УДК 532.517.4

Автомодельное вырождение безымпульсного закрученного турбулентного следа^{*}

А.Г. Деменков^{1,2}, Г.Г. Черных^{3,4,5}

¹Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск ²Новосибирский государственный технический университет

³Институт вычислительных технологий СО РАН, Новосибирск

⁴Механико-математический факультет, Новосибирский государственный университет

⁵Сибирский государственный университет телекоммуникаций и информатики, Новосибирск

E-mails: demenkov@itp.nsc.ru, chernykh@ict.nsc.ru

Выполнено численное моделирование вырождения безымпульсного закрученного турбулентного следа за телом вращения. Показано, что начиная с расстояний порядка 1000 диаметров от тела течение выходит на автомодельный режим. На основе результатов численного анализа течения построены упрощенные математические модели дальнего следа.

Ключевые слова: закрученный безымпульсный турбулентный след, математическое моделирование, автомодельное вырождение.

Введение

Закрученные турбулентные струйные течения встречаются в различного рода энергетических и химико-технологических устройствах, при обтекании тел, в задачах динамики атмосферы и др. Ярким примером такого течения является закрученный турбулентный след за телом вращения [1–8]. Особо можно выделить работу [4], в которой были проведены уникальные детальные лабораторные измерения в закрученных турбулентных следах с варьируемыми суммарными избыточным импульсом и моментом количества движения. Одним из вариантов течения, рассматриваемого в указанной публи-кации, является безымпульсный закрученный турбулентный след. При этом изучался частный случай движения тела с движителем, тяга которого компенсирует силу гидродинамического сопротивления, но в потоке остается ненулевая интегральная закрутка.

^{*} Работа выполнена при частичной финансовой поддержке РФФИ (грант 17-01-00332) и грантов Президента РФ для государственной поддержки ведущих научных школ РФ НШ-7214.2016.9, НШ-10179.2016.8.

[©] Деменков А.Г., Черных Г.Г., 2017

Анализ известных работ по численному моделированию безымпульсного закрученного турбулентного следа за телом свидетельствует об отсутствии исследований автомодельности вырождения течения на основе усовершенствованной математической модели [5, 8], результаты расчетов по которой хорошо согласуются с экспериментальными данными [4]. В настоящей работе, являющейся развитием и продолжением [5, 8], выполнен численный анализ вырождения безымпульсного закрученного турбулентного следа. Показано, что начиная с расстояний порядка 1000 диаметров от тела, течение становится практически автомодельным. Построены упрощенные математические модели дальнего безымпульсного закрученного турбулентного следа.

1. Постановка задачи

Исследование зволюции турбулентного следа проводится на основе математической модели, включающей в себя систему осредненных уравнений движения, неразрывности, переноса нормальных рейнольдсовых напряжений и скорости диссипации энергии турбулентности во вращательно-симметричном течении в приближении тонкого сдвигового слоя (TCC) [5, 8, 9] в цилиндрической системе координат (x, r, φ); ось xнаправлена противоположно движению тела. Касательные турбулентные напряжения оределяются из неравновесных алгебраических соотношений [5, 8, 10].

В качестве начальных условий при x = 10D задавались согласованные с измеренными в работе [4] поперечные распределения осредненных продольной и тангенциальной компонент скорости, скорости диссипации и нормальных рейнольдсовых напряжений $U, W, \varepsilon, \langle u'_i u'_i \rangle$ (i = 1, 2, 3). Опыты [4] соответствовали числу Рейнольдса Re = $U_0 D/\nu = 26000$, где ν — кинематический коэффициент вязкости, U_0 — скорость невозмущенной жидкости, D — диаметр тела.

