания ГТД: пер. с англ. М.: Мир, 1986. 566 с.
- **6.** Добровольский М.В. Жидкостные ракетные двигатели / Под ред. Д.А. Ягодникова. 2 изд., перераб. и дополн. М.: Изд-во МГТУ им. Н.Э Баумана, 2005. 488 с.
- 7. Арефьев К.Ю., Воронецкий А.В. Моделирование процесса дробления и испарения капель нереагирующей жидкости в высокоэнтальпийных газодинамических потоках // Теплофизика и аэромеханика. 2015. Т. 22, № 5. С. 609–620.
- 8. Арефьев К.Ю., Воронецкий А.В., Прохоров А.Н., Сучков С.А., Филимонов Л.А. Анализ влияния типа форсунок и направления впрыска жидкости на эффективность двухфазного смесеобразования в канале постоянного сечения // Изв. высших учебных заведений. Машиностроение. 2016. № 7. С. 94–104.
- 9. Воронецкий А.В., Сучков С.А., Филимонов Л.А. Особенности течения сверхзвуковых двухфазных потоков продуктов сгорания в каналах со специально формируемой системой скачков уплотнения // Теплофизика и аэромеханика. 2007. Т. 14, № 2. С. 209–218.
- Kucharika M., Shashkov M. Conservative multi-material remap for staggered multi-material arbitrary Lagrangian-Eulerian methods // J. of Computational Physics. 2014. Vol. 258. P. 268–304.
- Theofanous T.G., Chang C.H. On the computation of multiphase interactions in transonic and supersonic flows // Proc. of AIAA-2008 Conference, Reno, NV. AIAA Paper. 2008. No. 1233.
- 12. Theofanous T.G., Li G.J. On the physics of aerobreakup // Phys. Fluids. 2008. Vol. 20. P. 052103-1-052103-14.
- Engel O.G. Fragmentation of waterdrops in the zone behind an air shock // J. Res. Natl. Bur. Stand. 1958. No. 60. P. 245–280.
- 14. Дунай О.В., Еронин М.В., Кратиров Д.В., Михеев Н.И., Молочников В.М. Вихри Кармана за плохообтекаемым телом в ограниченном турбулизированном потоке и при турбулизации пограничного слоя на теле // Изв. РАН. Механика жидкости и газа. 2010. № 4. С. 97–106.
- Raffel M., Willert C.E., Wereley S., Kompenhans J. Particle image velocimetry. Berlin, Heidelberg: Springer-Verlag, 2007. 448 p.

- **16. Ragucci R., Cavaliere A., Massoli P.** Drop sizing by laser light scattering exploiting intensity angular oscillation in the mie regime // Particle & Particle Systems Characterization. 1990. No. 7. P. 221–225.
- 17. LaVision ParticleMaster Shadow Imaging. Product Manual. (www.lavision.de).
- 18. Арефьев К.Ю., Савельев А.С. Измерение характеристик распыла воды в сносящем дозвуковом потоке воздуха теневым и интерференционным методами // Тезисы докл. 6-й Всеросс. научн. конф. с междунар. участием им. И.Ф. Образцова и Ю.Г. Яновского Механика композиционных материалов и конструкций, сложных и гетерогенных сред, 16–18 ноября 2016, Москва. С. 93.
- 19. Абрамович Г.Н. Прикладная газовая динамика. М.: Наука, 1991. 600 с.
- 20. Вальдберг А.Ю., Савицкая Н.М. Обобщенная характеристика дисперсности распыла гидравлических форсунок // Теоретические основы химической технологии. 1989. Т. XXIII, № 5. С. 689–692.
- 21. Вальдберг А.Ю., Макеева К.П., Николайкина Н.Е. Изучение дисперсного состава факела распыла жидкости центробежно-струйной форсунки // Изв. МГТУ «МАМИ». 2012. № 2. С. 7–11.

Статья поступила в редакцию 29 марта 2017 г., после доработки — 19 апреля 2017 г.