Из уравнений математической модели, начальных и граничных условий для рассматриваемого течения вытекают следующие законы сохранения суммарных избыточного импульса и момента количества движения:

$$J(x) = 2\pi\rho_0 \int_0^\infty [UU_1 - \int_r^\infty \frac{[W^2 + \langle w'^2 \rangle - \langle v'^2 \rangle]}{r'} dr' + \langle u'^2 \rangle - \langle v'^2 \rangle] r dr = 0,$$
(1)

$$M(x) = 2\pi\rho_0 \int_{0}^{\infty} (UW + \langle u'w' \rangle) r^2 dr = M_0 \neq 0,$$
 (2)

где $\langle w'^2 \rangle$, $\langle v'^2 \rangle$, $\langle u'u' \rangle$, $\langle u'w' \rangle$ — рейнольдсовы напряжения, $\langle \rangle$ — знак осреднения, $U_1 = U - U_0$ — дефект продольной компоненты скорости, $\rho_0 = \text{const}$ — плотность жидкости. Переменные задачи обезразмеривались с применением скорости невозмущенного потока U_0 и характерной длины D (диаметра тела). Подробности постановки задачи и построения численной реализации приведены в работах [5, 8].

2. Результаты расчетов

На относительно небольших расстояниях, на которых проводились измерения [4], результаты расчетов хорошо согласуются с экспериментальными данными. В настоящей работе авторы для краткости ограничились сопоставлениями, представленными на рис. 1; подробное описание сопоставлений приведено в работе [5].

Рисунок 1 иллюстрирует изменение рассчитанных обезразмеренных характерных масшабов турбулентности в зависимости от расстояния от тела. Здесь $|U_{10}| = |U_1(0, x)|$ — модуль осевого значения дефекта продольной компоненты скорости; $|W|_m$, $|\langle u'v' \rangle|_m$,

Рис. 1. Изменение обезразмеренных характерных масштабов турбулентности в следе в зависимости от расстояния от тела.

 $|\langle v'w' \rangle|_m$, $|\langle u'w' \rangle|_m$ — максимальные в данном сечении следа значения модулей окружной компоненты скорости и касательных рейнольдсовых напряжений, e_0 — осевые величины кинетической энергии турбулентности, ε_0 — осевые значения скорости диссипации кинетической энергии турбулентности, $L_{1/2}$ — характерный масштаб ширины следа, определяемый из условия $e(L_{1/2}, x) = 0, 5e(0, x)$, $R_{\lambda} = \sqrt{(2/3)e_0}\lambda/\nu$ — осевое значение турбулентного числа Рейнольдса [11], где $\lambda = \sqrt{10e_0\nu/\varepsilon_0}$ — тейлоровский микромасштаб течения. Точками обозначены экспериментальные данные [4].

На больших расстояниях от тела ($x/D \ge 1000$) поведение всех масштабных функций демонстрирует степенную зависимость от x (в логарифмических координатах это сплошные прямые на рис. 1), что в рамках использованной математической модели является одним из необходимых признаков достижения автомодельности турбулентного движения в следе. Осевые значения энергии турбулентности вырождаются по закону $e_0(x) \sim x^{-1,45}$, скорость диссипации по закону $\varepsilon_0(x) \sim x^{-2,45}$, касательные напряжения Рейнольдса $|\langle u'v' \rangle|_m$, $|\langle v'w' \rangle|_m$, $|\langle u'w' \rangle|_m$ по законам $x^{-2,695}$, $x^{-1,43}$, $x^{-2,675}$, соответственно. Окружная компонента скорости при больших х/D убывает как $|W(x)|_m \sim x^{-0,735}$, что согласуется с законом расширения следа и законом сохранения (2), а осевой дефект скорости $|U_{10}| \sim x^{-2}$. Законы расширения характерного размера следа $L_{1/2}$ и вырождения турбулентного числа Рейнольдса R_{λ} определяются как $x^{0,245}$ и $x^{-0,273}$. Заметим также, что в случае закрученного турбулентного следа за самодвижущимся телом [8] получены следующие законы вырождения: $R_{\lambda} \sim x^{-0,273}$, $L_{1/2} \sim x^{0,215}$, $|W|_{m} \sim x^{-2,8}, \quad |U_{10}| \sim x^{-2,05}, \quad e_{0}(x) \sim x^{-1,522}, \quad |\langle u'v' \rangle|_{m} \sim x^{-2,787}, \quad |\langle v'w' \rangle|_{m} \sim x^{-3,537}, \quad |\langle u'w' \rangle|_{m} \sim x^{-2,787}, \quad |\langle u'w' \rangle|_{m} \sim x^{$ $\sim x^{-4,802}$, $\varepsilon_0(x) \sim x^{-2,522}$, т.е. дефект продольной компоненты скорости и энергия турбулентности убывают в рассмотренных течениях практически одинаково. Что же касается тангенциальной компоненты скорости, то ее убывание в случае самодвижения [8] происходит значительно быстрее (более медленное вырождение окружной компоненты скорости в настоящей работе обусловлено ненулевым законом сохранения (2)). Аналогичная ситуация наблюдается и для касательных напряжений, включающих пульсационную составляющую тангенциальной компоненты скорости.

На больших расстояниях от тела ($x/D \ge 1000$) наблюдается также аффинное подобие поперечных профилей различных характеристик турбулентности в следе, нормированных на соответствующие масштабы. При этом автомодельные распределения дисперсий флуктуаций продольной, радиальной и азимутальной компонент скорости практически совпадают, и авторы приводят автомодельное распределение энергии турбулентности *е*. Рисунок 2 (линии *I*) демонстрирует рассчитанные автомодельные профили тангенциальной, дефекта продольной компонент скорости и энергии турбулентности. Линии 2, 3 на рис. 2 относятся к упрощенным математическим моделям *I*, *2*, которые вводятся ниже.

Автомодельные профили энергии турбулентности и тангенциальной компоненты скорости представляют собой финитные колоколоообразные функции; автомодельный профиль дефекта продольной компоненты скорости имеет области отрицательных и положительных значений. Последнее согласуется с законами сохранения (1), (2).

Представленный в настоящей работе численный анализ автомодельности вырождения турбулентного следа основан на обработке результатов численных экспериментов. Справедливость такого подхода, хорошо известного в экспериментальных исследованиях, детально обсуждалась в работе [12], где на примере незакрученного безымпульсного турбулентного следа было осуществлено строгое теоретическое исследование автомодельности с применением теоретико-группового анализа и метода асимптотических разложений. Результаты обработки численных экспериментов оказались близкими к данным, полученным на основе строгого теоретического анализа.

Анализ рассчитанных характеристик дальних закрученных безымпульсных турбулентных следов позволяет сделать вывод о возможности построения упрощенных

Рис. 2. Рассчитанные автомодельные профили тангенциальной, дефекта продольной компонент скорости и энергии турбулентности.

I — расчет автомодельных профилей тангенциальной, дефекта продольной компонент скорости и энергии турбулентности, 2, 3 — упрощенные математические модели. математических моделей. Прежде всего, $|U_{10}|$ убывает значительно быстрее, чем $|W|_m$. Поэтому на больших расстояниях от тела вкладом этой величины в слагаемые порождения можно пренебречь. С учетом этого была построена упрощенная модель 1, представляющая в сравнении с исходной приближение дальнего следа, и проведена замена уравнений переноса нормальных напряжений одним уравнением баланса энергии турбулентности:

$$U_0 \frac{\partial U_1}{\partial x} = \frac{1}{r} \cdot \frac{\partial}{\partial r} r K_U \frac{\partial U_1}{\partial r} + \frac{\partial}{\partial x} \int_r^\infty \frac{W^2}{r'} dr', \quad U_0 \frac{\partial W}{\partial x} = \frac{1}{r^2} \cdot \frac{\partial}{\partial r} \left[r^3 K_W \frac{\partial}{\partial r} \left(\frac{W}{r} \right) \right], \tag{3}$$

$$U_0 \frac{\partial e}{\partial x} = \frac{1}{r} \cdot \frac{\partial}{\partial r} r K_e \frac{\partial e}{\partial r} + P_W - \varepsilon, \quad U_0 \frac{\partial \varepsilon}{\partial x} = \frac{1}{r} \cdot \frac{\partial}{\partial r} r K_\varepsilon \frac{\partial \varepsilon}{\partial r} + C_{\varepsilon 1} \frac{\varepsilon P_W}{e} - C_{\varepsilon 2} \frac{\varepsilon^2}{e}, \tag{4}$$

здесь
$$K_U = K_W = \frac{2}{3} \cdot \frac{1 - C_2}{C_1 + P_W/\varepsilon - 1} \frac{e^2}{\varepsilon}, \quad K_e = 0.147 \frac{e^2}{\varepsilon}, \quad K_\varepsilon = 0.113 \frac{e^2}{\varepsilon}, \quad P_W = K_U r^2 \left(\frac{\partial (W/r)}{\partial r}\right)^2,$$

 $C_{\varepsilon 1} = 1,44, C_{\varepsilon 2} = 1,92, C_1 = 2,2, C_2 = 0,55.$ Дальнейшее упрощение модели (3), (4) заключается в пренебрежении величиной P_W/ε в выражениях для коэффициентов турбулентной вязкости (по результатам расчетов в дальнем следе $P_W/\varepsilon \le 0,1$). В упрощенной модели 2 коэффициенты турбулентной вязкости определяются следующим образом: $K_U = K_W = 0,25e^2/\varepsilon$. Таким образом, модель 2 близка к известной $e \sim \varepsilon$ модели турбулентности, но ее эмпирические постоянные в коэффициентах вязкости существенно отличаются от общепринятых в связи с тем, что она является упрощением более общей математической модели [5, 8]. Выполненные численные эксперименты показали применимость упрощенных математических моделей, начиная с расстояний $x/D \ge 1000$. Законы вырождения следа, полученные на основе исходной и упрощенных математических моделей, удовлетворительно согласуются; отличия автомодельных распределений на рис. 2 также можно считать незначительными.

Заключение

Выполнен численный анализ вырождения безымпульсного закрученного турбулентного следа за сферой в однородной жидкости. Исследована автомодельность вырождения дальнего следа. Построены упрощенные математическая модели дальнего следа.

Авторы посвящают настоящую работу светлой памяти Владимира Алексеевича Костомахи.

Список литературы

- 1. Reynolds A.J. Similarity in swirling wakes and jets // J. Fluid Mech. 1962. Vol. 15, No. 2. P. 241-243.
- 2. Шетц Дж. Турбулентные течения. Процессы вдува и перемешивания. М.: Мир, 1984. 247 с.
- Гумилевский А.Г. Исследование безымпульсных закрученных следов на основе двухпараметрической модели турбулентности // Изв. РАН. Механика жидкости и газа. 1992. № 3. С. 35–41.
- 4. Костомаха В.А., Леснова Н.В. Турбулентный закрученный след за сферой с полной или частичной компенсацией силы сопротивления // Прикладная механика и техническая физика. 1995. Т. 36, № 2. С. 88–98.
- Chernykh G.G., Demenkov A.G., Kostomakha V.A. Numerical model of a swirling momentumless turbulent wake // Russ. J. Numer. Anal. Math. Modelling. 1998. Vol. 13, No. 4. P. 279–288.
- 6. Piquet J. Turbulent Flows // Models and Physics. Springer-Verlag Berlin Heidelberg, 1999. 761 p.
- 7. Lu M.-H., Sirviente A.I. Numerical study of the momentumless wake of an axisymmetric body // 43rd AIAA Aerospace Sci. Meeting and Exhibit, 10–13 January 2005, Reno, Nevada. AIAA Paper. 2005. No. 2005-1109. 14 p.
- Деменков А.Г., Черных Г.Г. Численное моделирование вырождения закрученного турбулентного следа за самодвижущимся телом // Теплофизика и аэромеханика. 2016. Т. 23, № 5. С. 693–702.

- Лаундер Б.Е., Морс А. Численный расчет осесимметричных свободных сдвиговых течений с использованием замыканий для напряжений // Турбулентные сдвиговые течения / под ред. Ф. Дурста, Б.Е. Лаундера, Ф.В. Шмидта, Дж.Х. Уайтлоу. М.: Машиностроение, 1982. С. 291–310.
- 10. Rodi W. A new algebraic relation for calculating the Reynolds stresses // ZAMM. 1976. Vol. 56. P. 219-221.
- 11. Монин А.С., Яглом А.М. Статистическая гидромеханика. Ч. 2. Механика турбулентности. М.: Наука, 1967. 720 с.
- 12. Капцов О.В., Фомина А.В., Черных Г.Г., Шмидт А.В. Автомодельное вырождение безымпульсного турбулентного следа в пассивно стратифицированной среде // Математич. моделирование. 2015. Т. 27, № 1. С. 84–98.

Статья поступила в редакцию 10 мая 2017 г.